Compare commits
7 Commits
master
...
phys-new-s
Author | SHA1 | Date | |
---|---|---|---|
44652a0979
|
|||
a7a07dc917
|
|||
5cf3803a88
|
|||
59dab9d47c
|
|||
dea766e28c
|
|||
146fa84e4d
|
|||
aaebfaa1b7
|
@ -90,6 +90,16 @@ pub trait MeshQuery{
|
||||
let &[v0,v1]=self.edge_verts(directed_edge_id.as_undirected()).as_ref();
|
||||
(self.vert(v1)-self.vert(v0))*((directed_edge_id.parity() as i64)*2-1)
|
||||
}
|
||||
/// Returns an iterator over the vertices in the direction of the directed edges.
|
||||
/// Intended to be used to find adjacent vertices:
|
||||
/// `self.directed_verts(self.vert_edges(vert_id).as_ref())`
|
||||
/// TODO: rewrite this function as `adjacent_vertices`
|
||||
fn directed_verts(&self,edges:&[Self::Edge])->impl Iterator<Item=Self::Vert>{
|
||||
edges.iter().map(|e|{
|
||||
let edge_verts=self.edge_verts(e.as_undirected());
|
||||
edge_verts.as_ref()[e.parity() as usize]
|
||||
})
|
||||
}
|
||||
fn vert(&self,vert_id:Self::Vert)->Planar64Vec3;
|
||||
fn face_nd(&self,face_id:Self::Face)->(Self::Normal,Self::Offset);
|
||||
fn face_edges(&self,face_id:Self::Face)->impl AsRef<[Self::Edge]>;
|
||||
@ -452,6 +462,8 @@ impl MeshQuery for PhysicsMeshView<'_>{
|
||||
let vert_idx=self.topology.verts[vert_id.get() as usize].get() as usize;
|
||||
self.data.verts[vert_idx].0
|
||||
}
|
||||
/// Directed edges going clockwise when looking in the direction of the face normal.
|
||||
/// (Edit this documentation if this is wrong!)
|
||||
fn face_edges(&self,face_id:SubmeshFaceId)->impl AsRef<[SubmeshDirectedEdgeId]>{
|
||||
self.topology.face_topology[face_id.get() as usize].edges.as_slice()
|
||||
}
|
||||
@ -617,17 +629,6 @@ pub struct MinkowskiMesh<'a>{
|
||||
mesh1:TransformedMesh<'a>,
|
||||
}
|
||||
|
||||
//infinity fev algorithm state transition
|
||||
#[derive(Debug)]
|
||||
enum Transition{
|
||||
Done,//found closest vert, no edges are better
|
||||
Vert(MinkowskiVert),//transition to vert
|
||||
}
|
||||
enum EV{
|
||||
Vert(MinkowskiVert),
|
||||
Edge(MinkowskiEdge),
|
||||
}
|
||||
|
||||
pub type GigaTime=Ratio<Fixed<4,128>,Fixed<4,128>>;
|
||||
pub fn into_giga_time(time:Time,relative_to:Time)->GigaTime{
|
||||
let r=(time-relative_to).to_ratio();
|
||||
@ -644,122 +645,195 @@ impl MinkowskiMesh<'_>{
|
||||
fn farthest_vert(&self,dir:Planar64Vec3)->MinkowskiVert{
|
||||
MinkowskiVert::VertVert(self.mesh0.farthest_vert(dir),self.mesh1.farthest_vert(-dir))
|
||||
}
|
||||
fn next_transition_vert(&self,vert_id:MinkowskiVert,best_distance_squared:&mut Fixed<2,64>,infinity_dir:Planar64Vec3,point:Planar64Vec3)->Transition{
|
||||
let mut best_transition=Transition::Done;
|
||||
for &directed_edge_id in self.vert_edges(vert_id).as_ref(){
|
||||
let edge_n=self.directed_edge_n(directed_edge_id);
|
||||
//is boundary uncrossable by a crawl from infinity
|
||||
let edge_verts=self.edge_verts(directed_edge_id.as_undirected());
|
||||
//select opposite vertex
|
||||
let test_vert_id=edge_verts.as_ref()[directed_edge_id.parity() as usize];
|
||||
//test if it's closer
|
||||
let diff=point-self.vert(test_vert_id);
|
||||
if edge_n.dot(infinity_dir).is_zero(){
|
||||
let distance_squared=diff.dot(diff);
|
||||
if distance_squared<*best_distance_squared{
|
||||
best_transition=Transition::Vert(test_vert_id);
|
||||
*best_distance_squared=distance_squared;
|
||||
}
|
||||
}
|
||||
}
|
||||
best_transition
|
||||
}
|
||||
fn final_ev(&self,vert_id:MinkowskiVert,best_distance_squared:&mut Fixed<2,64>,infinity_dir:Planar64Vec3,point:Planar64Vec3)->EV{
|
||||
let mut best_transition=EV::Vert(vert_id);
|
||||
let diff=point-self.vert(vert_id);
|
||||
for &directed_edge_id in self.vert_edges(vert_id).as_ref(){
|
||||
let edge_n=self.directed_edge_n(directed_edge_id);
|
||||
//is boundary uncrossable by a crawl from infinity
|
||||
//check if time of collision is outside Time::MIN..Time::MAX
|
||||
if edge_n.dot(infinity_dir).is_zero(){
|
||||
let d=edge_n.dot(diff);
|
||||
//test the edge
|
||||
let edge_nn=edge_n.dot(edge_n);
|
||||
if !d.is_negative()&&d<=edge_nn{
|
||||
let distance_squared={
|
||||
let c=diff.cross(edge_n);
|
||||
//wrap for speed
|
||||
(c.dot(c)/edge_nn).divide().wrap_2()
|
||||
};
|
||||
if distance_squared<=*best_distance_squared{
|
||||
best_transition=EV::Edge(directed_edge_id.as_undirected());
|
||||
*best_distance_squared=distance_squared;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
best_transition
|
||||
}
|
||||
fn crawl_boundaries(&self,mut vert_id:MinkowskiVert,infinity_dir:Planar64Vec3,point:Planar64Vec3)->EV{
|
||||
fn closest_fev_not_inside(&self,relative_position:Planar64Vec3)->Option<FEV<MinkowskiMesh>>{
|
||||
// Make a fast guess as to what the closest point will be.
|
||||
let MinkowskiVert::VertVert(mut v0,mut v1)=self.farthest_vert(relative_position);
|
||||
// TODO: alternate naive vertex searches to improve the robustness
|
||||
// in the "tall bipyramid" failure case
|
||||
let mut m0v=self.mesh0.vert(v0);
|
||||
let mut m1v=self.mesh1.vert(v1);
|
||||
let mut best_distance_squared={
|
||||
let diff=point-self.vert(vert_id);
|
||||
let diff=relative_position+m1v-m0v;
|
||||
diff.dot(diff)
|
||||
};
|
||||
let mut v0e=self.mesh0.vert_edges(v0);
|
||||
let mut v1e=self.mesh1.vert_edges(v1);
|
||||
let mut v0e_ref=v0e.as_ref();
|
||||
let mut v1e_ref=v1e.as_ref();
|
||||
// repeatedly check adjacent vertex permutations to see if they are closer
|
||||
loop{
|
||||
match self.next_transition_vert(vert_id,&mut best_distance_squared,infinity_dir,point){
|
||||
Transition::Done=>return self.final_ev(vert_id,&mut best_distance_squared,infinity_dir,point),
|
||||
Transition::Vert(new_vert_id)=>vert_id=new_vert_id,
|
||||
let mut best_v0=None;
|
||||
let mut best_v1=None;
|
||||
|
||||
// check vertices adjacent to v1 against v0
|
||||
for m1_test_vert in self.mesh1.directed_verts(v1e_ref){
|
||||
let m1v_test=self.mesh1.vert(m1_test_vert);
|
||||
let diff=relative_position+m1v_test-m0v;
|
||||
let d=diff.dot(diff);
|
||||
if d<best_distance_squared{
|
||||
best_distance_squared=d;
|
||||
best_v0=None;
|
||||
best_v1=Some(m1_test_vert);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
/// This function drops a vertex down to an edge or a face if the path from infinity did not cross any vertex-edge boundaries but the point is supposed to have already crossed a boundary down from a vertex
|
||||
fn infinity_fev(&self,infinity_dir:Planar64Vec3,point:Planar64Vec3)->FEV::<MinkowskiMesh>{
|
||||
//start on any vertex
|
||||
//cross uncrossable vertex-edge boundaries until you find the closest vertex or edge
|
||||
//cross edge-face boundary if it's uncrossable
|
||||
match self.crawl_boundaries(self.farthest_vert(infinity_dir),infinity_dir,point){
|
||||
//if a vert is returned, it is the closest point to the infinity point
|
||||
EV::Vert(vert_id)=>FEV::Vert(vert_id),
|
||||
EV::Edge(edge_id)=>{
|
||||
//cross to face if the boundary is not crossable and we are on the wrong side
|
||||
let edge_n=self.edge_n(edge_id);
|
||||
// point is multiplied by two because vert_sum sums two vertices.
|
||||
let delta_pos=point*2-{
|
||||
let &[v0,v1]=self.edge_verts(edge_id).as_ref();
|
||||
self.vert(v0)+self.vert(v1)
|
||||
};
|
||||
for (i,&face_id) in self.edge_faces(edge_id).as_ref().iter().enumerate(){
|
||||
let face_n=self.face_nd(face_id).0;
|
||||
//edge-face boundary nd, n facing out of the face towards the edge
|
||||
let boundary_n=face_n.cross(edge_n)*(i as i64*2-1);
|
||||
let boundary_d=boundary_n.dot(delta_pos);
|
||||
//check if time of collision is outside Time::MIN..Time::MAX
|
||||
//infinity_dir can always be treated as a velocity
|
||||
if !boundary_d.is_positive()&&boundary_n.dot(infinity_dir).is_zero(){
|
||||
//both faces cannot pass this condition, return early if one does.
|
||||
return FEV::Face(face_id);
|
||||
|
||||
// check vertices adjacent to v0 against v1
|
||||
for m0_test_vert in self.mesh0.directed_verts(v0e_ref){
|
||||
let m0v_test=self.mesh0.vert(m0_test_vert);
|
||||
let diff=relative_position+m1v-m0v_test;
|
||||
let d=diff.dot(diff);
|
||||
if d<best_distance_squared{
|
||||
best_distance_squared=d;
|
||||
best_v0=Some(m0_test_vert);
|
||||
best_v1=None;
|
||||
}
|
||||
}
|
||||
|
||||
// check permutations of adjacent vertices
|
||||
for m0_test_vert in self.mesh0.directed_verts(v0e_ref){
|
||||
let m0v_test=self.mesh0.vert(m0_test_vert);
|
||||
for m1_test_vert in self.mesh1.directed_verts(v1e_ref){
|
||||
let m1v_test=self.mesh1.vert(m1_test_vert);
|
||||
let diff=relative_position+m1v_test-m0v_test;
|
||||
let d=diff.dot(diff);
|
||||
if d<best_distance_squared{
|
||||
best_distance_squared=d;
|
||||
best_v0=Some(m0_test_vert);
|
||||
best_v1=Some(m1_test_vert);
|
||||
}
|
||||
}
|
||||
FEV::Edge(edge_id)
|
||||
},
|
||||
}
|
||||
|
||||
// end condition
|
||||
let v0_changed=match best_v0{
|
||||
Some(new_v0)=>{
|
||||
v0=new_v0;
|
||||
m0v=self.mesh0.vert(v0);
|
||||
v0e=self.mesh0.vert_edges(v0);
|
||||
v0e_ref=v0e.as_ref();
|
||||
true
|
||||
},
|
||||
None=>false,
|
||||
};
|
||||
let v1_changed=match best_v1{
|
||||
Some(new_v1)=>{
|
||||
v1=new_v1;
|
||||
m1v=self.mesh1.vert(v1);
|
||||
v1e=self.mesh1.vert_edges(v1);
|
||||
v1e_ref=v1e.as_ref();
|
||||
true
|
||||
},
|
||||
None=>false,
|
||||
};
|
||||
// if neither vertex changes, we found the closest two vertices.
|
||||
if !(v0_changed&&v1_changed){
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
// TODO: fundamentally improve this algorithm.
|
||||
// All it needs to do is find the closest point on the mesh
|
||||
// and return the FEV which the point resides on.
|
||||
//
|
||||
// What it actually does is use the above functions to trace a ray in from infinity,
|
||||
// crawling the closest point along the mesh surface until the ray reaches
|
||||
// the starting point to discover the final FEV.
|
||||
//
|
||||
// The actual collision prediction probably does a single test
|
||||
// and then immediately returns with 0 FEV transitions on average,
|
||||
// because of the strict time_limit constraint.
|
||||
//
|
||||
// Most of the calculation time is just calculating the starting point
|
||||
// for the "actual" crawling algorithm below (predict_collision_{in|out}).
|
||||
fn closest_fev_not_inside(&self,mut infinity_body:Body,start_time:Bound<&Time>)->Option<FEV<MinkowskiMesh>>{
|
||||
infinity_body.infinity_dir().and_then(|dir|{
|
||||
let infinity_fev=self.infinity_fev(-dir,infinity_body.position);
|
||||
//a line is simpler to solve than a parabola
|
||||
infinity_body.velocity=dir;
|
||||
infinity_body.acceleration=vec3::ZERO;
|
||||
//crawl in from negative infinity along a tangent line to get the closest fev
|
||||
infinity_fev.crawl(self,&infinity_body,Bound::Unbounded,start_time).miss()
|
||||
})
|
||||
// now you have the two closest vertices
|
||||
let mut best_fev=FEV::Vert(MinkowskiVert::VertVert(v0,v1));
|
||||
// ==== FEV::Edge ====
|
||||
// test VertEdges
|
||||
for &e1 in v1e_ref{
|
||||
let edge_verts=self.mesh1.edge_verts(e1.as_undirected());
|
||||
let &[ev0_id,ev1_id]=edge_verts.as_ref();
|
||||
let (ev0,ev1)=(self.mesh1.vert(ev0_id),self.mesh1.vert(ev1_id));
|
||||
let edge_n=ev1-ev0;
|
||||
// use relative coordinates to make including relative_position easier
|
||||
let diff=relative_position+m0v-ev0;
|
||||
let d=diff.dot(edge_n);
|
||||
// is test point between edge vertices
|
||||
let edge_nn=edge_n.dot(edge_n);
|
||||
if d.is_positive()&&d<edge_nn{
|
||||
let distance_squared={
|
||||
let c=diff.cross(edge_n);
|
||||
//wrap for speed
|
||||
(c.dot(c)/edge_nn).divide().wrap_2()
|
||||
};
|
||||
if distance_squared<best_distance_squared{
|
||||
best_distance_squared=distance_squared;
|
||||
best_fev=FEV::Edge(MinkowskiEdge::VertEdge(v0,e1.as_undirected()))
|
||||
}
|
||||
}
|
||||
}
|
||||
// test EdgeVerts
|
||||
for &e0 in v0e_ref{
|
||||
let edge_verts=self.mesh0.edge_verts(e0.as_undirected());
|
||||
let &[ev0_id,ev1_id]=edge_verts.as_ref();
|
||||
let (ev0,ev1)=(self.mesh0.vert(ev0_id),self.mesh0.vert(ev1_id));
|
||||
let edge_n=ev1-ev0;
|
||||
// use relative coordinates to make including relative_position easier
|
||||
let diff=m1v-relative_position-ev0;
|
||||
let d=diff.dot(edge_n);
|
||||
// is test point between edge vertices
|
||||
let edge_nn=edge_n.dot(edge_n);
|
||||
if d.is_positive()&&d<edge_nn{
|
||||
let distance_squared={
|
||||
let c=diff.cross(edge_n);
|
||||
//wrap for speed
|
||||
(c.dot(c)/edge_nn).divide().wrap_2()
|
||||
};
|
||||
if distance_squared<best_distance_squared{
|
||||
best_distance_squared=distance_squared;
|
||||
best_fev=FEV::Edge(MinkowskiEdge::EdgeVert(e0.as_undirected(),v1))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// ==== FEV::Face ====
|
||||
// test VertFaces
|
||||
for &f1 in self.mesh1.vert_faces(v1).as_ref(){
|
||||
let (n,d)=self.mesh1.face_nd(f1);
|
||||
// Test the face's voronoi column
|
||||
for &e1 in self.mesh1.face_edges(f1).as_ref(){
|
||||
let edge_n=self.mesh1.directed_edge_n(e1);
|
||||
let boundary_n=n.cross(edge_n);
|
||||
let &[ev0_id,ev1_id]=self.mesh1.edge_verts(e1.as_undirected()).as_ref();
|
||||
let (ev0,ev1)=(self.mesh1.vert(ev0_id),self.mesh1.vert(ev1_id));
|
||||
let diff=(relative_position+m0v)*2-(ev0+ev1);
|
||||
if boundary_n.dot(diff).is_negative(){
|
||||
// The test point is outside the face's voronoi column.
|
||||
continue;
|
||||
}
|
||||
}
|
||||
// Calculate distance
|
||||
let d=n.dot(relative_position+m0v)-d;
|
||||
// Wrap for speed
|
||||
let distance_squared=(d*d).wrap_2();
|
||||
if distance_squared<best_distance_squared{
|
||||
best_distance_squared=distance_squared;
|
||||
best_fev=FEV::Face(MinkowskiFace::VertFace(v0,f1));
|
||||
}
|
||||
}
|
||||
// test FaceVerts
|
||||
for &f0 in self.mesh0.vert_faces(v0).as_ref(){
|
||||
let (n,d)=self.mesh0.face_nd(f0);
|
||||
// Test the face's voronoi column
|
||||
for &e0 in self.mesh0.face_edges(f0).as_ref(){
|
||||
let edge_n=self.mesh0.directed_edge_n(e0);
|
||||
let boundary_n=n.cross(edge_n);
|
||||
let &[ev0_id,ev1_id]=self.mesh0.edge_verts(e0.as_undirected()).as_ref();
|
||||
let (ev0,ev1)=(self.mesh0.vert(ev0_id),self.mesh0.vert(ev1_id));
|
||||
let diff=(m1v-relative_position)*2-(ev0+ev1);
|
||||
if boundary_n.dot(diff).is_negative(){
|
||||
// The test point is outside the face's voronoi column.
|
||||
continue;
|
||||
}
|
||||
}
|
||||
// Calculate distance
|
||||
let d=n.dot(relative_position+m0v)-d;
|
||||
// Wrap for speed
|
||||
let distance_squared=(d*d).wrap_2();
|
||||
if distance_squared<best_distance_squared{
|
||||
best_distance_squared=distance_squared;
|
||||
best_fev=FEV::Face(MinkowskiFace::FaceVert(f0,v1));
|
||||
}
|
||||
}
|
||||
// test EdgeEdges
|
||||
Some(best_fev)
|
||||
}
|
||||
pub fn predict_collision_in(&self,relative_body:&Body,range:impl RangeBounds<Time>)->Option<(MinkowskiFace,GigaTime)>{
|
||||
self.closest_fev_not_inside(*relative_body,range.start_bound()).and_then(|fev|{
|
||||
self.closest_fev_not_inside(relative_body.position).and_then(|fev|{
|
||||
//continue forwards along the body parabola
|
||||
fev.crawl(self,relative_body,range.start_bound(),range.end_bound()).hit()
|
||||
})
|
||||
@ -768,10 +842,9 @@ impl MinkowskiMesh<'_>{
|
||||
let (lower_bound,upper_bound)=(range.start_bound(),range.end_bound());
|
||||
// swap and negate bounds to do a time inversion
|
||||
let (lower_bound,upper_bound)=(upper_bound.map(|&t|-t),lower_bound.map(|&t|-t));
|
||||
let infinity_body=-relative_body;
|
||||
self.closest_fev_not_inside(infinity_body,lower_bound.as_ref()).and_then(|fev|{
|
||||
self.closest_fev_not_inside(relative_body.position).and_then(|fev|{
|
||||
//continue backwards along the body parabola
|
||||
fev.crawl(self,&infinity_body,lower_bound.as_ref(),upper_bound.as_ref()).hit()
|
||||
fev.crawl(self,&-relative_body,lower_bound.as_ref(),upper_bound.as_ref()).hit()
|
||||
//no need to test -time<time_limit because of the first step
|
||||
.map(|(face,time)|(face,-time))
|
||||
})
|
||||
@ -807,20 +880,10 @@ impl MinkowskiMesh<'_>{
|
||||
}
|
||||
best_edge
|
||||
}
|
||||
fn infinity_in(&self,infinity_body:Body)->Option<(MinkowskiFace,GigaTime)>{
|
||||
let infinity_fev=self.infinity_fev(-infinity_body.velocity,infinity_body.position);
|
||||
// Bound::Included means that the surface of the mesh is included in the mesh
|
||||
infinity_fev.crawl(self,&infinity_body,Bound::Unbounded,Bound::Included(&infinity_body.time)).hit()
|
||||
}
|
||||
pub fn is_point_in_mesh(&self,point:Planar64Vec3)->bool{
|
||||
let infinity_body=Body::new(point,vec3::Y,vec3::ZERO,Time::ZERO);
|
||||
//movement must escape the mesh forwards and backwards in time,
|
||||
//otherwise the point is not inside the mesh
|
||||
self.infinity_in(infinity_body)
|
||||
.is_some_and(|_|
|
||||
self.infinity_in(-infinity_body)
|
||||
.is_some()
|
||||
)
|
||||
// TODO
|
||||
println!("Unimplemented is_point_in_mesh called! {point}");
|
||||
false
|
||||
}
|
||||
}
|
||||
impl MeshQuery for MinkowskiMesh<'_>{
|
||||
|
Reference in New Issue
Block a user