use new algorithm

This commit is contained in:
2025-11-27 11:52:16 -08:00
parent 18c73b12d8
commit 7b53d7d595
3 changed files with 8 additions and 182 deletions

View File

@@ -21,12 +21,6 @@ impl<M:MeshQuery> CrawlResult<M>{
CrawlResult::Hit(face,time)=>Some((face,time)),
}
}
pub fn miss(self)->Option<FEV<M>>{
match self{
CrawlResult::Miss(fev)=>Some(fev),
CrawlResult::Hit(_,_)=>None,
}
}
}
// TODO: move predict_collision_face_out algorithm in here or something

View File

@@ -501,47 +501,6 @@ impl Simplex2_4{
}
}
// local function expand(
// queryP, queryQ,
// vertA0, vertA1,
// vertB0, vertB1,
// vertC0, vertC1,
// vertD0, vertD1,
// accuracy
// )
fn refine_to_exact(mesh:&MinkowskiMesh,simplex:Simplex<4>)->Simplex2_4{
unimplemented!()
}
/// Intermediate data structure containing a partially complete calculation.
/// Sometimes you only care about the topology, and not about the
/// exact point of intersection details.
pub struct Topology{
simplex:Simplex2_4,
}
impl Topology{
/// Returns None if the point is intersecting the mesh.
pub fn closest_point_details(self,mesh:&MinkowskiMesh)->Option<Details>{
// NOTE: if hits is true, this if statement necessarily evaluates to true.
// i.e. hits implies this statement
// if -dist <= exitRadius + radiusP + radiusQ then
// local posP, posQ = decompose(-point, a0, a1, b0, b1, c0, c1)
// return hits, -dist - radiusP - radiusQ,
// posP - radiusP*norm, -norm,
// posQ + radiusQ*norm, norm
// end
// return false
unimplemented!()
}
}
pub struct Details{
// distance:Planar64,
// p_pos:Planar64Vec3,
// p_norm:Planar64Vec3,
// q_pos:Planar64Vec3,
// q_norm:Planar64Vec3,
}
pub fn contains_point(mesh:&MinkowskiMesh,point:Planar64Vec3)->bool{
const ENABLE_FAST_FAIL:bool=true;
// TODO: remove mesh negation

View File

@@ -632,17 +632,6 @@ pub struct MinkowskiMesh<'a>{
mesh1:TransformedMesh<'a>,
}
//infinity fev algorithm state transition
#[derive(Debug)]
enum Transition{
Done,//found closest vert, no edges are better
Vert(MinkowskiVert),//transition to vert
}
enum EV{
Vert(MinkowskiVert),
Edge(MinkowskiEdge),
}
pub type GigaTime=Ratio<Fixed<4,128>,Fixed<4,128>>;
pub fn into_giga_time(time:Time,relative_to:Time)->GigaTime{
let r=(time-relative_to).to_ratio();
@@ -667,137 +656,21 @@ impl MinkowskiMesh<'_>{
pub fn farthest_vert(&self,dir:Planar64Vec3)->MinkowskiVert{
MinkowskiVert::VertVert(self.mesh0.farthest_vert(dir),self.mesh1.farthest_vert(-dir))
}
fn next_transition_vert(&self,vert_id:MinkowskiVert,best_distance_squared:&mut Fixed<2,64>,infinity_dir:Planar64Vec3,point:Planar64Vec3)->Transition{
let mut best_transition=Transition::Done;
for &directed_edge_id in self.vert_edges(vert_id).as_ref(){
let edge_n=self.directed_edge_n(directed_edge_id);
//is boundary uncrossable by a crawl from infinity
let edge_verts=self.edge_verts(directed_edge_id.as_undirected());
//select opposite vertex
let test_vert_id=edge_verts.as_ref()[directed_edge_id.parity() as usize];
//test if it's closer
let diff=point-self.vert(test_vert_id);
if edge_n.dot(infinity_dir).is_zero(){
let distance_squared=diff.dot(diff);
if distance_squared<*best_distance_squared{
best_transition=Transition::Vert(test_vert_id);
*best_distance_squared=distance_squared;
}
}
}
best_transition
}
fn final_ev(&self,vert_id:MinkowskiVert,best_distance_squared:&mut Fixed<2,64>,infinity_dir:Planar64Vec3,point:Planar64Vec3)->EV{
let mut best_transition=EV::Vert(vert_id);
let diff=point-self.vert(vert_id);
for &directed_edge_id in self.vert_edges(vert_id).as_ref(){
let edge_n=self.directed_edge_n(directed_edge_id);
//is boundary uncrossable by a crawl from infinity
//check if time of collision is outside Time::MIN..Time::MAX
if edge_n.dot(infinity_dir).is_zero(){
let d=edge_n.dot(diff);
//test the edge
let edge_nn=edge_n.dot(edge_n);
if !d.is_negative()&&d<=edge_nn{
let distance_squared={
let c=diff.cross(edge_n);
//wrap for speed
(c.dot(c)/edge_nn).divide().wrap_2()
};
if distance_squared<=*best_distance_squared{
best_transition=EV::Edge(directed_edge_id.as_undirected());
*best_distance_squared=distance_squared;
}
}
}
}
best_transition
}
fn crawl_boundaries(&self,mut vert_id:MinkowskiVert,infinity_dir:Planar64Vec3,point:Planar64Vec3)->EV{
let mut best_distance_squared={
let diff=point-self.vert(vert_id);
diff.dot(diff)
};
loop{
match self.next_transition_vert(vert_id,&mut best_distance_squared,infinity_dir,point){
Transition::Done=>return self.final_ev(vert_id,&mut best_distance_squared,infinity_dir,point),
Transition::Vert(new_vert_id)=>vert_id=new_vert_id,
}
}
}
/// This function drops a vertex down to an edge or a face if the path from infinity did not cross any vertex-edge boundaries but the point is supposed to have already crossed a boundary down from a vertex
fn infinity_fev(&self,infinity_dir:Planar64Vec3,point:Planar64Vec3)->FEV::<MinkowskiMesh<'_>>{
//start on any vertex
//cross uncrossable vertex-edge boundaries until you find the closest vertex or edge
//cross edge-face boundary if it's uncrossable
match self.crawl_boundaries(self.farthest_vert(infinity_dir),infinity_dir,point){
//if a vert is returned, it is the closest point to the infinity point
EV::Vert(vert_id)=>FEV::Vert(vert_id),
EV::Edge(edge_id)=>{
//cross to face if the boundary is not crossable and we are on the wrong side
let edge_n=self.edge_n(edge_id);
// point is multiplied by two because vert_sum sums two vertices.
let delta_pos=point*2-{
let &[v0,v1]=self.edge_verts(edge_id).as_ref();
self.vert(v0)+self.vert(v1)
};
for (i,&face_id) in self.edge_faces(edge_id).as_ref().iter().enumerate(){
let face_n=self.face_nd(face_id).0;
//edge-face boundary nd, n facing out of the face towards the edge
let boundary_n=face_n.cross(edge_n)*(i as i64*2-1);
let boundary_d=boundary_n.dot(delta_pos);
//check if time of collision is outside Time::MIN..Time::MAX
//infinity_dir can always be treated as a velocity
if !boundary_d.is_positive()&&boundary_n.dot(infinity_dir).is_zero(){
//both faces cannot pass this condition, return early if one does.
return FEV::Face(face_id);
}
}
FEV::Edge(edge_id)
},
}
}
// TODO: fundamentally improve this algorithm.
// All it needs to do is find the closest point on the mesh
// and return the FEV which the point resides on.
//
// What it actually does is use the above functions to trace a ray in from infinity,
// crawling the closest point along the mesh surface until the ray reaches
// the starting point to discover the final FEV.
//
// The actual collision prediction probably does a single test
// and then immediately returns with 0 FEV transitions on average,
// because of the strict time_limit constraint.
//
// Most of the calculation time is just calculating the starting point
// for the "actual" crawling algorithm below (predict_collision_{in|out}).
fn closest_fev_not_inside(&self,mut infinity_body:Body,start_time:Bound<&Time>)->Option<FEV<MinkowskiMesh<'_>>>{
infinity_body.infinity_dir().and_then(|dir|{
let infinity_fev=self.infinity_fev(-dir,infinity_body.position);
//a line is simpler to solve than a parabola
infinity_body.velocity=dir;
infinity_body.acceleration=vec3::zero();
//crawl in from negative infinity along a tangent line to get the closest fev
infinity_fev.crawl(self,&infinity_body,Bound::Unbounded,start_time).miss()
})
}
pub fn predict_collision_in(&self,relative_body:&Body,range:impl RangeBounds<Time>)->Option<(MinkowskiFace,GigaTime)>{
self.closest_fev_not_inside(*relative_body,range.start_bound()).and_then(|fev|{
//continue forwards along the body parabola
fev.crawl(self,relative_body,range.start_bound(),range.end_bound()).hit()
})
let fev=crate::minimum_difference::closest_fev_not_inside(self,relative_body.position)?.unwrap();
//continue forwards along the body parabola
fev.crawl(self,relative_body,range.start_bound(),range.end_bound()).hit()
}
pub fn predict_collision_out(&self,relative_body:&Body,range:impl RangeBounds<Time>)->Option<(MinkowskiFace,GigaTime)>{
let fev=crate::minimum_difference::closest_fev_not_inside(self,relative_body.position)?.unwrap();
let (lower_bound,upper_bound)=(range.start_bound(),range.end_bound());
// swap and negate bounds to do a time inversion
let (lower_bound,upper_bound)=(upper_bound.map(|&t|-t),lower_bound.map(|&t|-t));
let infinity_body=-relative_body;
self.closest_fev_not_inside(infinity_body,lower_bound.as_ref()).and_then(|fev|{
//continue backwards along the body parabola
fev.crawl(self,&infinity_body,lower_bound.as_ref(),upper_bound.as_ref()).hit()
//no need to test -time<time_limit because of the first step
.map(|(face,time)|(face,-time))
})
//continue backwards along the body parabola
fev.crawl(self,&infinity_body,lower_bound.as_ref(),upper_bound.as_ref()).hit()
//no need to test -time<time_limit because of the first step
.map(|(face,time)|(face,-time))
}
pub fn predict_collision_face_out(&self,relative_body:&Body,range:impl RangeBounds<Time>,contact_face_id:MinkowskiFace)->Option<(MinkowskiDirectedEdge,GigaTime)>{
// TODO: make better