Compare commits
81 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
ddfeca41e9
|
|||
|
8f580ad6ba
|
|||
|
68e81b31ba
|
|||
|
cbd6e1a608
|
|||
|
0e3cdedc05
|
|||
|
97cec0e709
|
|||
|
8e24739721
|
|||
|
5f2d9d34bb
|
|||
|
cd43c5aabe
|
|||
|
cf4aa8ed16
|
|||
|
c71e5e9e20
|
|||
|
261bc5c845
|
|||
|
6f8c2692ca
|
|||
|
3dd897b47f
|
|||
|
fcc2348eb0
|
|||
|
8ca0c94445
|
|||
|
463a70c5f4
|
|||
|
643b4fea37
|
|||
|
1752c51b8f
|
|||
|
348769a270
|
|||
|
7b53d7d595
|
|||
|
18c73b12d8
|
|||
|
4ff62cc991
|
|||
|
a8d9167152
|
|||
|
21f4d13ce0
|
|||
|
84e55c557a
|
|||
|
f96398cc84
|
|||
|
9ff0736d50
|
|||
|
c3d390dda0
|
|||
|
eeb47abde1
|
|||
|
567354cebb
|
|||
|
a787bf2ab2
|
|||
|
623cc8d822
|
|||
|
6da4f3b3fb
|
|||
|
982b837143
|
|||
|
02b52ef748
|
|||
|
e32523e626
|
|||
|
9a0c26cc97
|
|||
|
45c2fdbb3f
|
|||
|
c1d3045a77
|
|||
|
f1ca5a3735
|
|||
|
3fa048434b
|
|||
|
0909a62caf
|
|||
|
97012940cd
|
|||
|
b601667d6a
|
|||
|
6d5c7df14a
|
|||
|
3140c0a552
|
|||
|
f9a92b7a8d
|
|||
|
1fa6d5c031
|
|||
|
05954bc487
|
|||
|
e11d96a9b3
|
|||
|
5ee8a02693
|
|||
|
efba2a8f19
|
|||
|
de44e19909
|
|||
|
c7e29d05d4
|
|||
|
6171ceab6d
|
|||
|
41aeeefb5b
|
|||
|
1473fe8fe1
|
|||
|
ac987a2efd
|
|||
|
1050d824e6
|
|||
|
496f838408
|
|||
|
38a7aaa046
|
|||
|
ce246acb43
|
|||
|
3a7eeaee7f
|
|||
|
9afbd0a91d
|
|||
|
2ffa9cbe6c
|
|||
|
8dee2140e1
|
|||
|
af9f1a218e
|
|||
|
b8442274a5
|
|||
|
72ba5bad63
|
|||
|
d7b779170e
|
|||
|
ff28c0a311
|
|||
|
69f49d3dcf
|
|||
|
a91dfe07ec
|
|||
|
922f80657c
|
|||
|
f05e6b5995
|
|||
|
e2ba15880a
|
|||
|
749ace538d
|
|||
|
6d9fc38ef1
|
|||
|
565b53138c
|
|||
|
b0668136d6
|
@@ -21,12 +21,6 @@ impl<M:MeshQuery> CrawlResult<M>{
|
|||||||
CrawlResult::Hit(face,time)=>Some((face,time)),
|
CrawlResult::Hit(face,time)=>Some((face,time)),
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
pub fn miss(self)->Option<FEV<M>>{
|
|
||||||
match self{
|
|
||||||
CrawlResult::Miss(fev)=>Some(fev),
|
|
||||||
CrawlResult::Hit(_,_)=>None,
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// TODO: move predict_collision_face_out algorithm in here or something
|
// TODO: move predict_collision_face_out algorithm in here or something
|
||||||
|
|||||||
@@ -1,7 +1,8 @@
|
|||||||
mod body;
|
mod body;
|
||||||
mod push_solve;
|
|
||||||
mod face_crawler;
|
mod face_crawler;
|
||||||
mod model;
|
mod model;
|
||||||
|
mod push_solve;
|
||||||
|
mod minimum_difference;
|
||||||
|
|
||||||
pub mod physics;
|
pub mod physics;
|
||||||
|
|
||||||
|
|||||||
875
engine/physics/src/minimum_difference.rs
Normal file
875
engine/physics/src/minimum_difference.rs
Normal file
@@ -0,0 +1,875 @@
|
|||||||
|
use strafesnet_common::integer::vec3;
|
||||||
|
use strafesnet_common::integer::vec3::Vector3;
|
||||||
|
use strafesnet_common::integer::{Fixed,Planar64,Planar64Vec3};
|
||||||
|
|
||||||
|
use crate::model::{DirectedEdge,FEV,MeshQuery};
|
||||||
|
// TODO: remove mesh invert
|
||||||
|
use crate::model::{MinkowskiMesh,MinkowskiVert};
|
||||||
|
|
||||||
|
// This algorithm is based on Lua code
|
||||||
|
// written by Trey Reynolds in 2021
|
||||||
|
|
||||||
|
type Simplex<const N:usize,Vert>=[Vert;N];
|
||||||
|
#[derive(Clone,Copy)]
|
||||||
|
enum Simplex1_3<Vert>{
|
||||||
|
Simplex1(Simplex<1,Vert>),
|
||||||
|
Simplex2(Simplex<2,Vert>),
|
||||||
|
Simplex3(Simplex<3,Vert>),
|
||||||
|
}
|
||||||
|
impl<Vert> Simplex1_3<Vert>{
|
||||||
|
fn push_front(self,v:Vert)->Simplex2_4<Vert>{
|
||||||
|
match self{
|
||||||
|
Simplex1_3::Simplex1([v0])=>Simplex2_4::Simplex2([v,v0]),
|
||||||
|
Simplex1_3::Simplex2([v0,v1])=>Simplex2_4::Simplex3([v,v0,v1]),
|
||||||
|
Simplex1_3::Simplex3([v0,v1,v2])=>Simplex2_4::Simplex4([v,v0,v1,v2]),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#[derive(Clone,Copy)]
|
||||||
|
enum Simplex2_4<Vert>{
|
||||||
|
Simplex2(Simplex<2,Vert>),
|
||||||
|
Simplex3(Simplex<3,Vert>),
|
||||||
|
Simplex4(Simplex<4,Vert>),
|
||||||
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
local function absDet(r, u, v, w)
|
||||||
|
if w then
|
||||||
|
return math.abs((u - r):Cross(v - r):Dot(w - r))
|
||||||
|
elseif v then
|
||||||
|
return (u - r):Cross(v - r).magnitude
|
||||||
|
elseif u then
|
||||||
|
return (u - r).magnitude
|
||||||
|
else
|
||||||
|
return 1
|
||||||
|
end
|
||||||
|
end
|
||||||
|
*/
|
||||||
|
impl<Vert> Simplex2_4<Vert>{
|
||||||
|
fn det_is_zero<M:MeshQuery<Vert=Vert>>(self,mesh:&M)->bool{
|
||||||
|
match self{
|
||||||
|
Self::Simplex4([p0,p1,p2,p3])=>{
|
||||||
|
let p0=mesh.vert(p0);
|
||||||
|
let p1=mesh.vert(p1);
|
||||||
|
let p2=mesh.vert(p2);
|
||||||
|
let p3=mesh.vert(p3);
|
||||||
|
(p1-p0).cross(p2-p0).dot(p3-p0)==Fixed::ZERO
|
||||||
|
},
|
||||||
|
Self::Simplex3([p0,p1,p2])=>{
|
||||||
|
let p0=mesh.vert(p0);
|
||||||
|
let p1=mesh.vert(p1);
|
||||||
|
let p2=mesh.vert(p2);
|
||||||
|
(p1-p0).cross(p2-p0)==vec3::zero()
|
||||||
|
},
|
||||||
|
Self::Simplex2([p0,p1])=>{
|
||||||
|
let p0=mesh.vert(p0);
|
||||||
|
let p1=mesh.vert(p1);
|
||||||
|
p1-p0==vec3::zero()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
local function choosePerpendicularDirection(d)
|
||||||
|
local x, y, z = d.x, d.y, d.z
|
||||||
|
local best = math.min(x*x, y*y, z*z)
|
||||||
|
if x*x == best then
|
||||||
|
return Vector3.new(y*y + z*z, -x*y, -x*z)
|
||||||
|
elseif y*y == best then
|
||||||
|
return Vector3.new(-x*y, x*x + z*z, -y*z)
|
||||||
|
else
|
||||||
|
return Vector3.new(-x*z, -y*z, x*x + y*y)
|
||||||
|
end
|
||||||
|
end
|
||||||
|
*/
|
||||||
|
fn choose_perpendicular_direction(d:Planar64Vec3)->Planar64Vec3{
|
||||||
|
let x=d.x.abs();
|
||||||
|
let y=d.y.abs();
|
||||||
|
let z=d.z.abs();
|
||||||
|
if x<y&&x<z{
|
||||||
|
Vector3::new([Fixed::ZERO,-d.z,d.y])
|
||||||
|
}else if y<z{
|
||||||
|
Vector3::new([d.z,Fixed::ZERO,-d.x])
|
||||||
|
}else{
|
||||||
|
Vector3::new([-d.y,d.x,Fixed::ZERO])
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
const fn choose_any_direction()->Planar64Vec3{
|
||||||
|
vec3::X
|
||||||
|
}
|
||||||
|
|
||||||
|
fn reduce1<M:MeshQuery>(
|
||||||
|
[v0]:Simplex<1,M::Vert>,
|
||||||
|
mesh:&M,
|
||||||
|
point:Planar64Vec3,
|
||||||
|
)->Reduced<M::Vert>{
|
||||||
|
// --debug.profilebegin("reduceSimplex0")
|
||||||
|
// local a = a1 - a0
|
||||||
|
let p0=mesh.vert(v0);
|
||||||
|
|
||||||
|
// local p = -a
|
||||||
|
let p=-(p0+point);
|
||||||
|
|
||||||
|
// local direction = p
|
||||||
|
let mut dir=p;
|
||||||
|
|
||||||
|
// if direction.magnitude == 0 then
|
||||||
|
// direction = chooseAnyDirection()
|
||||||
|
if dir==vec3::zero(){
|
||||||
|
dir=choose_any_direction();
|
||||||
|
}
|
||||||
|
|
||||||
|
// return direction, a0, a1
|
||||||
|
Reduced{
|
||||||
|
dir,
|
||||||
|
simplex:Simplex1_3::Simplex1([v0]),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// local function reduceSimplex1(a0, a1, b0, b1)
|
||||||
|
fn reduce2<M:MeshQuery>(
|
||||||
|
[v0,v1]:Simplex<2,M::Vert>,
|
||||||
|
mesh:&M,
|
||||||
|
point:Planar64Vec3,
|
||||||
|
)->Reduced<M::Vert>{
|
||||||
|
// --debug.profilebegin("reduceSimplex1")
|
||||||
|
// local a = a1 - a0
|
||||||
|
// local b = b1 - b0
|
||||||
|
let p0=mesh.vert(v0);
|
||||||
|
let p1=mesh.vert(v1);
|
||||||
|
|
||||||
|
// local p = -a
|
||||||
|
// local u = b - a
|
||||||
|
let p=-(p0+point);
|
||||||
|
let u=p1-p0;
|
||||||
|
|
||||||
|
// -- modify to take into account the radiuses
|
||||||
|
// local p_u = p:Dot(u)
|
||||||
|
let p_u=p.dot(u);
|
||||||
|
|
||||||
|
// if p_u >= 0 then
|
||||||
|
if !p_u.is_negative(){
|
||||||
|
// local direction = u:Cross(p):Cross(u)
|
||||||
|
let direction=u.cross(p).cross(u);
|
||||||
|
|
||||||
|
// if direction.magnitude == 0 then
|
||||||
|
if direction==vec3::zero(){
|
||||||
|
return Reduced{
|
||||||
|
dir:choose_perpendicular_direction(u),
|
||||||
|
simplex:Simplex1_3::Simplex2([v0,v1]),
|
||||||
|
};
|
||||||
|
}
|
||||||
|
|
||||||
|
// -- modify the direction to take into account a0R and b0R
|
||||||
|
// return direction, a0, a1, b0, b1
|
||||||
|
return Reduced{
|
||||||
|
dir:direction.narrow_1().unwrap(),
|
||||||
|
simplex:Simplex1_3::Simplex2([v0,v1]),
|
||||||
|
};
|
||||||
|
}
|
||||||
|
|
||||||
|
// local direction = p
|
||||||
|
let mut dir=p;
|
||||||
|
|
||||||
|
// if direction.magnitude == 0 then
|
||||||
|
if dir==vec3::zero(){
|
||||||
|
dir=choose_perpendicular_direction(u);
|
||||||
|
}
|
||||||
|
|
||||||
|
// return direction, a0, a1
|
||||||
|
Reduced{
|
||||||
|
dir,
|
||||||
|
simplex:Simplex1_3::Simplex1([v0]),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// local function reduceSimplex2(a0, a1, b0, b1, c0, c1)
|
||||||
|
fn reduce3<M:MeshQuery>(
|
||||||
|
[v0,mut v1,v2]:Simplex<3,M::Vert>,
|
||||||
|
mesh:&M,
|
||||||
|
point:Planar64Vec3,
|
||||||
|
)->Reduced<M::Vert>{
|
||||||
|
// --debug.profilebegin("reduceSimplex2")
|
||||||
|
// local a = a1 - a0
|
||||||
|
// local b = b1 - b0
|
||||||
|
// local c = c1 - c0
|
||||||
|
let p0=mesh.vert(v0);
|
||||||
|
let p1=mesh.vert(v1);
|
||||||
|
let p2=mesh.vert(v2);
|
||||||
|
|
||||||
|
// local p = -a
|
||||||
|
// local u = b - a
|
||||||
|
// local v = c - a
|
||||||
|
let p=-(p0+point);
|
||||||
|
let mut u=p1-p0;
|
||||||
|
let v=p2-p0;
|
||||||
|
|
||||||
|
// local uv = u:Cross(v)
|
||||||
|
// local up = u:Cross(p)
|
||||||
|
// local pv = p:Cross(v)
|
||||||
|
// local uv_up = uv:Dot(up)
|
||||||
|
// local uv_pv = uv:Dot(pv)
|
||||||
|
let mut uv=u.cross(v);
|
||||||
|
let mut up=u.cross(p);
|
||||||
|
let pv=p.cross(v);
|
||||||
|
let uv_up=uv.dot(up);
|
||||||
|
let uv_pv=uv.dot(pv);
|
||||||
|
|
||||||
|
// if uv_up >= 0 and uv_pv >= 0 then
|
||||||
|
if !uv_up.is_negative()&&!uv_pv.is_negative(){
|
||||||
|
// local uvp = uv:Dot(p)
|
||||||
|
let uvp=uv.dot(p);
|
||||||
|
|
||||||
|
// local direction = uvp < 0 and -uv or uv
|
||||||
|
let direction=if uvp.is_negative(){
|
||||||
|
-uv
|
||||||
|
}else{
|
||||||
|
uv
|
||||||
|
};
|
||||||
|
|
||||||
|
// return direction, a0, a1, b0, b1, c0, c1
|
||||||
|
return Reduced{
|
||||||
|
dir:direction.narrow_1().unwrap(),
|
||||||
|
simplex:Simplex1_3::Simplex3([v0,v1,v2]),
|
||||||
|
};
|
||||||
|
}
|
||||||
|
|
||||||
|
// local u_u = u:Dot(u)
|
||||||
|
// local v_v = v:Dot(v)
|
||||||
|
// local uDist = uv_up/(u_u*v.magnitude)
|
||||||
|
// local vDist = uv_pv/(v_v*u.magnitude)
|
||||||
|
// local minDist2 = math.min(uDist, vDist)
|
||||||
|
let u_dist=uv_up*v.length();
|
||||||
|
let v_dist=uv_pv*u.length();
|
||||||
|
|
||||||
|
// if vDist == minDist2 then
|
||||||
|
if v_dist<u_dist{
|
||||||
|
u=v;
|
||||||
|
up=-pv;
|
||||||
|
uv=-uv;
|
||||||
|
// b0 = c0
|
||||||
|
// b1 = c1
|
||||||
|
v1=v2;
|
||||||
|
}
|
||||||
|
|
||||||
|
// local p_u = p:Dot(u)
|
||||||
|
let p_u=p.dot(u);
|
||||||
|
|
||||||
|
// if p_u >= 0 then
|
||||||
|
if !p_u.is_negative(){
|
||||||
|
// local direction = up:Cross(u)
|
||||||
|
let direction=up.cross(u);
|
||||||
|
// if direction.magnitude == 0 then
|
||||||
|
if direction==vec3::zero(){
|
||||||
|
// direction = uv
|
||||||
|
return Reduced{
|
||||||
|
dir:uv.narrow_1().unwrap(),
|
||||||
|
simplex:Simplex1_3::Simplex2([v0,v1]),
|
||||||
|
};
|
||||||
|
}
|
||||||
|
|
||||||
|
// return direction, a0, a1, b0, b1
|
||||||
|
return Reduced{
|
||||||
|
dir:direction.narrow_1().unwrap(),
|
||||||
|
simplex:Simplex1_3::Simplex2([v0,v1]),
|
||||||
|
};
|
||||||
|
}
|
||||||
|
|
||||||
|
// local direction = p
|
||||||
|
let dir=p;
|
||||||
|
// if direction.magnitude == 0 then
|
||||||
|
if dir==vec3::zero(){
|
||||||
|
// direction = uv
|
||||||
|
return Reduced{
|
||||||
|
dir:uv.narrow_1().unwrap(),
|
||||||
|
simplex:Simplex1_3::Simplex1([v0]),
|
||||||
|
};
|
||||||
|
}
|
||||||
|
// return direction, a0, a0
|
||||||
|
Reduced{
|
||||||
|
dir,
|
||||||
|
simplex:Simplex1_3::Simplex1([v0]),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// local function reduceSimplex3(a0, a1, b0, b1, c0, c1, d0, d1)
|
||||||
|
fn reduce4<M:MeshQuery>(
|
||||||
|
[v0,mut v1,mut v2,v3]:Simplex<4,M::Vert>,
|
||||||
|
mesh:&M,
|
||||||
|
point:Planar64Vec3,
|
||||||
|
)->Reduce<M::Vert>{
|
||||||
|
// --debug.profilebegin("reduceSimplex3")
|
||||||
|
// local a = a1 - a0
|
||||||
|
// local b = b1 - b0
|
||||||
|
// local c = c1 - c0
|
||||||
|
// local d = d1 - d0
|
||||||
|
let p0=mesh.vert(v0);
|
||||||
|
let p1=mesh.vert(v1);
|
||||||
|
let p2=mesh.vert(v2);
|
||||||
|
let p3=mesh.vert(v3);
|
||||||
|
|
||||||
|
// local p = -a
|
||||||
|
// local u = b - a
|
||||||
|
// local v = c - a
|
||||||
|
// local w = d - a
|
||||||
|
let p=-(p0+point);
|
||||||
|
let mut u=p1-p0;
|
||||||
|
let mut v=p2-p0;
|
||||||
|
let w=p3-p0;
|
||||||
|
|
||||||
|
// local uv = u:Cross(v)
|
||||||
|
// local vw = v:Cross(w)
|
||||||
|
// local wu = w:Cross(u)
|
||||||
|
// local uvw = uv:Dot(w)
|
||||||
|
// local pvw = vw:Dot(p)
|
||||||
|
// local upw = wu:Dot(p)
|
||||||
|
// local uvp = uv:Dot(p)
|
||||||
|
let mut uv=u.cross(v);
|
||||||
|
let vw=v.cross(w);
|
||||||
|
let wu=w.cross(u);
|
||||||
|
let uv_w=uv.dot(w);
|
||||||
|
let pv_w=vw.dot(p);
|
||||||
|
let up_w=wu.dot(p);
|
||||||
|
let uv_p=uv.dot(p);
|
||||||
|
|
||||||
|
// if pvw/uvw >= 0 and upw/uvw >= 0 and uvp/uvw >= 0 then
|
||||||
|
if !pv_w.div_sign(uv_w).is_negative()
|
||||||
|
||!up_w.div_sign(uv_w).is_negative()
|
||||||
|
||!uv_p.div_sign(uv_w).is_negative(){
|
||||||
|
// origin is contained, this is a positive detection
|
||||||
|
// local direction = Vector3.new(0, 0, 0)
|
||||||
|
// return direction, a0, a1, b0, b1, c0, c1, d0, d1
|
||||||
|
return Reduce::Escape([v0,v1,v2,v3]);
|
||||||
|
}
|
||||||
|
|
||||||
|
// local uvwSign = uvw < 0 and -1 or uvw > 0 and 1 or 0
|
||||||
|
// local uvDist = uvp*uvwSign/uv.magnitude
|
||||||
|
// local vwDist = pvw*uvwSign/vw.magnitude
|
||||||
|
// local wuDist = upw*uvwSign/wu.magnitude
|
||||||
|
// local minDist3 = math.min(uvDist, vwDist, wuDist)
|
||||||
|
let uv_dist=uv_p.mul_sign(uv_w);
|
||||||
|
let vw_dist=pv_w.mul_sign(uv_w);
|
||||||
|
let wu_dist=up_w.mul_sign(uv_w);
|
||||||
|
let wu_len=wu.length();
|
||||||
|
let uv_len=uv.length();
|
||||||
|
let vw_len=vw.length();
|
||||||
|
|
||||||
|
if vw_dist*wu_len<wu_dist*vw_len{
|
||||||
|
// if vwDist == minDist3 then
|
||||||
|
if vw_dist*uv_len<uv_dist*vw_len{
|
||||||
|
(u,v)=(v,w);
|
||||||
|
uv=vw;
|
||||||
|
// uv_p=pv_w; // unused
|
||||||
|
// b0, c0 = c0, d0
|
||||||
|
// b1, c1 = c1, d1
|
||||||
|
(v1,v2)=(v2,v3);
|
||||||
|
}else{
|
||||||
|
v2=v3;
|
||||||
|
}
|
||||||
|
}else{
|
||||||
|
// elseif wuDist == minDist3 then
|
||||||
|
if wu_dist*uv_len<uv_dist*wu_len{
|
||||||
|
(u,v)=(w,u);
|
||||||
|
uv=wu;
|
||||||
|
// uv_p=up_w; // unused
|
||||||
|
// b0, c0 = d0, b0
|
||||||
|
// b1, c1 = d1, b1
|
||||||
|
// before [a,b,c,d]
|
||||||
|
(v1,v2)=(v3,v1);
|
||||||
|
// after [a,d,b]
|
||||||
|
}else{
|
||||||
|
v2=v3;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// local up = u:Cross(p)
|
||||||
|
// local pv = p:Cross(v)
|
||||||
|
// local uv_up = uv:Dot(up)
|
||||||
|
// local uv_pv = uv:Dot(pv)
|
||||||
|
let mut up=u.cross(p);
|
||||||
|
let pv=p.cross(v);
|
||||||
|
let uv_up=uv.dot(up);
|
||||||
|
let uv_pv=uv.dot(pv);
|
||||||
|
|
||||||
|
// if uv_up >= 0 and uv_pv >= 0 then
|
||||||
|
if !uv_up.is_negative()&&!uv_pv.is_negative(){
|
||||||
|
// local direction = uvw < 0 and uv or -uv
|
||||||
|
// return direction, a0, a1, b0, b1, c0, c1
|
||||||
|
if uv_w.is_negative(){
|
||||||
|
return Reduce::Reduced(Reduced{
|
||||||
|
dir:uv.narrow_1().unwrap(),
|
||||||
|
simplex:Simplex1_3::Simplex3([v0,v1,v2]),
|
||||||
|
});
|
||||||
|
}else{
|
||||||
|
return Reduce::Reduced(Reduced{
|
||||||
|
dir:-uv.narrow_1().unwrap(),
|
||||||
|
simplex:Simplex1_3::Simplex3([v0,v1,v2]),
|
||||||
|
});
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// local u_u = u:Dot(u)
|
||||||
|
// local v_v = v:Dot(v)
|
||||||
|
// local uDist = uv_up/(u_u*v.magnitude)
|
||||||
|
// local vDist = uv_pv/(v_v*u.magnitude)
|
||||||
|
// local minDist2 = math.min(uDist, vDist)
|
||||||
|
let u_dist=uv_up*v.length();
|
||||||
|
let v_dist=uv_pv*u.length();
|
||||||
|
|
||||||
|
// if vDist == minDist2 then
|
||||||
|
if v_dist<u_dist{
|
||||||
|
u=v;
|
||||||
|
up=-pv;
|
||||||
|
uv=-uv;
|
||||||
|
// b0 = c0
|
||||||
|
// b1 = c1
|
||||||
|
v1=v2;
|
||||||
|
}
|
||||||
|
|
||||||
|
// local p_u = p:Dot(u)
|
||||||
|
let p_u=p.dot(u);
|
||||||
|
|
||||||
|
// if p_u >= 0 then
|
||||||
|
if !p_u.is_negative(){
|
||||||
|
// local direction = up:Cross(u)
|
||||||
|
let direction=up.cross(u);
|
||||||
|
// if direction.magnitude == 0 then
|
||||||
|
if direction==vec3::zero(){
|
||||||
|
// direction = uvw < 0 and uv or -uv
|
||||||
|
// return direction, a0, a1, b0, b1
|
||||||
|
if uv_w.is_negative(){
|
||||||
|
return Reduce::Reduced(Reduced{
|
||||||
|
dir:uv.narrow_1().unwrap(),
|
||||||
|
simplex:Simplex1_3::Simplex2([v0,v1]),
|
||||||
|
});
|
||||||
|
}else{
|
||||||
|
return Reduce::Reduced(Reduced{
|
||||||
|
dir:-uv.narrow_1().unwrap(),
|
||||||
|
simplex:Simplex1_3::Simplex2([v0,v1]),
|
||||||
|
});
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// return direction, a0, a1, b0, b1
|
||||||
|
return Reduce::Reduced(Reduced{
|
||||||
|
dir:direction.narrow_1().unwrap(),
|
||||||
|
simplex:Simplex1_3::Simplex2([v0,v1]),
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
// local direction = p
|
||||||
|
let dir=p;
|
||||||
|
// if direction.magnitude == 0 then
|
||||||
|
if dir==vec3::zero(){
|
||||||
|
// direction = uvw < 0 and uv or -uv
|
||||||
|
if uv_w.is_negative(){
|
||||||
|
return Reduce::Reduced(Reduced{
|
||||||
|
dir:uv.narrow_1().unwrap(),
|
||||||
|
simplex:Simplex1_3::Simplex1([v0]),
|
||||||
|
});
|
||||||
|
}else{
|
||||||
|
return Reduce::Reduced(Reduced{
|
||||||
|
dir:-uv.narrow_1().unwrap(),
|
||||||
|
simplex:Simplex1_3::Simplex1([v0]),
|
||||||
|
});
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// return direction, a0, a1
|
||||||
|
Reduce::Reduced(Reduced{
|
||||||
|
dir,
|
||||||
|
simplex:Simplex1_3::Simplex1([v0]),
|
||||||
|
})
|
||||||
|
}
|
||||||
|
|
||||||
|
struct Reduced<Vert>{
|
||||||
|
dir:Planar64Vec3,
|
||||||
|
simplex:Simplex1_3<Vert>,
|
||||||
|
}
|
||||||
|
|
||||||
|
enum Reduce<Vert>{
|
||||||
|
Escape(Simplex<4,Vert>),
|
||||||
|
Reduced(Reduced<Vert>),
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<Vert> Simplex2_4<Vert>{
|
||||||
|
fn reduce<M:MeshQuery<Vert=Vert>>(self,mesh:&M,point:Planar64Vec3)->Reduce<Vert>{
|
||||||
|
match self{
|
||||||
|
Self::Simplex2(simplex)=>Reduce::Reduced(reduce2(simplex,mesh,point)),
|
||||||
|
Self::Simplex3(simplex)=>Reduce::Reduced(reduce3(simplex,mesh,point)),
|
||||||
|
Self::Simplex4(simplex)=>reduce4(simplex,mesh,point),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn contains_point(mesh:&MinkowskiMesh<'_>,point:Planar64Vec3)->bool{
|
||||||
|
const ENABLE_FAST_FAIL:bool=true;
|
||||||
|
// TODO: remove mesh negation
|
||||||
|
minimum_difference::<ENABLE_FAST_FAIL,_,_>(&-mesh,point,
|
||||||
|
// on_exact
|
||||||
|
|is_intersecting,_simplex|{
|
||||||
|
is_intersecting
|
||||||
|
},
|
||||||
|
// on_escape
|
||||||
|
|_simplex|{
|
||||||
|
// intersection is guaranteed at this point
|
||||||
|
true
|
||||||
|
},
|
||||||
|
// fast_fail value
|
||||||
|
||false
|
||||||
|
)
|
||||||
|
}
|
||||||
|
|
||||||
|
//infinity fev algorithm state transition
|
||||||
|
#[derive(Debug)]
|
||||||
|
enum Transition<Vert>{
|
||||||
|
Done,//found closest vert, no edges are better
|
||||||
|
Vert(Vert),//transition to vert
|
||||||
|
}
|
||||||
|
enum EV<M:MeshQuery>{
|
||||||
|
Vert(M::Vert),
|
||||||
|
Edge(<M::Edge as DirectedEdge>::UndirectedEdge),
|
||||||
|
}
|
||||||
|
impl<M:MeshQuery> From<EV<M>> for FEV<M>{
|
||||||
|
fn from(value:EV<M>)->Self{
|
||||||
|
match value{
|
||||||
|
EV::Vert(minkowski_vert)=>FEV::Vert(minkowski_vert),
|
||||||
|
EV::Edge(minkowski_edge)=>FEV::Edge(minkowski_edge),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
trait Contains{
|
||||||
|
fn contains(&self,point:Planar64Vec3)->bool;
|
||||||
|
}
|
||||||
|
|
||||||
|
// convenience type to check if a point is within some threshold of a plane.
|
||||||
|
struct ThickPlane{
|
||||||
|
point:Planar64Vec3,
|
||||||
|
normal:Vector3<Fixed<2,64>>,
|
||||||
|
epsilon:Fixed<3,96>,
|
||||||
|
}
|
||||||
|
impl ThickPlane{
|
||||||
|
fn new<M:MeshQuery>(mesh:&M,[v0,v1,v2]:Simplex<3,M::Vert>)->Self{
|
||||||
|
let p0=mesh.vert(v0);
|
||||||
|
let p1=mesh.vert(v1);
|
||||||
|
let p2=mesh.vert(v2);
|
||||||
|
let point=p0;
|
||||||
|
let normal=(p1-p0).cross(p2-p0);
|
||||||
|
// Allow ~ 2*sqrt(3) units of thickness on the plane
|
||||||
|
// This is to account for the variance of two voxels across the longest diagonal
|
||||||
|
let epsilon=(normal.length()*(Planar64::EPSILON*3)).wrap_3();
|
||||||
|
Self{point,normal,epsilon}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
impl Contains for ThickPlane{
|
||||||
|
fn contains(&self,point:Planar64Vec3)->bool{
|
||||||
|
(point-self.point).dot(self.normal).abs()<=self.epsilon
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
struct ThickLine{
|
||||||
|
point:Planar64Vec3,
|
||||||
|
dir:Planar64Vec3,
|
||||||
|
epsilon:Fixed<4,128>,
|
||||||
|
}
|
||||||
|
impl ThickLine{
|
||||||
|
fn new<M:MeshQuery>(mesh:&M,[v0,v1]:Simplex<2,M::Vert>)->Self{
|
||||||
|
let p0=mesh.vert(v0);
|
||||||
|
let p1=mesh.vert(v1);
|
||||||
|
let point=p0;
|
||||||
|
let dir=p1-p0;
|
||||||
|
// Allow ~ 2*sqrt(3) units of thickness on the plane
|
||||||
|
// This is to account for the variance of two voxels across the longest diagonal
|
||||||
|
let epsilon=(dir.length_squared()*(Planar64::EPSILON*3)).widen_4();
|
||||||
|
Self{point,dir,epsilon}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
impl Contains for ThickLine{
|
||||||
|
fn contains(&self,point:Planar64Vec3)->bool{
|
||||||
|
(point-self.point).cross(self.dir).length_squared()<=self.epsilon
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
struct EVFinder<'a,M,C>{
|
||||||
|
mesh:&'a M,
|
||||||
|
constraint:C,
|
||||||
|
best_distance_squared:Fixed<2,64>,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<M:MeshQuery,C:Contains> EVFinder<'_,M,C>{
|
||||||
|
fn next_transition_vert(&mut self,vert_id:M::Vert,point:Planar64Vec3)->Transition<M::Vert>{
|
||||||
|
let mut best_transition=Transition::Done;
|
||||||
|
for &directed_edge_id in self.mesh.vert_edges(vert_id).as_ref(){
|
||||||
|
//test if this edge's opposite vertex closer
|
||||||
|
let edge_verts=self.mesh.edge_verts(directed_edge_id.as_undirected());
|
||||||
|
//select opposite vertex
|
||||||
|
let test_vert_id=edge_verts.as_ref()[directed_edge_id.parity() as usize];
|
||||||
|
let test_pos=self.mesh.vert(test_vert_id);
|
||||||
|
let diff=point-test_pos;
|
||||||
|
let distance_squared=diff.dot(diff);
|
||||||
|
// ensure test_vert_id is coplanar to simplex
|
||||||
|
if distance_squared<self.best_distance_squared&&self.constraint.contains(test_pos){
|
||||||
|
best_transition=Transition::Vert(test_vert_id);
|
||||||
|
self.best_distance_squared=distance_squared;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
best_transition
|
||||||
|
}
|
||||||
|
fn final_ev(&mut self,vert_id:M::Vert,point:Planar64Vec3)->EV<M>{
|
||||||
|
let mut best_transition=EV::Vert(vert_id);
|
||||||
|
let vert_pos=self.mesh.vert(vert_id);
|
||||||
|
let diff=point-vert_pos;
|
||||||
|
for &directed_edge_id in self.mesh.vert_edges(vert_id).as_ref(){
|
||||||
|
//test if this edge is closer
|
||||||
|
let edge_verts=self.mesh.edge_verts(directed_edge_id.as_undirected());
|
||||||
|
let test_vert_id=edge_verts.as_ref()[directed_edge_id.parity() as usize];
|
||||||
|
let test_pos=self.mesh.vert(test_vert_id);
|
||||||
|
let edge_n=test_pos-vert_pos;
|
||||||
|
let d=edge_n.dot(diff);
|
||||||
|
//test the edge
|
||||||
|
let edge_nn=edge_n.dot(edge_n);
|
||||||
|
// ensure edge contains closest point and directed_edge_id is coplanar to simplex
|
||||||
|
if !d.is_negative()&&d<=edge_nn&&self.constraint.contains(test_pos){
|
||||||
|
let distance_squared={
|
||||||
|
let c=diff.cross(edge_n);
|
||||||
|
//wrap for speed
|
||||||
|
(c.dot(c)/edge_nn).divide().wrap_2()
|
||||||
|
};
|
||||||
|
if distance_squared<=self.best_distance_squared{
|
||||||
|
best_transition=EV::Edge(directed_edge_id.as_undirected());
|
||||||
|
self.best_distance_squared=distance_squared;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
best_transition
|
||||||
|
}
|
||||||
|
fn crawl_boundaries(&mut self,mut vert_id:M::Vert,point:Planar64Vec3)->EV<M>{
|
||||||
|
loop{
|
||||||
|
match self.next_transition_vert(vert_id,point){
|
||||||
|
Transition::Done=>return self.final_ev(vert_id,point),
|
||||||
|
Transition::Vert(new_vert_id)=>vert_id=new_vert_id,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
/// This function drops a vertex down to an edge or a face if the path from infinity did not cross any vertex-edge boundaries but the point is supposed to have already crossed a boundary down from a vertex
|
||||||
|
fn crawl_to_closest_ev<M:MeshQuery>(mesh:&M,simplex:Simplex<2,M::Vert>,point:Planar64Vec3)->EV<M>{
|
||||||
|
// naively start at the closest vertex
|
||||||
|
// the closest vertex is not necessarily the one with the fewest boundary hops
|
||||||
|
// but it doesn't matter, we will get there regardless.
|
||||||
|
let (vert_id,best_distance_squared)=simplex.into_iter().map(|vert_id|{
|
||||||
|
let diff=point-mesh.vert(vert_id);
|
||||||
|
(vert_id,diff.dot(diff))
|
||||||
|
}).min_by_key(|&(_,d)|d).unwrap();
|
||||||
|
|
||||||
|
let constraint=ThickLine::new(mesh,simplex);
|
||||||
|
let mut finder=EVFinder{constraint,mesh,best_distance_squared};
|
||||||
|
//start on any vertex
|
||||||
|
//cross uncrossable vertex-edge boundaries until you find the closest vertex or edge
|
||||||
|
//cross edge-face boundary if it's uncrossable
|
||||||
|
finder.crawl_boundaries(vert_id,point)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// This function drops a vertex down to an edge or a face if the path from infinity did not cross any vertex-edge boundaries but the point is supposed to have already crossed a boundary down from a vertex
|
||||||
|
fn crawl_to_closest_fev<'a>(mesh:&MinkowskiMesh<'a>,simplex:Simplex<3,MinkowskiVert>,point:Planar64Vec3)->FEV::<MinkowskiMesh<'a>>{
|
||||||
|
// naively start at the closest vertex
|
||||||
|
// the closest vertex is not necessarily the one with the fewest boundary hops
|
||||||
|
// but it doesn't matter, we will get there regardless.
|
||||||
|
let (vert_id,best_distance_squared)=simplex.into_iter().map(|vert_id|{
|
||||||
|
let diff=point-mesh.vert(vert_id);
|
||||||
|
(vert_id,diff.dot(diff))
|
||||||
|
}).min_by_key(|&(_,d)|d).unwrap();
|
||||||
|
|
||||||
|
let constraint=ThickPlane::new(mesh,simplex);
|
||||||
|
let mut finder=EVFinder{constraint,mesh,best_distance_squared};
|
||||||
|
//start on any vertex
|
||||||
|
//cross uncrossable vertex-edge boundaries until you find the closest vertex or edge
|
||||||
|
//cross edge-face boundary if it's uncrossable
|
||||||
|
match finder.crawl_boundaries(vert_id,point){
|
||||||
|
//if a vert is returned, it is the closest point to the infinity point
|
||||||
|
EV::Vert(vert_id)=>FEV::Vert(vert_id),
|
||||||
|
EV::Edge(edge_id)=>{
|
||||||
|
//cross to face if we are on the wrong side
|
||||||
|
let edge_n=mesh.edge_n(edge_id);
|
||||||
|
// point is multiplied by two because vert_sum sums two vertices.
|
||||||
|
let delta_pos=point*2-{
|
||||||
|
let &[v0,v1]=mesh.edge_verts(edge_id).as_ref();
|
||||||
|
mesh.vert(v0)+mesh.vert(v1)
|
||||||
|
};
|
||||||
|
for (i,&face_id) in mesh.edge_faces(edge_id).as_ref().iter().enumerate(){
|
||||||
|
//test if this face is closer
|
||||||
|
let (face_n,d)=mesh.face_nd(face_id);
|
||||||
|
//if test point is behind face, the face is invalid
|
||||||
|
// TODO: find out why I thought of this backwards
|
||||||
|
if !(face_n.dot(point)-d).is_positive(){
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
//edge-face boundary nd, n facing out of the face towards the edge
|
||||||
|
let boundary_n=face_n.cross(edge_n)*(i as i64*2-1);
|
||||||
|
let boundary_d=boundary_n.dot(delta_pos);
|
||||||
|
//is test point behind edge, i.e. contained in the face
|
||||||
|
if !boundary_d.is_positive(){
|
||||||
|
//both faces cannot pass this condition, return early if one does.
|
||||||
|
return FEV::Face(face_id);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
FEV::Edge(edge_id)
|
||||||
|
},
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn closest_fev_not_inside<'a>(mesh:&MinkowskiMesh<'a>,point:Planar64Vec3)->Option<FEV<MinkowskiMesh<'a>>>{
|
||||||
|
const ENABLE_FAST_FAIL:bool=false;
|
||||||
|
// TODO: remove mesh negation
|
||||||
|
minimum_difference::<ENABLE_FAST_FAIL,_,_>(&-mesh,point,
|
||||||
|
// on_exact
|
||||||
|
|is_intersecting,simplex|{
|
||||||
|
if is_intersecting{
|
||||||
|
return None;
|
||||||
|
}
|
||||||
|
// Convert simplex to FEV
|
||||||
|
// Vertices must be inverted since the mesh is inverted
|
||||||
|
Some(match simplex{
|
||||||
|
Simplex1_3::Simplex1([v0])=>FEV::Vert(-v0),
|
||||||
|
Simplex1_3::Simplex2([v0,v1])=>{
|
||||||
|
// invert
|
||||||
|
let (v0,v1)=(-v0,-v1);
|
||||||
|
let ev=crawl_to_closest_ev(mesh,[v0,v1],point);
|
||||||
|
if !matches!(ev,EV::Edge(_)){
|
||||||
|
println!("I can't believe it's not an edge!");
|
||||||
|
}
|
||||||
|
ev.into()
|
||||||
|
},
|
||||||
|
Simplex1_3::Simplex3([v0,v1,v2])=>{
|
||||||
|
// invert
|
||||||
|
let (v0,v1,v2)=(-v0,-v1,-v2);
|
||||||
|
// Shimmy to the side until you find a face that contains the closest point
|
||||||
|
// it's ALWAYS representable as a face, but this algorithm may
|
||||||
|
// return E or V in edge cases but I don't think that will break the face crawler
|
||||||
|
let fev=crawl_to_closest_fev(mesh,[v0,v1,v2],point);
|
||||||
|
if !matches!(fev,FEV::Face(_)){
|
||||||
|
println!("I can't believe it's not a face!");
|
||||||
|
}
|
||||||
|
fev
|
||||||
|
},
|
||||||
|
})
|
||||||
|
},
|
||||||
|
// on_escape
|
||||||
|
|_simplex|{
|
||||||
|
// intersection is guaranteed at this point
|
||||||
|
// local norm, dist, u0, u1, v0, v1, w0, w1 = expand(queryP, queryQ, a0, a1, b0, b1, c0, c1, d0, d1, 1e-5)
|
||||||
|
// let simplex=refine_to_exact(mesh,simplex);
|
||||||
|
None
|
||||||
|
},
|
||||||
|
// fast_fail value is irrelevant and will never be returned!
|
||||||
|
||unreachable!()
|
||||||
|
)
|
||||||
|
}
|
||||||
|
|
||||||
|
// local function minimumDifference(
|
||||||
|
// queryP, radiusP,
|
||||||
|
// queryQ, radiusQ,
|
||||||
|
// exitRadius, testIntersection
|
||||||
|
// )
|
||||||
|
fn minimum_difference<const ENABLE_FAST_FAIL:bool,T,M:MeshQuery>(
|
||||||
|
mesh:&M,
|
||||||
|
point:Planar64Vec3,
|
||||||
|
on_exact:impl FnOnce(bool,Simplex1_3<M::Vert>)->T,
|
||||||
|
on_escape:impl FnOnce(Simplex<4,M::Vert>)->T,
|
||||||
|
on_fast_fail:impl FnOnce()->T,
|
||||||
|
)->T{
|
||||||
|
// local initialAxis = queryQ() - queryP()
|
||||||
|
// local new_point_p = queryP(initialAxis)
|
||||||
|
// local new_point_q = queryQ(-initialAxis)
|
||||||
|
// local direction, a0, a1, b0, b1, c0, c1, d0, d1
|
||||||
|
let mut initial_axis=mesh.hint_point()+point;
|
||||||
|
// degenerate case
|
||||||
|
if initial_axis==vec3::zero(){
|
||||||
|
initial_axis=choose_any_direction();
|
||||||
|
}
|
||||||
|
let last_point=mesh.farthest_vert(-initial_axis);
|
||||||
|
// this represents the 'a' value in the commented code
|
||||||
|
let mut last_pos=mesh.vert(last_point);
|
||||||
|
let Reduced{dir:mut direction,simplex:mut simplex_small}=reduce1([last_point],mesh,point);
|
||||||
|
|
||||||
|
// exitRadius = testIntersection and 0 or exitRadius or 1/0
|
||||||
|
// for _ = 1, 100 do
|
||||||
|
loop{
|
||||||
|
// new_point_p = queryP(-direction)
|
||||||
|
// new_point_q = queryQ(direction)
|
||||||
|
// local next_point = new_point_q - new_point_p
|
||||||
|
let next_point=mesh.farthest_vert(direction);
|
||||||
|
let next_pos=mesh.vert(next_point);
|
||||||
|
|
||||||
|
// if -direction:Dot(next_point) > (exitRadius + radiusP + radiusQ)*direction.magnitude then
|
||||||
|
if ENABLE_FAST_FAIL&&direction.dot(next_pos+point).is_negative(){
|
||||||
|
return on_fast_fail();
|
||||||
|
}
|
||||||
|
|
||||||
|
let simplex_big=simplex_small.push_front(next_point);
|
||||||
|
|
||||||
|
// if
|
||||||
|
// direction:Dot(next_point - a) <= 0 or
|
||||||
|
// absDet(next_point, a, b, c) < 1e-6
|
||||||
|
if !direction.dot(next_pos-last_pos).is_positive()
|
||||||
|
||simplex_big.det_is_zero(mesh){
|
||||||
|
// Found enough information to compute the exact closest point.
|
||||||
|
// local norm = direction.unit
|
||||||
|
// local dist = a:Dot(norm)
|
||||||
|
// local hits = -dist < radiusP + radiusQ
|
||||||
|
let is_intersecting=(last_pos+point).dot(direction).is_positive();
|
||||||
|
return on_exact(is_intersecting,simplex_small);
|
||||||
|
}
|
||||||
|
|
||||||
|
// direction, a0, a1, b0, b1, c0, c1, d0, d1 = reduceSimplex(new_point_p, new_point_q, a0, a1, b0, b1, c0, c1)
|
||||||
|
match simplex_big.reduce(mesh,point){
|
||||||
|
// if a and b and c and d then
|
||||||
|
Reduce::Escape(simplex)=>{
|
||||||
|
// Enough information to conclude that the meshes are intersecting.
|
||||||
|
// Topology information is computed if needed.
|
||||||
|
return on_escape(simplex);
|
||||||
|
},
|
||||||
|
Reduce::Reduced(reduced)=>{
|
||||||
|
direction=reduced.dir;
|
||||||
|
simplex_small=reduced.simplex;
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
// next loop this will be a
|
||||||
|
last_pos=next_pos;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#[cfg(test)]
|
||||||
|
mod test{
|
||||||
|
use super::*;
|
||||||
|
use crate::model::{PhysicsMesh,PhysicsMeshView};
|
||||||
|
|
||||||
|
fn mesh_contains_point(mesh:PhysicsMeshView<'_>,point:Planar64Vec3)->bool{
|
||||||
|
const ENABLE_FAST_FAIL:bool=true;
|
||||||
|
// TODO: remove mesh negation
|
||||||
|
minimum_difference::<ENABLE_FAST_FAIL,_,_>(&mesh,point,
|
||||||
|
// on_exact
|
||||||
|
|is_intersecting,_simplex|{
|
||||||
|
is_intersecting
|
||||||
|
},
|
||||||
|
// on_escape
|
||||||
|
|_simplex|{
|
||||||
|
// intersection is guaranteed at this point
|
||||||
|
true
|
||||||
|
},
|
||||||
|
// fast_fail value
|
||||||
|
||false
|
||||||
|
)
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn test_cube_points(){
|
||||||
|
let mesh=PhysicsMesh::unit_cube();
|
||||||
|
let mesh_view=mesh.complete_mesh_view();
|
||||||
|
assert!(mesh_contains_point(mesh_view,vec3::NEG_Z));
|
||||||
|
}
|
||||||
|
}
|
||||||
@@ -92,6 +92,7 @@ pub trait MeshQuery{
|
|||||||
}
|
}
|
||||||
/// This must return a point inside the mesh.
|
/// This must return a point inside the mesh.
|
||||||
fn hint_point(&self)->Planar64Vec3;
|
fn hint_point(&self)->Planar64Vec3;
|
||||||
|
fn farthest_vert(&self,dir:Planar64Vec3)->Self::Vert;
|
||||||
fn vert(&self,vert_id:Self::Vert)->Planar64Vec3;
|
fn vert(&self,vert_id:Self::Vert)->Planar64Vec3;
|
||||||
fn face_nd(&self,face_id:Self::Face)->(Self::Normal,Self::Offset);
|
fn face_nd(&self,face_id:Self::Face)->(Self::Normal,Self::Offset);
|
||||||
fn face_edges(&self,face_id:Self::Face)->impl AsRef<[Self::Edge]>;
|
fn face_edges(&self,face_id:Self::Face)->impl AsRef<[Self::Edge]>;
|
||||||
@@ -434,7 +435,7 @@ impl TryFrom<&model::Mesh> for PhysicsMesh{
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
#[derive(Debug)]
|
#[derive(Debug,Clone,Copy)]
|
||||||
pub struct PhysicsMeshView<'a>{
|
pub struct PhysicsMeshView<'a>{
|
||||||
data:&'a PhysicsMeshData,
|
data:&'a PhysicsMeshData,
|
||||||
topology:&'a PhysicsMeshTopology,
|
topology:&'a PhysicsMeshTopology,
|
||||||
@@ -453,6 +454,18 @@ impl MeshQuery for PhysicsMeshView<'_>{
|
|||||||
// invariant: meshes always encompass the origin
|
// invariant: meshes always encompass the origin
|
||||||
vec3::zero()
|
vec3::zero()
|
||||||
}
|
}
|
||||||
|
fn farthest_vert(&self,dir:Planar64Vec3)->SubmeshVertId{
|
||||||
|
//this happens to be well-defined. there are no virtual virtices
|
||||||
|
SubmeshVertId::new(
|
||||||
|
self.topology.verts.iter()
|
||||||
|
.enumerate()
|
||||||
|
.max_by_key(|&(_,&vert_id)|
|
||||||
|
dir.dot(self.data.verts[vert_id.get() as usize].0)
|
||||||
|
)
|
||||||
|
//assume there is more than zero vertices.
|
||||||
|
.unwrap().0 as u32
|
||||||
|
)
|
||||||
|
}
|
||||||
//ideally I never calculate the vertex position, but I have to for the graphical meshes...
|
//ideally I never calculate the vertex position, but I have to for the graphical meshes...
|
||||||
fn vert(&self,vert_id:SubmeshVertId)->Planar64Vec3{
|
fn vert(&self,vert_id:SubmeshVertId)->Planar64Vec3{
|
||||||
let vert_idx=self.topology.verts[vert_id.get() as usize].get() as usize;
|
let vert_idx=self.topology.verts[vert_id.get() as usize].get() as usize;
|
||||||
@@ -491,7 +504,7 @@ impl PhysicsMeshTransform{
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
#[derive(Debug)]
|
#[derive(Debug,Clone,Copy)]
|
||||||
pub struct TransformedMesh<'a>{
|
pub struct TransformedMesh<'a>{
|
||||||
view:PhysicsMeshView<'a>,
|
view:PhysicsMeshView<'a>,
|
||||||
transform:&'a PhysicsMeshTransform,
|
transform:&'a PhysicsMeshTransform,
|
||||||
@@ -509,18 +522,6 @@ impl TransformedMesh<'_>{
|
|||||||
pub fn verts<'a>(&'a self)->impl Iterator<Item=Vector3<Fixed<2,64>>>+'a{
|
pub fn verts<'a>(&'a self)->impl Iterator<Item=Vector3<Fixed<2,64>>>+'a{
|
||||||
self.view.data.verts.iter().map(|&Vert(pos)|self.transform.vertex.transform_point3(pos))
|
self.view.data.verts.iter().map(|&Vert(pos)|self.transform.vertex.transform_point3(pos))
|
||||||
}
|
}
|
||||||
fn farthest_vert(&self,dir:Planar64Vec3)->SubmeshVertId{
|
|
||||||
//this happens to be well-defined. there are no virtual virtices
|
|
||||||
SubmeshVertId::new(
|
|
||||||
self.view.topology.verts.iter()
|
|
||||||
.enumerate()
|
|
||||||
.max_by_key(|&(_,&vert_id)|
|
|
||||||
dir.dot(self.transform.vertex.transform_point3(self.view.data.verts[vert_id.get() as usize].0))
|
|
||||||
)
|
|
||||||
//assume there is more than zero vertices.
|
|
||||||
.unwrap().0 as u32
|
|
||||||
)
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
impl MeshQuery for TransformedMesh<'_>{
|
impl MeshQuery for TransformedMesh<'_>{
|
||||||
type Face=SubmeshFaceId;
|
type Face=SubmeshFaceId;
|
||||||
@@ -541,6 +542,18 @@ impl MeshQuery for TransformedMesh<'_>{
|
|||||||
fn hint_point(&self)->Planar64Vec3{
|
fn hint_point(&self)->Planar64Vec3{
|
||||||
self.transform.vertex.translation
|
self.transform.vertex.translation
|
||||||
}
|
}
|
||||||
|
fn farthest_vert(&self,dir:Planar64Vec3)->SubmeshVertId{
|
||||||
|
//this happens to be well-defined. there are no virtual virtices
|
||||||
|
SubmeshVertId::new(
|
||||||
|
self.view.topology.verts.iter()
|
||||||
|
.enumerate()
|
||||||
|
.max_by_key(|&(_,&vert_id)|
|
||||||
|
dir.dot(self.transform.vertex.transform_point3(self.view.data.verts[vert_id.get() as usize].0))
|
||||||
|
)
|
||||||
|
//assume there is more than zero vertices.
|
||||||
|
.unwrap().0 as u32
|
||||||
|
)
|
||||||
|
}
|
||||||
#[inline]
|
#[inline]
|
||||||
fn face_edges(&self,face_id:SubmeshFaceId)->impl AsRef<[SubmeshDirectedEdgeId]>{
|
fn face_edges(&self,face_id:SubmeshFaceId)->impl AsRef<[SubmeshDirectedEdgeId]>{
|
||||||
self.view.face_edges(face_id)
|
self.view.face_edges(face_id)
|
||||||
@@ -567,11 +580,20 @@ impl MeshQuery for TransformedMesh<'_>{
|
|||||||
//(face,vertex)
|
//(face,vertex)
|
||||||
//(edge,edge)
|
//(edge,edge)
|
||||||
//(vertex,face)
|
//(vertex,face)
|
||||||
#[derive(Clone,Copy,Debug)]
|
#[derive(Clone,Copy,Debug,Eq,PartialEq)]
|
||||||
pub enum MinkowskiVert{
|
pub enum MinkowskiVert{
|
||||||
VertVert(SubmeshVertId,SubmeshVertId),
|
VertVert(SubmeshVertId,SubmeshVertId),
|
||||||
}
|
}
|
||||||
#[derive(Clone,Copy,Debug)]
|
// TODO: remove this
|
||||||
|
impl core::ops::Neg for MinkowskiVert{
|
||||||
|
type Output=Self;
|
||||||
|
fn neg(self)->Self::Output{
|
||||||
|
match self{
|
||||||
|
MinkowskiVert::VertVert(v0,v1)=>MinkowskiVert::VertVert(v1,v0),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#[derive(Clone,Copy,Debug,Eq,PartialEq)]
|
||||||
pub enum MinkowskiEdge{
|
pub enum MinkowskiEdge{
|
||||||
VertEdge(SubmeshVertId,SubmeshEdgeId),
|
VertEdge(SubmeshVertId,SubmeshEdgeId),
|
||||||
EdgeVert(SubmeshEdgeId,SubmeshVertId),
|
EdgeVert(SubmeshEdgeId,SubmeshVertId),
|
||||||
@@ -586,7 +608,7 @@ impl UndirectedEdge for MinkowskiEdge{
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
#[derive(Clone,Copy,Debug)]
|
#[derive(Clone,Copy,Debug,Eq,PartialEq)]
|
||||||
pub enum MinkowskiDirectedEdge{
|
pub enum MinkowskiDirectedEdge{
|
||||||
VertEdge(SubmeshVertId,SubmeshDirectedEdgeId),
|
VertEdge(SubmeshVertId,SubmeshDirectedEdgeId),
|
||||||
EdgeVert(SubmeshDirectedEdgeId,SubmeshVertId),
|
EdgeVert(SubmeshDirectedEdgeId,SubmeshVertId),
|
||||||
@@ -607,7 +629,7 @@ impl DirectedEdge for MinkowskiDirectedEdge{
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
#[derive(Clone,Copy,Debug,Hash,Eq,PartialEq)]
|
#[derive(Clone,Copy,Debug,Hash)]
|
||||||
pub enum MinkowskiFace{
|
pub enum MinkowskiFace{
|
||||||
VertFace(SubmeshVertId,SubmeshFaceId),
|
VertFace(SubmeshVertId,SubmeshFaceId),
|
||||||
EdgeEdge(SubmeshEdgeId,SubmeshEdgeId,bool),
|
EdgeEdge(SubmeshEdgeId,SubmeshEdgeId,bool),
|
||||||
@@ -623,23 +645,20 @@ pub struct MinkowskiMesh<'a>{
|
|||||||
mesh1:TransformedMesh<'a>,
|
mesh1:TransformedMesh<'a>,
|
||||||
}
|
}
|
||||||
|
|
||||||
//infinity fev algorithm state transition
|
|
||||||
#[derive(Debug)]
|
|
||||||
enum Transition{
|
|
||||||
Done,//found closest vert, no edges are better
|
|
||||||
Vert(MinkowskiVert),//transition to vert
|
|
||||||
}
|
|
||||||
enum EV{
|
|
||||||
Vert(MinkowskiVert),
|
|
||||||
Edge(MinkowskiEdge),
|
|
||||||
}
|
|
||||||
|
|
||||||
pub type GigaTime=Ratio<Fixed<4,128>,Fixed<4,128>>;
|
pub type GigaTime=Ratio<Fixed<4,128>,Fixed<4,128>>;
|
||||||
pub fn into_giga_time(time:Time,relative_to:Time)->GigaTime{
|
pub fn into_giga_time(time:Time,relative_to:Time)->GigaTime{
|
||||||
let r=(time-relative_to).to_ratio();
|
let r=(time-relative_to).to_ratio();
|
||||||
Ratio::new(r.num.widen_4(),r.den.widen_4())
|
Ratio::new(r.num.widen_4(),r.den.widen_4())
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// TODO: remove this
|
||||||
|
impl<'a> core::ops::Neg for &MinkowskiMesh<'a>{
|
||||||
|
type Output=MinkowskiMesh<'a>;
|
||||||
|
fn neg(self)->Self::Output{
|
||||||
|
MinkowskiMesh::minkowski_sum(self.mesh1,self.mesh0)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
impl MinkowskiMesh<'_>{
|
impl MinkowskiMesh<'_>{
|
||||||
pub fn minkowski_sum<'a>(mesh0:TransformedMesh<'a>,mesh1:TransformedMesh<'a>)->MinkowskiMesh<'a>{
|
pub fn minkowski_sum<'a>(mesh0:TransformedMesh<'a>,mesh1:TransformedMesh<'a>)->MinkowskiMesh<'a>{
|
||||||
MinkowskiMesh{
|
MinkowskiMesh{
|
||||||
@@ -647,140 +666,21 @@ impl MinkowskiMesh<'_>{
|
|||||||
mesh1,
|
mesh1,
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
fn farthest_vert(&self,dir:Planar64Vec3)->MinkowskiVert{
|
|
||||||
MinkowskiVert::VertVert(self.mesh0.farthest_vert(dir),self.mesh1.farthest_vert(-dir))
|
|
||||||
}
|
|
||||||
fn next_transition_vert(&self,vert_id:MinkowskiVert,best_distance_squared:&mut Fixed<2,64>,infinity_dir:Planar64Vec3,point:Planar64Vec3)->Transition{
|
|
||||||
let mut best_transition=Transition::Done;
|
|
||||||
for &directed_edge_id in self.vert_edges(vert_id).as_ref(){
|
|
||||||
let edge_n=self.directed_edge_n(directed_edge_id);
|
|
||||||
//is boundary uncrossable by a crawl from infinity
|
|
||||||
let edge_verts=self.edge_verts(directed_edge_id.as_undirected());
|
|
||||||
//select opposite vertex
|
|
||||||
let test_vert_id=edge_verts.as_ref()[directed_edge_id.parity() as usize];
|
|
||||||
//test if it's closer
|
|
||||||
let diff=point-self.vert(test_vert_id);
|
|
||||||
if edge_n.dot(infinity_dir).is_zero(){
|
|
||||||
let distance_squared=diff.dot(diff);
|
|
||||||
if distance_squared<*best_distance_squared{
|
|
||||||
best_transition=Transition::Vert(test_vert_id);
|
|
||||||
*best_distance_squared=distance_squared;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
best_transition
|
|
||||||
}
|
|
||||||
fn final_ev(&self,vert_id:MinkowskiVert,best_distance_squared:&mut Fixed<2,64>,infinity_dir:Planar64Vec3,point:Planar64Vec3)->EV{
|
|
||||||
let mut best_transition=EV::Vert(vert_id);
|
|
||||||
let diff=point-self.vert(vert_id);
|
|
||||||
for &directed_edge_id in self.vert_edges(vert_id).as_ref(){
|
|
||||||
let edge_n=self.directed_edge_n(directed_edge_id);
|
|
||||||
//is boundary uncrossable by a crawl from infinity
|
|
||||||
//check if time of collision is outside Time::MIN..Time::MAX
|
|
||||||
if edge_n.dot(infinity_dir).is_zero(){
|
|
||||||
let d=edge_n.dot(diff);
|
|
||||||
//test the edge
|
|
||||||
let edge_nn=edge_n.dot(edge_n);
|
|
||||||
if !d.is_negative()&&d<=edge_nn{
|
|
||||||
let distance_squared={
|
|
||||||
let c=diff.cross(edge_n);
|
|
||||||
//wrap for speed
|
|
||||||
(c.dot(c)/edge_nn).divide().wrap_2()
|
|
||||||
};
|
|
||||||
if distance_squared<=*best_distance_squared{
|
|
||||||
best_transition=EV::Edge(directed_edge_id.as_undirected());
|
|
||||||
*best_distance_squared=distance_squared;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
best_transition
|
|
||||||
}
|
|
||||||
fn crawl_boundaries(&self,mut vert_id:MinkowskiVert,infinity_dir:Planar64Vec3,point:Planar64Vec3)->EV{
|
|
||||||
let mut best_distance_squared={
|
|
||||||
let diff=point-self.vert(vert_id);
|
|
||||||
diff.dot(diff)
|
|
||||||
};
|
|
||||||
loop{
|
|
||||||
match self.next_transition_vert(vert_id,&mut best_distance_squared,infinity_dir,point){
|
|
||||||
Transition::Done=>return self.final_ev(vert_id,&mut best_distance_squared,infinity_dir,point),
|
|
||||||
Transition::Vert(new_vert_id)=>vert_id=new_vert_id,
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
/// This function drops a vertex down to an edge or a face if the path from infinity did not cross any vertex-edge boundaries but the point is supposed to have already crossed a boundary down from a vertex
|
|
||||||
fn infinity_fev(&self,infinity_dir:Planar64Vec3,point:Planar64Vec3)->FEV::<MinkowskiMesh<'_>>{
|
|
||||||
//start on any vertex
|
|
||||||
//cross uncrossable vertex-edge boundaries until you find the closest vertex or edge
|
|
||||||
//cross edge-face boundary if it's uncrossable
|
|
||||||
match self.crawl_boundaries(self.farthest_vert(infinity_dir),infinity_dir,point){
|
|
||||||
//if a vert is returned, it is the closest point to the infinity point
|
|
||||||
EV::Vert(vert_id)=>FEV::Vert(vert_id),
|
|
||||||
EV::Edge(edge_id)=>{
|
|
||||||
//cross to face if the boundary is not crossable and we are on the wrong side
|
|
||||||
let edge_n=self.edge_n(edge_id);
|
|
||||||
// point is multiplied by two because vert_sum sums two vertices.
|
|
||||||
let delta_pos=point*2-{
|
|
||||||
let &[v0,v1]=self.edge_verts(edge_id).as_ref();
|
|
||||||
self.vert(v0)+self.vert(v1)
|
|
||||||
};
|
|
||||||
for (i,&face_id) in self.edge_faces(edge_id).as_ref().iter().enumerate(){
|
|
||||||
let face_n=self.face_nd(face_id).0;
|
|
||||||
//edge-face boundary nd, n facing out of the face towards the edge
|
|
||||||
let boundary_n=face_n.cross(edge_n)*(i as i64*2-1);
|
|
||||||
let boundary_d=boundary_n.dot(delta_pos);
|
|
||||||
//check if time of collision is outside Time::MIN..Time::MAX
|
|
||||||
//infinity_dir can always be treated as a velocity
|
|
||||||
if !boundary_d.is_positive()&&boundary_n.dot(infinity_dir).is_zero(){
|
|
||||||
//both faces cannot pass this condition, return early if one does.
|
|
||||||
return FEV::Face(face_id);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
FEV::Edge(edge_id)
|
|
||||||
},
|
|
||||||
}
|
|
||||||
}
|
|
||||||
// TODO: fundamentally improve this algorithm.
|
|
||||||
// All it needs to do is find the closest point on the mesh
|
|
||||||
// and return the FEV which the point resides on.
|
|
||||||
//
|
|
||||||
// What it actually does is use the above functions to trace a ray in from infinity,
|
|
||||||
// crawling the closest point along the mesh surface until the ray reaches
|
|
||||||
// the starting point to discover the final FEV.
|
|
||||||
//
|
|
||||||
// The actual collision prediction probably does a single test
|
|
||||||
// and then immediately returns with 0 FEV transitions on average,
|
|
||||||
// because of the strict time_limit constraint.
|
|
||||||
//
|
|
||||||
// Most of the calculation time is just calculating the starting point
|
|
||||||
// for the "actual" crawling algorithm below (predict_collision_{in|out}).
|
|
||||||
fn closest_fev_not_inside(&self,mut infinity_body:Body,start_time:Bound<&Time>)->Option<FEV<MinkowskiMesh<'_>>>{
|
|
||||||
infinity_body.infinity_dir().and_then(|dir|{
|
|
||||||
let infinity_fev=self.infinity_fev(-dir,infinity_body.position);
|
|
||||||
//a line is simpler to solve than a parabola
|
|
||||||
infinity_body.velocity=dir;
|
|
||||||
infinity_body.acceleration=vec3::zero();
|
|
||||||
//crawl in from negative infinity along a tangent line to get the closest fev
|
|
||||||
infinity_fev.crawl(self,&infinity_body,Bound::Unbounded,start_time).miss()
|
|
||||||
})
|
|
||||||
}
|
|
||||||
pub fn predict_collision_in(&self,relative_body:&Body,range:impl RangeBounds<Time>)->Option<(MinkowskiFace,GigaTime)>{
|
pub fn predict_collision_in(&self,relative_body:&Body,range:impl RangeBounds<Time>)->Option<(MinkowskiFace,GigaTime)>{
|
||||||
self.closest_fev_not_inside(*relative_body,range.start_bound()).and_then(|fev|{
|
let fev=crate::minimum_difference::closest_fev_not_inside(self,relative_body.position)?;
|
||||||
//continue forwards along the body parabola
|
//continue forwards along the body parabola
|
||||||
fev.crawl(self,relative_body,range.start_bound(),range.end_bound()).hit()
|
fev.crawl(self,relative_body,range.start_bound(),range.end_bound()).hit()
|
||||||
})
|
|
||||||
}
|
}
|
||||||
pub fn predict_collision_out(&self,relative_body:&Body,range:impl RangeBounds<Time>)->Option<(MinkowskiFace,GigaTime)>{
|
pub fn predict_collision_out(&self,relative_body:&Body,range:impl RangeBounds<Time>)->Option<(MinkowskiFace,GigaTime)>{
|
||||||
|
let fev=crate::minimum_difference::closest_fev_not_inside(self,relative_body.position)?;
|
||||||
let (lower_bound,upper_bound)=(range.start_bound(),range.end_bound());
|
let (lower_bound,upper_bound)=(range.start_bound(),range.end_bound());
|
||||||
// swap and negate bounds to do a time inversion
|
// swap and negate bounds to do a time inversion
|
||||||
let (lower_bound,upper_bound)=(upper_bound.map(|&t|-t),lower_bound.map(|&t|-t));
|
let (lower_bound,upper_bound)=(upper_bound.map(|&t|-t),lower_bound.map(|&t|-t));
|
||||||
let infinity_body=-relative_body;
|
let infinity_body=-relative_body;
|
||||||
self.closest_fev_not_inside(infinity_body,lower_bound.as_ref()).and_then(|fev|{
|
//continue backwards along the body parabola
|
||||||
//continue backwards along the body parabola
|
fev.crawl(self,&infinity_body,lower_bound.as_ref(),upper_bound.as_ref()).hit()
|
||||||
fev.crawl(self,&infinity_body,lower_bound.as_ref(),upper_bound.as_ref()).hit()
|
//no need to test -time<time_limit because of the first step
|
||||||
//no need to test -time<time_limit because of the first step
|
.map(|(face,time)|(face,-time))
|
||||||
.map(|(face,time)|(face,-time))
|
|
||||||
})
|
|
||||||
}
|
}
|
||||||
pub fn predict_collision_face_out(&self,relative_body:&Body,range:impl RangeBounds<Time>,contact_face_id:MinkowskiFace)->Option<(MinkowskiDirectedEdge,GigaTime)>{
|
pub fn predict_collision_face_out(&self,relative_body:&Body,range:impl RangeBounds<Time>,contact_face_id:MinkowskiFace)->Option<(MinkowskiDirectedEdge,GigaTime)>{
|
||||||
// TODO: make better
|
// TODO: make better
|
||||||
@@ -810,20 +710,8 @@ impl MinkowskiMesh<'_>{
|
|||||||
}
|
}
|
||||||
best_edge
|
best_edge
|
||||||
}
|
}
|
||||||
fn infinity_in(&self,infinity_body:Body)->Option<(MinkowskiFace,GigaTime)>{
|
pub fn contains_point(&self,point:Planar64Vec3)->bool{
|
||||||
let infinity_fev=self.infinity_fev(-infinity_body.velocity,infinity_body.position);
|
crate::minimum_difference::contains_point(self,point)
|
||||||
// Bound::Included means that the surface of the mesh is included in the mesh
|
|
||||||
infinity_fev.crawl(self,&infinity_body,Bound::Unbounded,Bound::Included(&infinity_body.time)).hit()
|
|
||||||
}
|
|
||||||
pub fn is_point_in_mesh(&self,point:Planar64Vec3)->bool{
|
|
||||||
let infinity_body=Body::new(point,vec3::Y,vec3::zero(),Time::ZERO);
|
|
||||||
//movement must escape the mesh forwards and backwards in time,
|
|
||||||
//otherwise the point is not inside the mesh
|
|
||||||
self.infinity_in(infinity_body)
|
|
||||||
.is_some_and(|_|
|
|
||||||
self.infinity_in(-infinity_body)
|
|
||||||
.is_some()
|
|
||||||
)
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
impl MeshQuery for MinkowskiMesh<'_>{
|
impl MeshQuery for MinkowskiMesh<'_>{
|
||||||
@@ -863,8 +751,10 @@ impl MeshQuery for MinkowskiMesh<'_>{
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
fn hint_point(&self)->Planar64Vec3{
|
fn hint_point(&self)->Planar64Vec3{
|
||||||
self.mesh1.transform.vertex.translation-
|
self.mesh0.transform.vertex.translation-self.mesh1.transform.vertex.translation
|
||||||
self.mesh0.transform.vertex.translation
|
}
|
||||||
|
fn farthest_vert(&self,dir:Planar64Vec3)->MinkowskiVert{
|
||||||
|
MinkowskiVert::VertVert(self.mesh0.farthest_vert(dir),self.mesh1.farthest_vert(-dir))
|
||||||
}
|
}
|
||||||
fn face_edges(&self,face_id:MinkowskiFace)->impl AsRef<[MinkowskiDirectedEdge]>{
|
fn face_edges(&self,face_id:MinkowskiFace)->impl AsRef<[MinkowskiDirectedEdge]>{
|
||||||
match face_id{
|
match face_id{
|
||||||
|
|||||||
@@ -729,7 +729,7 @@ struct IntersectModel{
|
|||||||
transform:PhysicsMeshTransform,
|
transform:PhysicsMeshTransform,
|
||||||
}
|
}
|
||||||
|
|
||||||
#[derive(Debug,Clone,Copy,Eq,Hash,PartialEq)]
|
#[derive(Debug,Clone,Copy,Hash)]
|
||||||
pub struct ContactCollision{
|
pub struct ContactCollision{
|
||||||
convex_mesh_id:ConvexMeshId<ContactModelId>,
|
convex_mesh_id:ConvexMeshId<ContactModelId>,
|
||||||
face_id:model_physics::MinkowskiFace,
|
face_id:model_physics::MinkowskiFace,
|
||||||
@@ -738,7 +738,7 @@ pub struct ContactCollision{
|
|||||||
pub struct IntersectCollision{
|
pub struct IntersectCollision{
|
||||||
convex_mesh_id:ConvexMeshId<IntersectModelId>,
|
convex_mesh_id:ConvexMeshId<IntersectModelId>,
|
||||||
}
|
}
|
||||||
#[derive(Debug,Clone,Eq,Hash,PartialEq)]
|
#[derive(Debug,Clone,Hash)]
|
||||||
pub enum Collision{
|
pub enum Collision{
|
||||||
Contact(ContactCollision),
|
Contact(ContactCollision),
|
||||||
Intersect(IntersectCollision),
|
Intersect(IntersectCollision),
|
||||||
@@ -1277,7 +1277,7 @@ fn recalculate_touching(
|
|||||||
//no checks are needed because of the time limits.
|
//no checks are needed because of the time limits.
|
||||||
let model_mesh=models.mesh(convex_mesh_id);
|
let model_mesh=models.mesh(convex_mesh_id);
|
||||||
let minkowski=model_physics::MinkowskiMesh::minkowski_sum(model_mesh,hitbox_mesh.transformed_mesh());
|
let minkowski=model_physics::MinkowskiMesh::minkowski_sum(model_mesh,hitbox_mesh.transformed_mesh());
|
||||||
if minkowski.is_point_in_mesh(body.position){
|
if minkowski.contains_point(body.position){
|
||||||
match convex_mesh_id.model_id{
|
match convex_mesh_id.model_id{
|
||||||
//being inside of contact objects is an invalid physics state
|
//being inside of contact objects is an invalid physics state
|
||||||
//but the physics isn't advanced enough to do anything about it yet
|
//but the physics isn't advanced enough to do anything about it yet
|
||||||
|
|||||||
Reference in New Issue
Block a user