Compare commits

..

2 Commits

Author SHA1 Message Date
53d2b5b3f5 wip: timelines 2023-09-08 23:20:27 -07:00
c565120ea7 wip: tickless physics 2023-09-08 20:18:31 -07:00
9 changed files with 324 additions and 942 deletions

2
Cargo.lock generated

@ -1405,7 +1405,7 @@ checksum = "a2eb9349b6444b326872e140eb1cf5e7c522154d69e7a0ffb0fb81c06b37543f"
[[package]]
name = "strafe-client"
version = "0.3.0"
version = "0.2.0"
dependencies = [
"async-executor",
"bytemuck",

@ -1,6 +1,6 @@
[package]
name = "strafe-client"
version = "0.3.0"
version = "0.2.0"
edition = "2021"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html

@ -1,10 +1,11 @@
use crate::{instruction::{InstructionEmitter, InstructionConsumer, TimedInstruction}, zeroes::zeroes2};
use crate::instruction::TimedInstruction;
#[derive(Debug)]
pub enum PhysicsInstruction {
CollisionStart(RelativeCollision),
CollisionEnd(RelativeCollision),
StrafeTick,
Jump,
SetWalkTargetVelocity(glam::Vec3),
ReachWalkTargetVelocity,
// Water,
// Spawn(
@ -12,268 +13,38 @@ pub enum PhysicsInstruction {
// bool,//true = Trigger; false = teleport
// bool,//true = Force
// )
//Both of these conditionally activate RefreshWalkTarget (by doing what SetWalkTargetVelocity used to do and then flagging it)
Input(InputInstruction),
}
#[derive(Debug)]
pub enum InputInstruction {
MoveMouse(glam::IVec2),
MoveForward(bool),
MoveLeft(bool),
MoveBack(bool),
MoveRight(bool),
MoveUp(bool),
MoveDown(bool),
Jump(bool),
Zoom(bool),
Reset,
}
pub struct Body {
position: glam::Vec3,//I64 where 2^32 = 1 u
velocity: glam::Vec3,//I64 where 2^32 = 1 u/s
acceleration: glam::Vec3,//I64 where 2^32 = 1 u/s/s
time: TIME,//nanoseconds x xxxxD!
}
trait MyHash{
fn hash(&self) -> u64;
}
impl MyHash for Body {
fn hash(&self) -> u64 {
let mut hasher=std::collections::hash_map::DefaultHasher::new();
for &el in self.position.as_ref().iter() {
std::hash::Hasher::write(&mut hasher, el.to_ne_bytes().as_slice());
}
for &el in self.velocity.as_ref().iter() {
std::hash::Hasher::write(&mut hasher, el.to_ne_bytes().as_slice());
}
for &el in self.acceleration.as_ref().iter() {
std::hash::Hasher::write(&mut hasher, el.to_ne_bytes().as_slice());
}
std::hash::Hasher::write(&mut hasher, self.time.to_ne_bytes().as_slice());
return std::hash::Hasher::finish(&hasher);//hash check to see if walk target is valid
}
pub position: glam::Vec3,//I64 where 2^32 = 1 u
pub velocity: glam::Vec3,//I64 where 2^32 = 1 u/s
pub time: TIME,//nanoseconds x xxxxD!
}
pub enum MoveRestriction {
Air,
Water,
Ground,
Ladder,//multiple ladders how
}
/*
enum InputInstruction {
}
struct InputState {
}
impl InputState {
pub fn get_control(&self,control:u32) -> bool {
self.controls&control!=0
}
}
impl crate::instruction::InstructionEmitter<InputInstruction> for InputState{
fn next_instruction(&self, time_limit:crate::body::TIME) -> Option<TimedInstruction<InputInstruction>> {
//this is polled by PhysicsState for actions like Jump
//no, it has to be the other way around. physics is run up until the jump instruction, and then the jump instruction is pushed.
self.queue.get(0)
}
}
impl crate::instruction::InstructionConsumer<InputInstruction> for InputState{
fn process_instruction(&mut self,ins:TimedInstruction<InputInstruction>){
//add to queue
self.queue.push(ins);
}
}
*/
enum MouseInterpolation {
First,//just checks the last value
Lerp,//lerps between
}
pub struct MouseInterpolationState {
interpolation: MouseInterpolation,
time0: TIME,
time1: TIME,
mouse0: glam::IVec2,
mouse1: glam::IVec2,
}
impl MouseInterpolationState {
pub fn new() -> Self {
Self {
interpolation:MouseInterpolation::Lerp,
time0:0,
time1:1,//ONE NANOSECOND!!!! avoid divide by zero
mouse0:glam::IVec2::ZERO,
mouse1:glam::IVec2::ZERO,
}
}
pub fn move_mouse(&mut self,time:TIME,delta:glam::IVec2){
self.time0=self.time1;
self.mouse0=self.mouse1;
self.time1=time;
self.mouse1=self.mouse1+delta;
}
pub fn interpolated_position(&self,time:TIME) -> glam::IVec2 {
match self.interpolation {
MouseInterpolation::First => self.mouse0,
MouseInterpolation::Lerp => {
let m0=self.mouse0.as_i64vec2();
let m1=self.mouse1.as_i64vec2();
//these are deltas
let dt=(self.time1-self.time0) as i64;
let t1t=(self.time1-time).clamp(0,dt) as i64;
let tt0=(time-self.time0).clamp(0,dt) as i64;
((m0*t1t+m1*tt0)/dt).as_ivec2()
}
}
}
}
pub enum WalkEnum{
Reached,
Transient,
}
pub struct WalkState {
pub target_velocity: glam::Vec3,
pub target_time: TIME,
pub state: WalkEnum,
}
impl WalkState {
pub fn new() -> Self {
Self{
target_velocity:glam::Vec3::ZERO,
target_time:0,
state:WalkEnum::Reached,
}
}
}
// Note: we use the Y=up coordinate space in this example.
pub struct Camera {
offset: glam::Vec3,
angles: glam::DVec2,//YAW AND THEN PITCH
//punch: glam::Vec3,
//punch_velocity: glam::Vec3,
fov: glam::Vec2,//slope
sensitivity: glam::DVec2,
time: TIME,
}
#[inline]
fn mat3_from_rotation_y_f64(angle: f64) -> glam::Mat3 {
let (sina, cosa) = angle.sin_cos();
glam::Mat3::from_cols(
glam::Vec3::new(cosa as f32, 0.0, -sina as f32),
glam::Vec3::Y,
glam::Vec3::new(sina as f32, 0.0, cosa as f32),
)
}
#[inline]
fn perspective_rh(fov_x_slope: f32, fov_y_slope: f32, z_near: f32, z_far: f32) -> glam::Mat4 {
//glam_assert!(z_near > 0.0 && z_far > 0.0);
let r = z_far / (z_near - z_far);
glam::Mat4::from_cols(
glam::Vec4::new(1.0/fov_x_slope, 0.0, 0.0, 0.0),
glam::Vec4::new(0.0, 1.0/fov_y_slope, 0.0, 0.0),
glam::Vec4::new(0.0, 0.0, r, -1.0),
glam::Vec4::new(0.0, 0.0, r * z_near, 0.0),
)
}
impl Camera {
pub fn from_offset(offset:glam::Vec3,aspect:f32) -> Self {
Self{
offset,
angles: glam::DVec2::ZERO,
fov: glam::vec2(aspect,1.0),
sensitivity: glam::dvec2(1.0/2048.0,1.0/2048.0),
time: 0,
}
}
fn simulate_move_angles(&self, delta: glam::IVec2) -> glam::DVec2 {
let mut a=self.angles-self.sensitivity*delta.as_dvec2();
a.y=a.y.clamp(-std::f64::consts::PI, std::f64::consts::PI);
return a
}
fn simulate_move_rotation_y(&self, delta_x: i32) -> glam::Mat3 {
mat3_from_rotation_y_f64(self.angles.x-self.sensitivity.x*(delta_x as f64))
}
pub fn proj(&self)->glam::Mat4{
perspective_rh(self.fov.x, self.fov.y, 0.5, 1000.0)
}
pub fn view(&self,pos:glam::Vec3)->glam::Mat4{
//f32 good enough for view matrix
glam::Mat4::from_translation(pos+self.offset) * glam::Mat4::from_euler(glam::EulerRot::YXZ, self.angles.x as f32, self.angles.y as f32, 0f32)
}
pub fn set_fov_aspect(&mut self,fov:f32,aspect:f32){
self.fov.x=fov*aspect;
self.fov.y=fov;
}
}
const CONTROL_MOVEFORWARD:u32 = 0b00000001;
const CONTROL_MOVEBACK:u32 = 0b00000010;
const CONTROL_MOVERIGHT:u32 = 0b00000100;
const CONTROL_MOVELEFT:u32 = 0b00001000;
const CONTROL_MOVEUP:u32 = 0b00010000;
const CONTROL_MOVEDOWN:u32 = 0b00100000;
const CONTROL_JUMP:u32 = 0b01000000;
const CONTROL_ZOOM:u32 = 0b10000000;
const FORWARD_DIR:glam::Vec3 = glam::Vec3::new(0.0,0.0,-1.0);
const RIGHT_DIR:glam::Vec3 = glam::Vec3::new(1.0,0.0,0.0);
const UP_DIR:glam::Vec3 = glam::Vec3::new(0.0,1.0,0.0);
fn get_control_dir(controls: u32) -> glam::Vec3{
//don't get fancy just do it
let mut control_dir:glam::Vec3 = glam::Vec3::new(0.0,0.0,0.0);
if controls & CONTROL_MOVEFORWARD == CONTROL_MOVEFORWARD {
control_dir+=FORWARD_DIR;
}
if controls & CONTROL_MOVEBACK == CONTROL_MOVEBACK {
control_dir+=-FORWARD_DIR;
}
if controls & CONTROL_MOVELEFT == CONTROL_MOVELEFT {
control_dir+=-RIGHT_DIR;
}
if controls & CONTROL_MOVERIGHT == CONTROL_MOVERIGHT {
control_dir+=RIGHT_DIR;
}
if controls & CONTROL_MOVEUP == CONTROL_MOVEUP {
control_dir+=UP_DIR;
}
if controls & CONTROL_MOVEDOWN == CONTROL_MOVEDOWN {
control_dir+=-UP_DIR;
}
return control_dir
Air,
Water,
Ground,
Ladder,//multiple ladders how
}
pub struct PhysicsState {
pub body: Body,
pub hitbox_halfsize: glam::Vec3,
pub contacts: std::collections::HashSet::<RelativeCollision>,
//pub intersections: Vec<ModelId>,
//temp
pub contacts: Vec<RelativeCollision>,
pub models_cringe_clone: Vec<Model>,
//camera must exist in state because wormholes modify the camera, also camera punch
pub camera: Camera,
pub mouse_interpolation: MouseInterpolationState,
pub controls: u32,
pub time: TIME,
pub strafe_tick_num: TIME,
pub strafe_tick_den: TIME,
pub tick: u32,
pub mv: f32,
pub walk: WalkState,
pub walkspeed: f32,
pub friction: f32,
pub walk_accel: f32,
pub gravity: glam::Vec3,
pub grounded: bool,
pub jump_trying: bool,
}
#[derive(Debug,Clone,Copy,Hash,Eq,PartialEq)]
#[derive(Clone,Copy)]
pub enum AabbFace{
Right,//+X
Top,
@ -297,16 +68,6 @@ impl Aabb {
// [0.0f32, 1., 0.],
// [0.0f32, -1., 0.],
// ];
const VERTEX_DATA: [glam::Vec3; 8] = [
glam::vec3(1., -1., -1.),
glam::vec3(1., 1., -1.),
glam::vec3(1., 1., 1.),
glam::vec3(1., -1., 1.),
glam::vec3(-1., -1., 1.),
glam::vec3(-1., 1., 1.),
glam::vec3(-1., 1., -1.),
glam::vec3(-1., -1., -1.),
];
const VERTEX_DATA_RIGHT: [glam::Vec3; 4] = [
glam::vec3(1., -1., -1.),
glam::vec3(1., 1., -1.),
@ -363,10 +124,7 @@ impl Aabb {
AabbFace::Front => glam::vec3(0.,0.,-1.),
}
}
pub fn unit_vertices() -> [glam::Vec3;8] {
return Self::VERTEX_DATA;
}
pub fn unit_face_vertices(face:AabbFace) -> [glam::Vec3;4] {
pub fn face_vertices(face:AabbFace) -> [glam::Vec3;4] {
match face {
AabbFace::Right => Self::VERTEX_DATA_RIGHT,
AabbFace::Top => Self::VERTEX_DATA_TOP,
@ -378,8 +136,7 @@ impl Aabb {
}
}
//pretend to be using what we want to eventually do
type TreyMeshFace = AabbFace;
type Face = AabbFace;
type TreyMesh = Aabb;
pub struct Model {
@ -392,42 +149,25 @@ impl Model {
pub fn new(transform:glam::Mat4) -> Self {
Self{transform}
}
pub fn unit_vertices(&self) -> [glam::Vec3;8] {
Aabb::unit_vertices()
pub fn face_vertices(&self,face:Face) -> [glam::Vec3;4] {
Aabb::face_vertices(face)
}
pub fn mesh(&self) -> TreyMesh {
pub fn face_mesh(&self,face:Face) -> TreyMesh {
let mut aabb=Aabb::new();
for &vertex in self.unit_vertices().iter() {
aabb.grow(glam::Vec4Swizzles::xyz(self.transform*vertex.extend(1.0)));
for &vertex in self.face_vertices(face).iter() {
aabb.grow(vertex);
}
return aabb;
}
pub fn unit_face_vertices(&self,face:TreyMeshFace) -> [glam::Vec3;4] {
Aabb::unit_face_vertices(face)
}
pub fn face_mesh(&self,face:TreyMeshFace) -> TreyMesh {
let mut aabb=self.mesh();
//in this implementation face = worldspace aabb face
match face {
AabbFace::Right => aabb.min.x=aabb.max.x,
AabbFace::Top => aabb.min.y=aabb.max.y,
AabbFace::Back => aabb.min.z=aabb.max.z,
AabbFace::Left => aabb.max.x=aabb.min.x,
AabbFace::Bottom => aabb.max.y=aabb.min.y,
AabbFace::Front => aabb.max.z=aabb.min.z,
}
return aabb;
}
pub fn face_normal(&self,face:TreyMeshFace) -> glam::Vec3 {
glam::Vec4Swizzles::xyz(Aabb::normal(face).extend(0.0))//this is wrong for scale
pub fn face_normal(&self,face:Face) -> glam::Vec3 {
let mut n=glam::Vec3Swizzles::xyzz(Aabb::normal(face));
n.w=0.0;//what a man will do to avoid writing out the components
glam::Vec4Swizzles::xyz(self.transform*n)//this is wrong for scale
}
}
//need non-face (full model) variant for CanCollide false objects
//OR have a separate list from contacts for model intersection
#[derive(Debug,Clone,Eq,Hash,PartialEq)]
pub struct RelativeCollision {
face: TreyMeshFace,//just an id
face: Face,//just an id
model: u32,//using id to avoid lifetimes
}
@ -442,74 +182,30 @@ impl RelativeCollision {
pub type TIME = i64;
impl Body {
pub fn with_pva(position:glam::Vec3,velocity:glam::Vec3,acceleration:glam::Vec3) -> Self {
Self{
position,
velocity,
acceleration,
time: 0,
}
}
pub fn extrapolated_position(&self,time: TIME)->glam::Vec3{
let dt=(time-self.time) as f64/1_000_000_000f64;
self.position+self.velocity*(dt as f32)+self.acceleration*((0.5*dt*dt) as f32)
}
pub fn extrapolated_velocity(&self,time: TIME)->glam::Vec3{
let dt=(time-self.time) as f64/1_000_000_000f64;
self.velocity+self.acceleration*(dt as f32)
}
pub fn advance_time(&mut self, time: TIME){
self.position=self.extrapolated_position(time);
self.velocity=self.extrapolated_velocity(time);
self.time=time;
}
}
const CONTROL_JUMP:u32 = 0b01000000;//temp DATA NORMALIZATION!@#$
impl PhysicsState {
//tickless gaming
pub fn run(&mut self, time_limit:TIME){
//delete this, we are tickless gamers
pub fn run(&mut self, time: TIME){
//prepare is ommitted - everything is done via instructions.
while let Some(instruction) = self.next_instruction(time_limit) {//collect
while let Some(instruction) = self.next_instruction() {//collect
if time<instruction.time {
break;
}
//advance
self.advance_time(instruction.time);
//process
self.process_instruction(instruction);
//write hash lol
}
}
pub fn advance_time(&mut self, time: TIME){
self.body.advance_time(time);
self.time=time;
//delete this
pub fn extrapolate_position(&self, time: TIME) -> glam::Vec3 {
let dt=(time-self.body.time) as f64/1_000_000_000f64;
self.body.position+self.body.velocity*(dt as f32)+self.gravity*((0.5*dt*dt) as f32)
}
fn set_control(&mut self,control:u32,state:bool){
self.controls=if state{self.controls|control}else{self.controls&!control};
}
fn jump(&mut self){
self.grounded=false;//do I need this?
let mut v=self.body.velocity+glam::Vec3::new(0.0,0.715588/2.0*100.0,0.0);
self.contact_constrain_velocity(&mut v);
self.body.velocity=v;
}
fn contact_constrain_velocity(&self,velocity:&mut glam::Vec3){
for contact in self.contacts.iter() {
let n=contact.normal(&self.models_cringe_clone);
let d=velocity.dot(n);
if d<0f32{
(*velocity)-=d/n.length_squared()*n;
}
}
}
fn contact_constrain_acceleration(&self,acceleration:&mut glam::Vec3){
for contact in self.contacts.iter() {
let n=contact.normal(&self.models_cringe_clone);
let d=acceleration.dot(n);
if d<0f32{
(*acceleration)-=d/n.length_squared()*n;
}
}
}
fn next_strafe_instruction(&self) -> Option<TimedInstruction<PhysicsInstruction>> {
return Some(TimedInstruction{
time:(self.time*self.strafe_tick_num/self.strafe_tick_den+1)*self.strafe_tick_den/self.strafe_tick_num,
@ -549,338 +245,39 @@ impl PhysicsState {
// });
// }
fn refresh_walk_target(&mut self){
//calculate acceleration yada yada
if self.grounded{
let mut v=self.walk.target_velocity;
self.contact_constrain_velocity(&mut v);
let mut target_diff=v-self.body.velocity;
target_diff.y=0f32;
if target_diff==glam::Vec3::ZERO{
let mut a=glam::Vec3::ZERO;
self.contact_constrain_acceleration(&mut a);
self.body.acceleration=a;
self.walk.state=WalkEnum::Reached;
}else{
let accel=self.walk_accel.min(self.gravity.length()*self.friction);
let time_delta=target_diff.length()/accel;
let mut a=target_diff/time_delta;
self.contact_constrain_acceleration(&mut a);
self.body.acceleration=a;
self.walk.target_time=self.body.time+((time_delta as f64)*1_000_000_000f64) as TIME;
self.walk.state=WalkEnum::Transient;
}
}else{
self.walk.state=WalkEnum::Reached;//there is no walk target while not grounded
}
}
fn next_walk_instruction(&self) -> Option<TimedInstruction<PhysicsInstruction>> {
//check if you have a valid walk state and create an instruction
if self.grounded{
match self.walk.state{
WalkEnum::Transient=>Some(TimedInstruction{
time:self.walk.target_time,
instruction:PhysicsInstruction::ReachWalkTargetVelocity
}),
WalkEnum::Reached=>None,
}
}else{
return None;
}
//check if you are accelerating towards a walk target velocity and create an instruction
return None;
}
fn mesh(&self) -> TreyMesh {
let mut aabb=Aabb::new();
for vertex in Aabb::unit_vertices(){
aabb.grow(self.body.position+self.hitbox_halfsize*vertex);
}
aabb
}
fn predict_collision_end(&self,time:TIME,time_limit:TIME,collision_data:&RelativeCollision) -> Option<TimedInstruction<PhysicsInstruction>> {
fn predict_collision_end(&self,model:&Model) -> Option<TimedInstruction<PhysicsInstruction>> {
//must treat cancollide false objects differently: you may not exit through the same face you entered.
//RelativeCollsion must reference the full model instead of a particular face
//this is Ctrl+C Ctrl+V of predict_collision_start but with v=-v before the calc and t=-t after the calc
//find best t
let mut best_time=time_limit;
let mut exit_face:Option<TreyMeshFace>=None;
let mesh0=self.mesh();
let mesh1=self.models_cringe_clone.get(collision_data.model as usize).unwrap().mesh();
let (v,a)=(-self.body.velocity,self.body.acceleration);
//collect x
match collision_data.face {
AabbFace::Top|AabbFace::Back|AabbFace::Bottom|AabbFace::Front=>{
for t in zeroes2(mesh0.max.x-mesh1.min.x,v.x,0.5*a.x) {
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
let t_time=self.body.time+((-t as f64)*1_000_000_000f64) as TIME;
if time<=t_time&&t_time<best_time&&0f32<v.x+a.x*-t{
//collect valid t
best_time=t_time;
exit_face=Some(TreyMeshFace::Left);
break;
}
}
for t in zeroes2(mesh0.min.x-mesh1.max.x,v.x,0.5*a.x) {
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
let t_time=self.body.time+((-t as f64)*1_000_000_000f64) as TIME;
if time<=t_time&&t_time<best_time&&v.x+a.x*-t<0f32{
//collect valid t
best_time=t_time;
exit_face=Some(TreyMeshFace::Right);
break;
}
}
},
AabbFace::Left=>{
//generate event if v.x<0||a.x<0
if -v.x<0f32{
best_time=time;
exit_face=Some(TreyMeshFace::Left);
}
},
AabbFace::Right=>{
//generate event if 0<v.x||0<a.x
if 0f32<(-v.x){
best_time=time;
exit_face=Some(TreyMeshFace::Right);
}
},
}
//collect y
match collision_data.face {
AabbFace::Left|AabbFace::Back|AabbFace::Right|AabbFace::Front=>{
for t in zeroes2(mesh0.max.y-mesh1.min.y,v.y,0.5*a.y) {
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
let t_time=self.body.time+((-t as f64)*1_000_000_000f64) as TIME;
if time<=t_time&&t_time<best_time&&0f32<v.y+a.y*-t{
//collect valid t
best_time=t_time;
exit_face=Some(TreyMeshFace::Bottom);
break;
}
}
for t in zeroes2(mesh0.min.y-mesh1.max.y,v.y,0.5*a.y) {
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
let t_time=self.body.time+((-t as f64)*1_000_000_000f64) as TIME;
if time<=t_time&&t_time<best_time&&v.y+a.y*-t<0f32{
//collect valid t
best_time=t_time;
exit_face=Some(TreyMeshFace::Top);
break;
}
}
},
AabbFace::Bottom=>{
//generate event if v.y<0||a.y<0
if -v.y<0f32{
best_time=time;
exit_face=Some(TreyMeshFace::Bottom);
}
},
AabbFace::Top=>{
//generate event if 0<v.y||0<a.y
if 0f32<(-v.y){
best_time=time;
exit_face=Some(TreyMeshFace::Top);
}
},
}
//collect z
match collision_data.face {
AabbFace::Left|AabbFace::Bottom|AabbFace::Right|AabbFace::Top=>{
for t in zeroes2(mesh0.max.z-mesh1.min.z,v.z,0.5*a.z) {
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
let t_time=self.body.time+((-t as f64)*1_000_000_000f64) as TIME;
if time<=t_time&&t_time<best_time&&0f32<v.z+a.z*-t{
//collect valid t
best_time=t_time;
exit_face=Some(TreyMeshFace::Front);
break;
}
}
for t in zeroes2(mesh0.min.z-mesh1.max.z,v.z,0.5*a.z) {
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
let t_time=self.body.time+((-t as f64)*1_000_000_000f64) as TIME;
if time<=t_time&&t_time<best_time&&v.z+a.z*-t<0f32{
//collect valid t
best_time=t_time;
exit_face=Some(TreyMeshFace::Back);
break;
}
}
},
AabbFace::Front=>{
//generate event if v.z<0||a.z<0
if -v.z<0f32{
best_time=time;
exit_face=Some(TreyMeshFace::Front);
}
},
AabbFace::Back=>{
//generate event if 0<v.z||0<a.z
if 0f32<(-v.z){
best_time=time;
exit_face=Some(TreyMeshFace::Back);
}
},
}
//generate instruction
if let Some(face) = exit_face{
return Some(TimedInstruction {
time: best_time,
instruction: PhysicsInstruction::CollisionEnd(collision_data.clone())
})
}
None
}
fn predict_collision_start(&self,time:TIME,time_limit:TIME,model_id:u32) -> Option<TimedInstruction<PhysicsInstruction>> {
//find best t
let mut best_time=time_limit;
let mut best_face:Option<TreyMeshFace>=None;
let mesh0=self.mesh();
let mesh1=self.models_cringe_clone.get(model_id as usize).unwrap().mesh();
let (p,v,a)=(self.body.position,self.body.velocity,self.body.acceleration);
//collect x
for t in zeroes2(mesh0.max.x-mesh1.min.x,v.x,0.5*a.x) {
//must collide now or in the future
//must beat the current soonest collision time
//must be moving towards surface
let t_time=self.body.time+((t as f64)*1_000_000_000f64) as TIME;
if time<=t_time&&t_time<best_time&&0f32<v.x+a.x*t{
let dp=self.body.extrapolated_position(t_time)-p;
//faces must be overlapping
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
//collect valid t
best_time=t_time;
best_face=Some(TreyMeshFace::Left);
break;
}
}
}
for t in zeroes2(mesh0.min.x-mesh1.max.x,v.x,0.5*a.x) {
//must collide now or in the future
//must beat the current soonest collision time
//must be moving towards surface
let t_time=self.body.time+((t as f64)*1_000_000_000f64) as TIME;
if time<=t_time&&t_time<best_time&&v.x+a.x*t<0f32{
let dp=self.body.extrapolated_position(t_time)-p;
//faces must be overlapping
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
//collect valid t
best_time=t_time;
best_face=Some(TreyMeshFace::Right);
break;
}
}
}
//collect y
for t in zeroes2(mesh0.max.y-mesh1.min.y,v.y,0.5*a.y) {
//must collide now or in the future
//must beat the current soonest collision time
//must be moving towards surface
let t_time=self.body.time+((t as f64)*1_000_000_000f64) as TIME;
if time<=t_time&&t_time<best_time&&0f32<v.y+a.y*t{
let dp=self.body.extrapolated_position(t_time)-p;
//faces must be overlapping
if mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
//collect valid t
best_time=t_time;
best_face=Some(TreyMeshFace::Bottom);
break;
}
}
}
for t in zeroes2(mesh0.min.y-mesh1.max.y,v.y,0.5*a.y) {
//must collide now or in the future
//must beat the current soonest collision time
//must be moving towards surface
let t_time=self.body.time+((t as f64)*1_000_000_000f64) as TIME;
if time<=t_time&&t_time<best_time&&v.y+a.y*t<0f32{
let dp=self.body.extrapolated_position(t_time)-p;
//faces must be overlapping
if mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
//collect valid t
best_time=t_time;
best_face=Some(TreyMeshFace::Top);
break;
}
}
}
//collect z
for t in zeroes2(mesh0.max.z-mesh1.min.z,v.z,0.5*a.z) {
//must collide now or in the future
//must beat the current soonest collision time
//must be moving towards surface
let t_time=self.body.time+((t as f64)*1_000_000_000f64) as TIME;
if time<=t_time&&t_time<best_time&&0f32<v.z+a.z*t{
let dp=self.body.extrapolated_position(t_time)-p;
//faces must be overlapping
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x {
//collect valid t
best_time=t_time;
best_face=Some(TreyMeshFace::Front);
break;
}
}
}
for t in zeroes2(mesh0.min.z-mesh1.max.z,v.z,0.5*a.z) {
//must collide now or in the future
//must beat the current soonest collision time
//must be moving towards surface
let t_time=self.body.time+((t as f64)*1_000_000_000f64) as TIME;
if time<=t_time&&t_time<best_time&&v.z+a.z*t<0f32{
let dp=self.body.extrapolated_position(t_time)-p;
//faces must be overlapping
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x {
//collect valid t
best_time=t_time;
best_face=Some(TreyMeshFace::Back);
break;
}
}
}
//generate instruction
if let Some(face) = best_face{
return Some(TimedInstruction {
time: best_time,
instruction: PhysicsInstruction::CollisionStart(RelativeCollision {
face,
model: model_id
})
})
}
fn predict_collision_start(&self,model:&Model) -> Option<TimedInstruction<PhysicsInstruction>> {
None
}
}
impl crate::instruction::InstructionEmitter<PhysicsInstruction> for PhysicsState {
//this little next instruction function can cache its return value and invalidate the cached value by watching the State.
fn next_instruction(&self,time_limit:TIME) -> Option<TimedInstruction<PhysicsInstruction>> {
fn next_instruction(&self) -> Option<TimedInstruction<PhysicsInstruction>> {
//JUST POLLING!!! NO MUTATION
let mut collector = crate::instruction::InstructionCollector::new(time_limit);
let mut collector = crate::instruction::InstructionCollector::new();
//autohop (already pressing spacebar; the signal to begin trying to jump is different)
if self.grounded&&self.jump_trying {
//scroll will be implemented with InputInstruction::Jump(true) but it blocks setting self.jump_trying=true
collector.collect(Some(TimedInstruction{
time:self.time,
instruction:PhysicsInstruction::Jump
}));
}
//check for collision stop instructions with curent contacts
for collision_data in self.contacts.iter() {
collector.collect(self.predict_collision_end(self.time,time_limit,collision_data));
collector.collect(self.predict_collision_end(self.models_cringe_clone.get(collision_data.model as usize).unwrap()));
}
//check for collision start instructions (against every part in the game with no optimization!!)
for i in 0..self.models_cringe_clone.len() {
collector.collect(self.predict_collision_start(self.time,time_limit,i as u32));
for model in &self.models_cringe_clone {
collector.collect(self.predict_collision_start(model));
}
if self.grounded {
//walk maintenance
@ -895,126 +292,30 @@ impl crate::instruction::InstructionEmitter<PhysicsInstruction> for PhysicsState
impl crate::instruction::InstructionConsumer<PhysicsInstruction> for PhysicsState {
fn process_instruction(&mut self, ins:TimedInstruction<PhysicsInstruction>) {
match &ins.instruction {
PhysicsInstruction::StrafeTick => (),
PhysicsInstruction::Input(InputInstruction::MoveMouse(_)) => (),
_=>println!("{:?}",ins),
}
//selectively update body
match &ins.instruction {
PhysicsInstruction::Input(_)
|PhysicsInstruction::ReachWalkTargetVelocity
|PhysicsInstruction::CollisionStart(_)
|PhysicsInstruction::CollisionEnd(_)
|PhysicsInstruction::StrafeTick => self.advance_time(ins.time),
}
//mutate position and velocity and time
self.body.advance_time(ins.time);//should this be in a separate function: self.advance_time?
match ins.instruction {
PhysicsInstruction::CollisionStart(c) => {
//check ground
match &c.face {
AabbFace::Top => {
//ground
self.grounded=true;
},
_ => (),
}
self.contacts.insert(c);
//flatten v
let mut v=self.body.velocity;
self.contact_constrain_velocity(&mut v);
self.body.velocity=v;
if self.grounded&&self.controls&CONTROL_JUMP!=0{
self.jump();
}
self.refresh_walk_target();
},
PhysicsInstruction::CollisionEnd(c) => {
self.contacts.remove(&c);//remove contact before calling contact_constrain_acceleration
let mut a=self.gravity;
self.contact_constrain_acceleration(&mut a);
self.body.acceleration=a;
//check ground
match &c.face {
AabbFace::Top => {
self.grounded=false;
},
_ => (),
}
self.refresh_walk_target();
},
PhysicsInstruction::StrafeTick => {
let camera_mat=self.camera.simulate_move_rotation_y(self.mouse_interpolation.interpolated_position(self.time).x-self.mouse_interpolation.mouse0.x);
let control_dir=camera_mat*get_control_dir(self.controls);
let d=self.body.velocity.dot(control_dir);
if d<self.mv {
let mut v=self.body.velocity+(self.mv-d)*control_dir;
self.contact_constrain_velocity(&mut v);
self.body.velocity=v;
}
PhysicsInstruction::CollisionStart(_) => todo!(),
PhysicsInstruction::CollisionEnd(_) => todo!(),
PhysicsInstruction::StrafeTick => {
let control_dir=self.get_control_dir();//this respects your mouse interpolation settings
let d=self.body.velocity.dot(control_dir);
if d<self.mv {
self.body.velocity+=(self.mv-d)*control_dir;
}
}
PhysicsInstruction::Jump => {
self.grounded=false;//do I need this?
self.body.velocity+=glam::Vec3::new(0.0,0.715588/2.0*100.0,0.0);
}
PhysicsInstruction::ReachWalkTargetVelocity => {
//precisely set velocity
let mut a=glam::Vec3::ZERO;
self.contact_constrain_acceleration(&mut a);
self.body.acceleration=a;
let mut v=self.walk.target_velocity;
self.contact_constrain_velocity(&mut v);
self.body.velocity=v;
self.walk.state=WalkEnum::Reached;
},
PhysicsInstruction::Input(input_instruction) => {
let mut refresh_walk_target=false;
match input_instruction{
InputInstruction::MoveMouse(m) => {
self.camera.angles=self.camera.simulate_move_angles(self.mouse_interpolation.mouse1-self.mouse_interpolation.mouse0);
self.mouse_interpolation.move_mouse(self.time,m);
refresh_walk_target=true;
},
InputInstruction::MoveForward(s) => {
self.set_control(CONTROL_MOVEFORWARD,s);
refresh_walk_target=true;
},
InputInstruction::MoveLeft(s) => {
self.set_control(CONTROL_MOVELEFT,s);
refresh_walk_target=true;
},
InputInstruction::MoveBack(s) => {
self.set_control(CONTROL_MOVEBACK,s);
refresh_walk_target=true;
},
InputInstruction::MoveRight(s) => {
self.set_control(CONTROL_MOVERIGHT,s);
refresh_walk_target=true;
},
InputInstruction::MoveUp(s) => {
self.set_control(CONTROL_MOVEUP,s);
refresh_walk_target=true;
},
InputInstruction::MoveDown(s) => {
self.set_control(CONTROL_MOVEDOWN,s);
refresh_walk_target=true;
},
InputInstruction::Jump(s) => {
self.set_control(CONTROL_JUMP,s);
refresh_walk_target=true;
if self.grounded{
self.jump();
}
},
InputInstruction::Zoom(s) => {
self.set_control(CONTROL_ZOOM,s);
},
InputInstruction::Reset => println!("reset"),
}
//calculate control dir
let camera_mat=self.camera.simulate_move_rotation_y(self.mouse_interpolation.interpolated_position(self.time).x-self.mouse_interpolation.mouse0.x);
let control_dir=camera_mat*get_control_dir(self.controls);
//calculate walk target velocity
if refresh_walk_target{
self.walk.target_velocity=self.walkspeed*control_dir;
self.refresh_walk_target();
}
},
PhysicsInstruction::ReachWalkTargetVelocity => {
//precisely set velocity
self.body.velocity=self.walk_target_velocity;
}
PhysicsInstruction::SetWalkTargetVelocity(v) => {
self.walk_target_velocity=v;
//calculate acceleration yada yada
},
}
}
}

@ -1,10 +1,12 @@
use std::future::Future;
#[cfg(target_arch = "wasm32")]
use std::str::FromStr;
#[cfg(not(target_arch = "wasm32"))]
use std::time::Instant;
#[cfg(target_arch = "wasm32")]
use web_sys::{ImageBitmapRenderingContext, OffscreenCanvas};
use winit::{
event::{self, WindowEvent, DeviceEvent},
event::{self, WindowEvent},
event_loop::{ControlFlow, EventLoop},
};
@ -52,7 +54,7 @@ pub trait Example: 'static + Sized {
queue: &wgpu::Queue,
);
fn update(&mut self, event: WindowEvent);
fn device_event(&mut self, event: DeviceEvent);
fn move_mouse(&mut self, delta: (f64,f64));
fn render(
&mut self,
view: &wgpu::TextureView,
@ -277,6 +279,11 @@ fn start<E: Example>(
log::info!("Initializing the example...");
let mut example = E::init(&config, &adapter, &device, &queue);
#[cfg(not(target_arch = "wasm32"))]
let mut last_frame_inst = Instant::now();
#[cfg(not(target_arch = "wasm32"))]
let (mut frame_count, mut accum_time) = (0, 0.0);
log::info!("Entering render loop...");
event_loop.run(move |event, _, control_flow| {
let _ = (&instance, &adapter); // force ownership by the closure
@ -348,12 +355,29 @@ fn start<E: Example>(
}
},
event::Event::DeviceEvent {
event,
event:
winit::event::DeviceEvent::MouseMotion {
delta,
},
..
} => {
example.device_event(event);
example.move_mouse(delta);
},
event::Event::RedrawRequested(_) => {
#[cfg(not(target_arch = "wasm32"))]
{
accum_time += last_frame_inst.elapsed().as_secs_f32();
last_frame_inst = Instant::now();
frame_count += 1;
if frame_count == 100 {
println!(
"Avg frame time {}ms",
accum_time * 1000.0 / frame_count as f32
);
accum_time = 0.0;
frame_count = 0;
}
}
let frame = match surface.get_current_texture() {
Ok(frame) => frame,

@ -1,11 +1,10 @@
#[derive(Debug)]
pub struct TimedInstruction<I> {
pub time: crate::body::TIME,
pub instruction: I,
}
pub trait InstructionEmitter<I> {
fn next_instruction(&self, time_limit:crate::body::TIME) -> Option<TimedInstruction<I>>;
fn next_instruction(&self) -> Option<TimedInstruction<I>>;
}
pub trait InstructionConsumer<I> {
fn process_instruction(&mut self, instruction:TimedInstruction<I>);
@ -13,36 +12,26 @@ pub trait InstructionConsumer<I> {
//PROPER PRIVATE FIELDS!!!
pub struct InstructionCollector<I> {
time: crate::body::TIME,
instruction: Option<I>,
instruction: Option<TimedInstruction<I>>,
}
impl<I> InstructionCollector<I> {
pub fn new(time:crate::body::TIME) -> Self {
Self{
time,
instruction:None
}
pub fn new() -> Self {
Self{instruction:None}
}
pub fn collect(&mut self,instruction:Option<TimedInstruction<I>>){
match instruction {
Some(unwrap_instruction) => {
if unwrap_instruction.time<self.time {
self.time=unwrap_instruction.time;
self.instruction=Some(unwrap_instruction.instruction);
}
match &instruction {
Some(unwrap_instruction) => match &self.instruction {
Some(unwrap_best_instruction) => if unwrap_instruction.time<unwrap_best_instruction.time {
self.instruction=instruction;
},
None => self.instruction=instruction,
},
None => (),
}
}
pub fn instruction(self) -> Option<TimedInstruction<I>> {
//STEAL INSTRUCTION AND DESTROY INSTRUCTIONCOLLECTOR
match self.instruction {
Some(instruction)=>Some(TimedInstruction{
time:self.time,
instruction
}),
None => None,
}
return self.instruction
}
}

@ -1,4 +1,4 @@
pub mod framework;
pub mod body;
pub mod zeroes;
pub mod instruction;
pub mod timelines;

@ -1,5 +1,4 @@
use bytemuck::{Pod, Zeroable};
use strafe_client::{instruction::{TimedInstruction, InstructionConsumer},body::{InputInstruction, PhysicsInstruction}};
use std::{borrow::Cow, time::Instant};
use wgpu::{util::DeviceExt, AstcBlock, AstcChannel};
@ -33,11 +32,90 @@ struct ModelGraphics {
model_buf: wgpu::Buffer,
}
pub struct Skybox {
block_mouse:strafe_client::body::TIME,
period:strafe_client::body::TIME,
start_time: std::time::Instant,
// Note: we use the Y=up coordinate space in this example.
struct Camera {
screen_size: (u32, u32),
offset: glam::Vec3,
fov: f32,
yaw: f32,
pitch: f32,
controls: u32,
}
const CONTROL_MOVEFORWARD:u32 = 0b00000001;
const CONTROL_MOVEBACK:u32 = 0b00000010;
const CONTROL_MOVERIGHT:u32 = 0b00000100;
const CONTROL_MOVELEFT:u32 = 0b00001000;
const CONTROL_MOVEUP:u32 = 0b00010000;
const CONTROL_MOVEDOWN:u32 = 0b00100000;
const CONTROL_JUMP:u32 = 0b01000000;
const CONTROL_ZOOM:u32 = 0b10000000;
const FORWARD_DIR:glam::Vec3 = glam::Vec3::new(0.0,0.0,-1.0);
const RIGHT_DIR:glam::Vec3 = glam::Vec3::new(1.0,0.0,0.0);
const UP_DIR:glam::Vec3 = glam::Vec3::new(0.0,1.0,0.0);
fn get_control_dir(controls: u32) -> glam::Vec3{
//don't get fancy just do it
let mut control_dir:glam::Vec3 = glam::Vec3::new(0.0,0.0,0.0);
if controls & CONTROL_MOVEFORWARD == CONTROL_MOVEFORWARD {
control_dir+=FORWARD_DIR;
}
if controls & CONTROL_MOVEBACK == CONTROL_MOVEBACK {
control_dir+=-FORWARD_DIR;
}
if controls & CONTROL_MOVELEFT == CONTROL_MOVELEFT {
control_dir+=-RIGHT_DIR;
}
if controls & CONTROL_MOVERIGHT == CONTROL_MOVERIGHT {
control_dir+=RIGHT_DIR;
}
if controls & CONTROL_MOVEUP == CONTROL_MOVEUP {
control_dir+=UP_DIR;
}
if controls & CONTROL_MOVEDOWN == CONTROL_MOVEDOWN {
control_dir+=-UP_DIR;
}
return control_dir
}
#[inline]
fn perspective_rh(fov_y_slope: f32, aspect_ratio: f32, z_near: f32, z_far: f32) -> glam::Mat4 {
//glam_assert!(z_near > 0.0 && z_far > 0.0);
let r = z_far / (z_near - z_far);
glam::Mat4::from_cols(
glam::Vec4::new(1.0/(fov_y_slope * aspect_ratio), 0.0, 0.0, 0.0),
glam::Vec4::new(0.0, 1.0/fov_y_slope, 0.0, 0.0),
glam::Vec4::new(0.0, 0.0, r, -1.0),
glam::Vec4::new(0.0, 0.0, r * z_near, 0.0),
)
}
impl Camera {
fn to_uniform_data(&self, pos: glam::Vec3) -> [f32; 16 * 3 + 4] {
let aspect = self.screen_size.0 as f32 / self.screen_size.1 as f32;
let fov = if self.controls&CONTROL_ZOOM==0 {
self.fov
}else{
self.fov/5.0
};
let proj = perspective_rh(fov, aspect, 0.5, 1000.0);
let proj_inv = proj.inverse();
let view = glam::Mat4::from_translation(pos+self.offset) * glam::Mat4::from_euler(glam::EulerRot::YXZ, self.yaw, self.pitch, 0f32);
let view_inv = view.inverse();
let mut raw = [0f32; 16 * 3 + 4];
raw[..16].copy_from_slice(&AsRef::<[f32; 16]>::as_ref(&proj)[..]);
raw[16..32].copy_from_slice(&AsRef::<[f32; 16]>::as_ref(&proj_inv)[..]);
raw[32..48].copy_from_slice(&AsRef::<[f32; 16]>::as_ref(&view_inv)[..]);
raw[48..52].copy_from_slice(AsRef::<[f32; 4]>::as_ref(&view.col(3)));
raw
}
}
pub struct Skybox {
start_time: std::time::Instant,
camera: Camera,
physics: strafe_client::body::PhysicsState,
sky_pipeline: wgpu::RenderPipeline,
entity_pipeline: wgpu::RenderPipeline,
@ -94,7 +172,7 @@ fn add_obj(device:&wgpu::Device,modeldatas:& mut Vec<ModelData>,source:&[u8]){
for &index in &[0, end_index - 1, end_index] {
let vert = poly.0[index];
if let Some(&i)=vertex_index.get(&vert){
indices.push(i);
indices.push(i as u16);
}else{
let i=vertices.len() as u16;
vertices.push(Vertex {
@ -131,21 +209,6 @@ fn add_obj(device:&wgpu::Device,modeldatas:& mut Vec<ModelData>,source:&[u8]){
}
}
fn to_uniform_data(camera: &strafe_client::body::Camera, pos: glam::Vec3) -> [f32; 16 * 3 + 4] {
let proj=camera.proj();
let proj_inv = proj.inverse();
let view=camera.view(pos);
let view_inv = view.inverse();
let mut raw = [0f32; 16 * 3 + 4];
raw[..16].copy_from_slice(&AsRef::<[f32; 16]>::as_ref(&proj)[..]);
raw[16..32].copy_from_slice(&AsRef::<[f32; 16]>::as_ref(&proj_inv)[..]);
raw[32..48].copy_from_slice(&AsRef::<[f32; 16]>::as_ref(&view_inv)[..]);
raw[48..52].copy_from_slice(AsRef::<[f32; 4]>::as_ref(&view.col(3)));
raw
}
impl strafe_client::framework::Example for Skybox {
fn optional_features() -> wgpu::Features {
wgpu::Features::TEXTURE_COMPRESSION_ASTC
@ -220,28 +283,35 @@ impl strafe_client::framework::Example for Skybox {
source: wgpu::ShaderSource::Wgsl(Cow::Borrowed(include_str!("shader.wgsl"))),
});
let camera = Camera {
screen_size: (config.width, config.height),
offset: glam::Vec3::new(0.0,4.5,0.0),
fov: 1.0, //fov_slope = tan(fov_y/2)
pitch: 0.0,
yaw: 0.0,
controls:0,
};
let physics = strafe_client::body::PhysicsState {
body: strafe_client::body::Body::with_pva(glam::vec3(0.0,50.0,0.0),glam::vec3(0.0,0.0,0.0),glam::vec3(0.0,-100.0,0.0)),
body: strafe_client::body::Body {
position: glam::Vec3::new(5.0,0.0,5.0),
velocity: glam::Vec3::new(0.0,0.0,0.0),
time: 0,
},
time: 0,
tick: 0,
strafe_tick_num: 100,//100t
strafe_tick_den: 1_000_000_000,
gravity: glam::vec3(0.0,-100.0,0.0),
friction: 1.2,
walk_accel: 90.0,
gravity: glam::Vec3::new(0.0,-100.0,0.0),
friction: 90.0,
mv: 2.7,
grounded: false,
grounded: true,
jump_trying: false,
walkspeed: 18.0,
contacts: std::collections::HashSet::new(),
models_cringe_clone: modeldatas.iter().map(|m|strafe_client::body::Model::new(m.transform)).collect(),
walk: strafe_client::body::WalkState::new(),
hitbox_halfsize: glam::vec3(1.0,2.5,1.0),
camera: strafe_client::body::Camera::from_offset(glam::vec3(0.0,4.5-2.5,0.0),(config.width as f32)/(config.height as f32)),
mouse_interpolation: strafe_client::body::MouseInterpolationState::new(),
controls: 0,
contacts: Vec::<strafe_client::body::RelativeCollision>::new(),
models_cringe_clone: modeldatas.iter().map(|m|strafe_client::body::Model::new(m.transform)).collect(),
};
let camera_uniforms = to_uniform_data(&physics.camera,physics.body.extrapolated_position(0));
let camera_uniforms = camera.to_uniform_data(physics.extrapolate_position(0));
let camera_buf = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Camera"),
contents: bytemuck::cast_slice(&camera_uniforms),
@ -475,10 +545,8 @@ impl strafe_client::framework::Example for Skybox {
let depth_view = Self::create_depth_texture(config, device);
Skybox {
block_mouse:0,
period:5_000_000,
start_time: Instant::now(),
screen_size: (config.width,config.height),
camera,
physics,
sky_pipeline,
entity_pipeline,
@ -493,83 +561,61 @@ impl strafe_client::framework::Example for Skybox {
#[allow(clippy::single_match)]
fn update(&mut self, event: winit::event::WindowEvent) {
//nothing atm
}
fn device_event(&mut self, event: winit::event::DeviceEvent) {
//there's no way this is the best way get a timestamp.
let time=self.start_time.elapsed().as_nanos() as i64;
match event {
winit::event::DeviceEvent::Key(winit::event::KeyboardInput {
state,
scancode: keycode,
winit::event::WindowEvent::KeyboardInput {
input:
winit::event::KeyboardInput {
state,
virtual_keycode: Some(keycode),
..
},
..
}) => {
let s=match state {
winit::event::ElementState::Pressed => true,
winit::event::ElementState::Released => false,
};
if let Some(input_instruction)=match keycode {
17 => Some(InputInstruction::MoveForward(s)),//W
30 => Some(InputInstruction::MoveLeft(s)),//A
31 => Some(InputInstruction::MoveBack(s)),//S
32 => Some(InputInstruction::MoveRight(s)),//D
18 => Some(InputInstruction::MoveUp(s)),//E
16 => Some(InputInstruction::MoveDown(s)),//Q
57 => Some(InputInstruction::Jump(s)),//Space
44 => Some(InputInstruction::Zoom(s)),//Z
19 => if s{Some(InputInstruction::Reset)}else{None},//R
_ => None,
}
{
self.physics.run(time);//call it a day
self.physics.process_instruction(TimedInstruction{
time,
instruction:PhysicsInstruction::Input(input_instruction),
})
}
},
winit::event::DeviceEvent::MouseMotion {
delta,//these (f64,f64) are integers on my machine
} => {
let run_the_physics=
if time<self.block_mouse{
false
}else{
if time-self.block_mouse<2*self.period{
self.block_mouse+=self.period
}else{
self.block_mouse=time+self.period
match (state,keycode) {
(k,winit::event::VirtualKeyCode::W) => match k {
winit::event::ElementState::Pressed => self.camera.controls|=CONTROL_MOVEFORWARD,
winit::event::ElementState::Released => self.camera.controls&=!CONTROL_MOVEFORWARD,
}
true
};
if run_the_physics{
//This lags like crazy if you require a substep for every mouse event (every 3ms)
//I'm going to forgo mouse interpolation for now
//because it's actually a hard problem to prevent the physics from running on every mouse update
self.physics.run(time);//call it a day
self.physics.process_instruction(TimedInstruction{
time,
instruction:PhysicsInstruction::Input(InputInstruction::MoveMouse(glam::ivec2(delta.0 as i32,delta.1 as i32))),
})
}
},
winit::event::DeviceEvent::MouseWheel {
delta,
} => {
println!("mousewheel{:?}",delta);
if true{//self.physics.use_scroll
self.physics.run(time);//call it a day
self.physics.process_instruction(TimedInstruction{
time,
instruction:PhysicsInstruction::Input(InputInstruction::Jump(true)),//activates the immediate jump path, but the style modifier prevents controls&CONTROL_JUMP bit from being set to auto jump
})
(k,winit::event::VirtualKeyCode::A) => match k {
winit::event::ElementState::Pressed => self.camera.controls|=CONTROL_MOVELEFT,
winit::event::ElementState::Released => self.camera.controls&=!CONTROL_MOVELEFT,
}
(k,winit::event::VirtualKeyCode::S) => match k {
winit::event::ElementState::Pressed => self.camera.controls|=CONTROL_MOVEBACK,
winit::event::ElementState::Released => self.camera.controls&=!CONTROL_MOVEBACK,
}
(k,winit::event::VirtualKeyCode::D) => match k {
winit::event::ElementState::Pressed => self.camera.controls|=CONTROL_MOVERIGHT,
winit::event::ElementState::Released => self.camera.controls&=!CONTROL_MOVERIGHT,
}
(k,winit::event::VirtualKeyCode::E) => match k {
winit::event::ElementState::Pressed => self.camera.controls|=CONTROL_MOVEUP,
winit::event::ElementState::Released => self.camera.controls&=!CONTROL_MOVEUP,
}
(k,winit::event::VirtualKeyCode::Q) => match k {
winit::event::ElementState::Pressed => self.camera.controls|=CONTROL_MOVEDOWN,
winit::event::ElementState::Released => self.camera.controls&=!CONTROL_MOVEDOWN,
}
(k,winit::event::VirtualKeyCode::Space) => match k {
winit::event::ElementState::Pressed => self.camera.controls|=CONTROL_JUMP,
winit::event::ElementState::Released => self.camera.controls&=!CONTROL_JUMP,
}
(k,winit::event::VirtualKeyCode::Z) => match k {
winit::event::ElementState::Pressed => self.camera.controls|=CONTROL_ZOOM,
winit::event::ElementState::Released => self.camera.controls&=!CONTROL_ZOOM,
}
_ => (),
}
}
_=>(),
_ => {}
}
}
fn move_mouse(&mut self, delta: (f64,f64)) {
self.camera.pitch=(self.camera.pitch as f64+delta.1/-2048.) as f32;
self.camera.yaw=(self.camera.yaw as f64+delta.0/-2048.) as f32;
}
fn resize(
&mut self,
config: &wgpu::SurfaceConfiguration,
@ -577,8 +623,7 @@ impl strafe_client::framework::Example for Skybox {
_queue: &wgpu::Queue,
) {
self.depth_view = Self::create_depth_texture(config, device);
self.screen_size = (config.width, config.height);
self.physics.camera.set_fov_aspect(1.0,(config.width as f32)/(config.height as f32));
self.camera.screen_size = (config.width, config.height);
}
fn render(
@ -588,15 +633,18 @@ impl strafe_client::framework::Example for Skybox {
queue: &wgpu::Queue,
_spawner: &strafe_client::framework::Spawner,
) {
let camera_mat=glam::Mat3::from_euler(glam::EulerRot::YXZ,self.camera.yaw,0f32,0f32);
let control_dir=camera_mat*get_control_dir(self.camera.controls&(CONTROL_MOVELEFT|CONTROL_MOVERIGHT|CONTROL_MOVEFORWARD|CONTROL_MOVEBACK)).normalize_or_zero();
let time=self.start_time.elapsed().as_nanos() as i64;
self.physics.run(time);
self.physics.run(time,control_dir,self.camera.controls);
let mut encoder =
device.create_command_encoder(&wgpu::CommandEncoderDescriptor { label: None });
// update rotation
let camera_uniforms = to_uniform_data(&self.physics.camera,self.physics.body.extrapolated_position(time));
let camera_uniforms = self.camera.to_uniform_data(self.physics.extrapolate_position(time));
self.staging_belt
.write_buffer(
&mut encoder,

47
src/timelines.rs Normal file

@ -0,0 +1,47 @@
type ORDER = u32;
pub struct Tracker {
order: ORDER,
}
pub struct TimelineInstruction<I>{
pub order: ORDER,//absolute ordering of instructions which can be used for sorting even when there are multiple simultaneous timestamps
pub instruction: crate::instruction::TimedInstruction<I>,
}
pub struct Timeline<I>{
instructions: std::collections::VecDeque<TimelineInstruction<I>>,
trackers: Vec<Tracker>,//wrong
}
impl<I> Timeline<I>{
pub fn new() -> Self {
Self{
instructions:std::collections::VecDeque::<TimelineInstruction<I>>::new(),
trackers:Vec::<Tracker>::new(),
}
}
pub fn len(&self) -> usize {
return self.instructions.len()
}
pub fn first(&self) -> Option<&TimelineInstruction<I>> {
return self.instructions.get(0)
}
pub fn last(&self) -> Option<&TimelineInstruction<I>> {
return self.instructions.get(self.instructions.len()-1)
}
pub fn append(&mut self,instruction:TimelineInstruction<I>){
let i=self.instructions.len();
self.instructions.push_back(instruction);
for tracker in self.trackers.iter() {
tracker.set_active(true);
}
}
pub fn get_index_after_time(&mut self,time:crate::body::TIME) -> usize{
self.instructions.partition_point(|ins|ins.instruction.time<time)
}
pub fn get_index_after_order(&mut self,order:ORDER) -> usize{
self.instructions.partition_point(|ins|ins.order<order)
}
}

@ -1,27 +0,0 @@
//find roots of polynomials
pub fn zeroes2(a0:f32,a1:f32,a2:f32) -> Vec<f32>{
if a2==0f32{
return zeroes1(a0, a1);
}
let mut radicand=a1*a1-4f32*a2*a0;
if 0f32<radicand {
radicand=radicand.sqrt();
if 0f32<a2 {
return vec![(-a1-radicand)/(2f32*a2),(-a1+radicand)/(2f32*a2)];
} else {
return vec![(-a1+radicand)/(2f32*a2),(-a1-radicand)/(2f32*a2)];
}
} else if radicand==0f32 {
return vec![-a1/(2f32*a2)];
} else {
return vec![];
}
}
#[inline]
pub fn zeroes1(a0:f32,a1:f32) -> Vec<f32> {
if a1==0f32{
return vec![];
} else {
return vec![-a0/a1];
}
}