use new algorithm
This commit is contained in:
@@ -21,12 +21,6 @@ impl<M:MeshQuery> CrawlResult<M>{
|
||||
CrawlResult::Hit(face,time)=>Some((face,time)),
|
||||
}
|
||||
}
|
||||
pub fn miss(self)->Option<FEV<M>>{
|
||||
match self{
|
||||
CrawlResult::Miss(fev)=>Some(fev),
|
||||
CrawlResult::Hit(_,_)=>None,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// TODO: move predict_collision_face_out algorithm in here or something
|
||||
|
||||
@@ -501,47 +501,6 @@ impl Simplex2_4{
|
||||
}
|
||||
}
|
||||
|
||||
// local function expand(
|
||||
// queryP, queryQ,
|
||||
// vertA0, vertA1,
|
||||
// vertB0, vertB1,
|
||||
// vertC0, vertC1,
|
||||
// vertD0, vertD1,
|
||||
// accuracy
|
||||
// )
|
||||
fn refine_to_exact(mesh:&MinkowskiMesh,simplex:Simplex<4>)->Simplex2_4{
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
/// Intermediate data structure containing a partially complete calculation.
|
||||
/// Sometimes you only care about the topology, and not about the
|
||||
/// exact point of intersection details.
|
||||
pub struct Topology{
|
||||
simplex:Simplex2_4,
|
||||
}
|
||||
impl Topology{
|
||||
/// Returns None if the point is intersecting the mesh.
|
||||
pub fn closest_point_details(self,mesh:&MinkowskiMesh)->Option<Details>{
|
||||
// NOTE: if hits is true, this if statement necessarily evaluates to true.
|
||||
// i.e. hits implies this statement
|
||||
// if -dist <= exitRadius + radiusP + radiusQ then
|
||||
// local posP, posQ = decompose(-point, a0, a1, b0, b1, c0, c1)
|
||||
// return hits, -dist - radiusP - radiusQ,
|
||||
// posP - radiusP*norm, -norm,
|
||||
// posQ + radiusQ*norm, norm
|
||||
// end
|
||||
// return false
|
||||
unimplemented!()
|
||||
}
|
||||
}
|
||||
pub struct Details{
|
||||
// distance:Planar64,
|
||||
// p_pos:Planar64Vec3,
|
||||
// p_norm:Planar64Vec3,
|
||||
// q_pos:Planar64Vec3,
|
||||
// q_norm:Planar64Vec3,
|
||||
}
|
||||
|
||||
pub fn contains_point(mesh:&MinkowskiMesh,point:Planar64Vec3)->bool{
|
||||
const ENABLE_FAST_FAIL:bool=true;
|
||||
// TODO: remove mesh negation
|
||||
|
||||
@@ -632,17 +632,6 @@ pub struct MinkowskiMesh<'a>{
|
||||
mesh1:TransformedMesh<'a>,
|
||||
}
|
||||
|
||||
//infinity fev algorithm state transition
|
||||
#[derive(Debug)]
|
||||
enum Transition{
|
||||
Done,//found closest vert, no edges are better
|
||||
Vert(MinkowskiVert),//transition to vert
|
||||
}
|
||||
enum EV{
|
||||
Vert(MinkowskiVert),
|
||||
Edge(MinkowskiEdge),
|
||||
}
|
||||
|
||||
pub type GigaTime=Ratio<Fixed<4,128>,Fixed<4,128>>;
|
||||
pub fn into_giga_time(time:Time,relative_to:Time)->GigaTime{
|
||||
let r=(time-relative_to).to_ratio();
|
||||
@@ -667,137 +656,21 @@ impl MinkowskiMesh<'_>{
|
||||
pub fn farthest_vert(&self,dir:Planar64Vec3)->MinkowskiVert{
|
||||
MinkowskiVert::VertVert(self.mesh0.farthest_vert(dir),self.mesh1.farthest_vert(-dir))
|
||||
}
|
||||
fn next_transition_vert(&self,vert_id:MinkowskiVert,best_distance_squared:&mut Fixed<2,64>,infinity_dir:Planar64Vec3,point:Planar64Vec3)->Transition{
|
||||
let mut best_transition=Transition::Done;
|
||||
for &directed_edge_id in self.vert_edges(vert_id).as_ref(){
|
||||
let edge_n=self.directed_edge_n(directed_edge_id);
|
||||
//is boundary uncrossable by a crawl from infinity
|
||||
let edge_verts=self.edge_verts(directed_edge_id.as_undirected());
|
||||
//select opposite vertex
|
||||
let test_vert_id=edge_verts.as_ref()[directed_edge_id.parity() as usize];
|
||||
//test if it's closer
|
||||
let diff=point-self.vert(test_vert_id);
|
||||
if edge_n.dot(infinity_dir).is_zero(){
|
||||
let distance_squared=diff.dot(diff);
|
||||
if distance_squared<*best_distance_squared{
|
||||
best_transition=Transition::Vert(test_vert_id);
|
||||
*best_distance_squared=distance_squared;
|
||||
}
|
||||
}
|
||||
}
|
||||
best_transition
|
||||
}
|
||||
fn final_ev(&self,vert_id:MinkowskiVert,best_distance_squared:&mut Fixed<2,64>,infinity_dir:Planar64Vec3,point:Planar64Vec3)->EV{
|
||||
let mut best_transition=EV::Vert(vert_id);
|
||||
let diff=point-self.vert(vert_id);
|
||||
for &directed_edge_id in self.vert_edges(vert_id).as_ref(){
|
||||
let edge_n=self.directed_edge_n(directed_edge_id);
|
||||
//is boundary uncrossable by a crawl from infinity
|
||||
//check if time of collision is outside Time::MIN..Time::MAX
|
||||
if edge_n.dot(infinity_dir).is_zero(){
|
||||
let d=edge_n.dot(diff);
|
||||
//test the edge
|
||||
let edge_nn=edge_n.dot(edge_n);
|
||||
if !d.is_negative()&&d<=edge_nn{
|
||||
let distance_squared={
|
||||
let c=diff.cross(edge_n);
|
||||
//wrap for speed
|
||||
(c.dot(c)/edge_nn).divide().wrap_2()
|
||||
};
|
||||
if distance_squared<=*best_distance_squared{
|
||||
best_transition=EV::Edge(directed_edge_id.as_undirected());
|
||||
*best_distance_squared=distance_squared;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
best_transition
|
||||
}
|
||||
fn crawl_boundaries(&self,mut vert_id:MinkowskiVert,infinity_dir:Planar64Vec3,point:Planar64Vec3)->EV{
|
||||
let mut best_distance_squared={
|
||||
let diff=point-self.vert(vert_id);
|
||||
diff.dot(diff)
|
||||
};
|
||||
loop{
|
||||
match self.next_transition_vert(vert_id,&mut best_distance_squared,infinity_dir,point){
|
||||
Transition::Done=>return self.final_ev(vert_id,&mut best_distance_squared,infinity_dir,point),
|
||||
Transition::Vert(new_vert_id)=>vert_id=new_vert_id,
|
||||
}
|
||||
}
|
||||
}
|
||||
/// This function drops a vertex down to an edge or a face if the path from infinity did not cross any vertex-edge boundaries but the point is supposed to have already crossed a boundary down from a vertex
|
||||
fn infinity_fev(&self,infinity_dir:Planar64Vec3,point:Planar64Vec3)->FEV::<MinkowskiMesh<'_>>{
|
||||
//start on any vertex
|
||||
//cross uncrossable vertex-edge boundaries until you find the closest vertex or edge
|
||||
//cross edge-face boundary if it's uncrossable
|
||||
match self.crawl_boundaries(self.farthest_vert(infinity_dir),infinity_dir,point){
|
||||
//if a vert is returned, it is the closest point to the infinity point
|
||||
EV::Vert(vert_id)=>FEV::Vert(vert_id),
|
||||
EV::Edge(edge_id)=>{
|
||||
//cross to face if the boundary is not crossable and we are on the wrong side
|
||||
let edge_n=self.edge_n(edge_id);
|
||||
// point is multiplied by two because vert_sum sums two vertices.
|
||||
let delta_pos=point*2-{
|
||||
let &[v0,v1]=self.edge_verts(edge_id).as_ref();
|
||||
self.vert(v0)+self.vert(v1)
|
||||
};
|
||||
for (i,&face_id) in self.edge_faces(edge_id).as_ref().iter().enumerate(){
|
||||
let face_n=self.face_nd(face_id).0;
|
||||
//edge-face boundary nd, n facing out of the face towards the edge
|
||||
let boundary_n=face_n.cross(edge_n)*(i as i64*2-1);
|
||||
let boundary_d=boundary_n.dot(delta_pos);
|
||||
//check if time of collision is outside Time::MIN..Time::MAX
|
||||
//infinity_dir can always be treated as a velocity
|
||||
if !boundary_d.is_positive()&&boundary_n.dot(infinity_dir).is_zero(){
|
||||
//both faces cannot pass this condition, return early if one does.
|
||||
return FEV::Face(face_id);
|
||||
}
|
||||
}
|
||||
FEV::Edge(edge_id)
|
||||
},
|
||||
}
|
||||
}
|
||||
// TODO: fundamentally improve this algorithm.
|
||||
// All it needs to do is find the closest point on the mesh
|
||||
// and return the FEV which the point resides on.
|
||||
//
|
||||
// What it actually does is use the above functions to trace a ray in from infinity,
|
||||
// crawling the closest point along the mesh surface until the ray reaches
|
||||
// the starting point to discover the final FEV.
|
||||
//
|
||||
// The actual collision prediction probably does a single test
|
||||
// and then immediately returns with 0 FEV transitions on average,
|
||||
// because of the strict time_limit constraint.
|
||||
//
|
||||
// Most of the calculation time is just calculating the starting point
|
||||
// for the "actual" crawling algorithm below (predict_collision_{in|out}).
|
||||
fn closest_fev_not_inside(&self,mut infinity_body:Body,start_time:Bound<&Time>)->Option<FEV<MinkowskiMesh<'_>>>{
|
||||
infinity_body.infinity_dir().and_then(|dir|{
|
||||
let infinity_fev=self.infinity_fev(-dir,infinity_body.position);
|
||||
//a line is simpler to solve than a parabola
|
||||
infinity_body.velocity=dir;
|
||||
infinity_body.acceleration=vec3::zero();
|
||||
//crawl in from negative infinity along a tangent line to get the closest fev
|
||||
infinity_fev.crawl(self,&infinity_body,Bound::Unbounded,start_time).miss()
|
||||
})
|
||||
}
|
||||
pub fn predict_collision_in(&self,relative_body:&Body,range:impl RangeBounds<Time>)->Option<(MinkowskiFace,GigaTime)>{
|
||||
self.closest_fev_not_inside(*relative_body,range.start_bound()).and_then(|fev|{
|
||||
//continue forwards along the body parabola
|
||||
fev.crawl(self,relative_body,range.start_bound(),range.end_bound()).hit()
|
||||
})
|
||||
let fev=crate::minimum_difference::closest_fev_not_inside(self,relative_body.position)?.unwrap();
|
||||
//continue forwards along the body parabola
|
||||
fev.crawl(self,relative_body,range.start_bound(),range.end_bound()).hit()
|
||||
}
|
||||
pub fn predict_collision_out(&self,relative_body:&Body,range:impl RangeBounds<Time>)->Option<(MinkowskiFace,GigaTime)>{
|
||||
let fev=crate::minimum_difference::closest_fev_not_inside(self,relative_body.position)?.unwrap();
|
||||
let (lower_bound,upper_bound)=(range.start_bound(),range.end_bound());
|
||||
// swap and negate bounds to do a time inversion
|
||||
let (lower_bound,upper_bound)=(upper_bound.map(|&t|-t),lower_bound.map(|&t|-t));
|
||||
let infinity_body=-relative_body;
|
||||
self.closest_fev_not_inside(infinity_body,lower_bound.as_ref()).and_then(|fev|{
|
||||
//continue backwards along the body parabola
|
||||
fev.crawl(self,&infinity_body,lower_bound.as_ref(),upper_bound.as_ref()).hit()
|
||||
//no need to test -time<time_limit because of the first step
|
||||
.map(|(face,time)|(face,-time))
|
||||
})
|
||||
//continue backwards along the body parabola
|
||||
fev.crawl(self,&infinity_body,lower_bound.as_ref(),upper_bound.as_ref()).hit()
|
||||
//no need to test -time<time_limit because of the first step
|
||||
.map(|(face,time)|(face,-time))
|
||||
}
|
||||
pub fn predict_collision_face_out(&self,relative_body:&Body,range:impl RangeBounds<Time>,contact_face_id:MinkowskiFace)->Option<(MinkowskiDirectedEdge,GigaTime)>{
|
||||
// TODO: make better
|
||||
|
||||
Reference in New Issue
Block a user