Compare commits
2 Commits
redo-input
...
timelines
Author | SHA1 | Date | |
---|---|---|---|
53d2b5b3f5 | |||
c565120ea7 |
2
Cargo.lock
generated
2
Cargo.lock
generated
@ -1405,7 +1405,7 @@ checksum = "a2eb9349b6444b326872e140eb1cf5e7c522154d69e7a0ffb0fb81c06b37543f"
|
||||
|
||||
[[package]]
|
||||
name = "strafe-client"
|
||||
version = "0.3.0"
|
||||
version = "0.2.0"
|
||||
dependencies = [
|
||||
"async-executor",
|
||||
"bytemuck",
|
||||
|
@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "strafe-client"
|
||||
version = "0.3.0"
|
||||
version = "0.2.0"
|
||||
edition = "2021"
|
||||
|
||||
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
|
||||
|
855
src/body.rs
855
src/body.rs
@ -1,10 +1,11 @@
|
||||
use crate::{instruction::{InstructionEmitter, InstructionConsumer, TimedInstruction}, zeroes::zeroes2};
|
||||
use crate::instruction::TimedInstruction;
|
||||
|
||||
#[derive(Debug)]
|
||||
pub enum PhysicsInstruction {
|
||||
CollisionStart(RelativeCollision),
|
||||
CollisionEnd(RelativeCollision),
|
||||
StrafeTick,
|
||||
Jump,
|
||||
SetWalkTargetVelocity(glam::Vec3),
|
||||
ReachWalkTargetVelocity,
|
||||
// Water,
|
||||
// Spawn(
|
||||
@ -12,268 +13,38 @@ pub enum PhysicsInstruction {
|
||||
// bool,//true = Trigger; false = teleport
|
||||
// bool,//true = Force
|
||||
// )
|
||||
//Both of these conditionally activate RefreshWalkTarget (by doing what SetWalkTargetVelocity used to do and then flagging it)
|
||||
Input(InputInstruction),
|
||||
}
|
||||
#[derive(Debug)]
|
||||
pub enum InputInstruction {
|
||||
MoveMouse(glam::IVec2),
|
||||
MoveForward(bool),
|
||||
MoveLeft(bool),
|
||||
MoveBack(bool),
|
||||
MoveRight(bool),
|
||||
MoveUp(bool),
|
||||
MoveDown(bool),
|
||||
Jump(bool),
|
||||
Zoom(bool),
|
||||
Reset,
|
||||
}
|
||||
|
||||
pub struct Body {
|
||||
position: glam::Vec3,//I64 where 2^32 = 1 u
|
||||
velocity: glam::Vec3,//I64 where 2^32 = 1 u/s
|
||||
acceleration: glam::Vec3,//I64 where 2^32 = 1 u/s/s
|
||||
time: TIME,//nanoseconds x xxxxD!
|
||||
}
|
||||
trait MyHash{
|
||||
fn hash(&self) -> u64;
|
||||
}
|
||||
impl MyHash for Body {
|
||||
fn hash(&self) -> u64 {
|
||||
let mut hasher=std::collections::hash_map::DefaultHasher::new();
|
||||
for &el in self.position.as_ref().iter() {
|
||||
std::hash::Hasher::write(&mut hasher, el.to_ne_bytes().as_slice());
|
||||
}
|
||||
for &el in self.velocity.as_ref().iter() {
|
||||
std::hash::Hasher::write(&mut hasher, el.to_ne_bytes().as_slice());
|
||||
}
|
||||
for &el in self.acceleration.as_ref().iter() {
|
||||
std::hash::Hasher::write(&mut hasher, el.to_ne_bytes().as_slice());
|
||||
}
|
||||
std::hash::Hasher::write(&mut hasher, self.time.to_ne_bytes().as_slice());
|
||||
return std::hash::Hasher::finish(&hasher);//hash check to see if walk target is valid
|
||||
}
|
||||
pub position: glam::Vec3,//I64 where 2^32 = 1 u
|
||||
pub velocity: glam::Vec3,//I64 where 2^32 = 1 u/s
|
||||
pub time: TIME,//nanoseconds x xxxxD!
|
||||
}
|
||||
|
||||
pub enum MoveRestriction {
|
||||
Air,
|
||||
Water,
|
||||
Ground,
|
||||
Ladder,//multiple ladders how
|
||||
}
|
||||
|
||||
/*
|
||||
enum InputInstruction {
|
||||
}
|
||||
struct InputState {
|
||||
}
|
||||
impl InputState {
|
||||
pub fn get_control(&self,control:u32) -> bool {
|
||||
self.controls&control!=0
|
||||
}
|
||||
}
|
||||
impl crate::instruction::InstructionEmitter<InputInstruction> for InputState{
|
||||
fn next_instruction(&self, time_limit:crate::body::TIME) -> Option<TimedInstruction<InputInstruction>> {
|
||||
//this is polled by PhysicsState for actions like Jump
|
||||
//no, it has to be the other way around. physics is run up until the jump instruction, and then the jump instruction is pushed.
|
||||
self.queue.get(0)
|
||||
}
|
||||
}
|
||||
impl crate::instruction::InstructionConsumer<InputInstruction> for InputState{
|
||||
fn process_instruction(&mut self,ins:TimedInstruction<InputInstruction>){
|
||||
//add to queue
|
||||
self.queue.push(ins);
|
||||
}
|
||||
}
|
||||
*/
|
||||
|
||||
enum MouseInterpolation {
|
||||
First,//just checks the last value
|
||||
Lerp,//lerps between
|
||||
}
|
||||
pub struct MouseInterpolationState {
|
||||
interpolation: MouseInterpolation,
|
||||
time0: TIME,
|
||||
time1: TIME,
|
||||
mouse0: glam::IVec2,
|
||||
mouse1: glam::IVec2,
|
||||
}
|
||||
|
||||
impl MouseInterpolationState {
|
||||
pub fn new() -> Self {
|
||||
Self {
|
||||
interpolation:MouseInterpolation::Lerp,
|
||||
time0:0,
|
||||
time1:1,//ONE NANOSECOND!!!! avoid divide by zero
|
||||
mouse0:glam::IVec2::ZERO,
|
||||
mouse1:glam::IVec2::ZERO,
|
||||
}
|
||||
}
|
||||
pub fn move_mouse(&mut self,time:TIME,delta:glam::IVec2){
|
||||
self.time0=self.time1;
|
||||
self.mouse0=self.mouse1;
|
||||
self.time1=time;
|
||||
self.mouse1=self.mouse1+delta;
|
||||
}
|
||||
pub fn interpolated_position(&self,time:TIME) -> glam::IVec2 {
|
||||
match self.interpolation {
|
||||
MouseInterpolation::First => self.mouse0,
|
||||
MouseInterpolation::Lerp => {
|
||||
let m0=self.mouse0.as_i64vec2();
|
||||
let m1=self.mouse1.as_i64vec2();
|
||||
//these are deltas
|
||||
let dt=(self.time1-self.time0) as i64;
|
||||
let t1t=(self.time1-time).clamp(0,dt) as i64;
|
||||
let tt0=(time-self.time0).clamp(0,dt) as i64;
|
||||
((m0*t1t+m1*tt0)/dt).as_ivec2()
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub enum WalkEnum{
|
||||
Reached,
|
||||
Transient,
|
||||
}
|
||||
pub struct WalkState {
|
||||
pub target_velocity: glam::Vec3,
|
||||
pub target_time: TIME,
|
||||
pub state: WalkEnum,
|
||||
}
|
||||
impl WalkState {
|
||||
pub fn new() -> Self {
|
||||
Self{
|
||||
target_velocity:glam::Vec3::ZERO,
|
||||
target_time:0,
|
||||
state:WalkEnum::Reached,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Note: we use the Y=up coordinate space in this example.
|
||||
pub struct Camera {
|
||||
offset: glam::Vec3,
|
||||
angles: glam::DVec2,//YAW AND THEN PITCH
|
||||
//punch: glam::Vec3,
|
||||
//punch_velocity: glam::Vec3,
|
||||
fov: glam::Vec2,//slope
|
||||
sensitivity: glam::DVec2,
|
||||
time: TIME,
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn mat3_from_rotation_y_f64(angle: f64) -> glam::Mat3 {
|
||||
let (sina, cosa) = angle.sin_cos();
|
||||
glam::Mat3::from_cols(
|
||||
glam::Vec3::new(cosa as f32, 0.0, -sina as f32),
|
||||
glam::Vec3::Y,
|
||||
glam::Vec3::new(sina as f32, 0.0, cosa as f32),
|
||||
)
|
||||
}
|
||||
#[inline]
|
||||
fn perspective_rh(fov_x_slope: f32, fov_y_slope: f32, z_near: f32, z_far: f32) -> glam::Mat4 {
|
||||
//glam_assert!(z_near > 0.0 && z_far > 0.0);
|
||||
let r = z_far / (z_near - z_far);
|
||||
glam::Mat4::from_cols(
|
||||
glam::Vec4::new(1.0/fov_x_slope, 0.0, 0.0, 0.0),
|
||||
glam::Vec4::new(0.0, 1.0/fov_y_slope, 0.0, 0.0),
|
||||
glam::Vec4::new(0.0, 0.0, r, -1.0),
|
||||
glam::Vec4::new(0.0, 0.0, r * z_near, 0.0),
|
||||
)
|
||||
}
|
||||
impl Camera {
|
||||
pub fn from_offset(offset:glam::Vec3,aspect:f32) -> Self {
|
||||
Self{
|
||||
offset,
|
||||
angles: glam::DVec2::ZERO,
|
||||
fov: glam::vec2(aspect,1.0),
|
||||
sensitivity: glam::dvec2(1.0/2048.0,1.0/2048.0),
|
||||
time: 0,
|
||||
}
|
||||
}
|
||||
fn simulate_move_angles(&self, delta: glam::IVec2) -> glam::DVec2 {
|
||||
let mut a=self.angles-self.sensitivity*delta.as_dvec2();
|
||||
a.y=a.y.clamp(-std::f64::consts::PI, std::f64::consts::PI);
|
||||
return a
|
||||
}
|
||||
fn simulate_move_rotation_y(&self, delta_x: i32) -> glam::Mat3 {
|
||||
mat3_from_rotation_y_f64(self.angles.x-self.sensitivity.x*(delta_x as f64))
|
||||
}
|
||||
pub fn proj(&self)->glam::Mat4{
|
||||
perspective_rh(self.fov.x, self.fov.y, 0.5, 1000.0)
|
||||
}
|
||||
pub fn view(&self,pos:glam::Vec3)->glam::Mat4{
|
||||
//f32 good enough for view matrix
|
||||
glam::Mat4::from_translation(pos+self.offset) * glam::Mat4::from_euler(glam::EulerRot::YXZ, self.angles.x as f32, self.angles.y as f32, 0f32)
|
||||
}
|
||||
pub fn set_fov_aspect(&mut self,fov:f32,aspect:f32){
|
||||
self.fov.x=fov*aspect;
|
||||
self.fov.y=fov;
|
||||
}
|
||||
}
|
||||
|
||||
const CONTROL_MOVEFORWARD:u32 = 0b00000001;
|
||||
const CONTROL_MOVEBACK:u32 = 0b00000010;
|
||||
const CONTROL_MOVERIGHT:u32 = 0b00000100;
|
||||
const CONTROL_MOVELEFT:u32 = 0b00001000;
|
||||
const CONTROL_MOVEUP:u32 = 0b00010000;
|
||||
const CONTROL_MOVEDOWN:u32 = 0b00100000;
|
||||
const CONTROL_JUMP:u32 = 0b01000000;
|
||||
const CONTROL_ZOOM:u32 = 0b10000000;
|
||||
|
||||
const FORWARD_DIR:glam::Vec3 = glam::Vec3::new(0.0,0.0,-1.0);
|
||||
const RIGHT_DIR:glam::Vec3 = glam::Vec3::new(1.0,0.0,0.0);
|
||||
const UP_DIR:glam::Vec3 = glam::Vec3::new(0.0,1.0,0.0);
|
||||
|
||||
fn get_control_dir(controls: u32) -> glam::Vec3{
|
||||
//don't get fancy just do it
|
||||
let mut control_dir:glam::Vec3 = glam::Vec3::new(0.0,0.0,0.0);
|
||||
if controls & CONTROL_MOVEFORWARD == CONTROL_MOVEFORWARD {
|
||||
control_dir+=FORWARD_DIR;
|
||||
}
|
||||
if controls & CONTROL_MOVEBACK == CONTROL_MOVEBACK {
|
||||
control_dir+=-FORWARD_DIR;
|
||||
}
|
||||
if controls & CONTROL_MOVELEFT == CONTROL_MOVELEFT {
|
||||
control_dir+=-RIGHT_DIR;
|
||||
}
|
||||
if controls & CONTROL_MOVERIGHT == CONTROL_MOVERIGHT {
|
||||
control_dir+=RIGHT_DIR;
|
||||
}
|
||||
if controls & CONTROL_MOVEUP == CONTROL_MOVEUP {
|
||||
control_dir+=UP_DIR;
|
||||
}
|
||||
if controls & CONTROL_MOVEDOWN == CONTROL_MOVEDOWN {
|
||||
control_dir+=-UP_DIR;
|
||||
}
|
||||
return control_dir
|
||||
Air,
|
||||
Water,
|
||||
Ground,
|
||||
Ladder,//multiple ladders how
|
||||
}
|
||||
|
||||
pub struct PhysicsState {
|
||||
pub body: Body,
|
||||
pub hitbox_halfsize: glam::Vec3,
|
||||
pub contacts: std::collections::HashSet::<RelativeCollision>,
|
||||
//pub intersections: Vec<ModelId>,
|
||||
//temp
|
||||
pub contacts: Vec<RelativeCollision>,
|
||||
pub models_cringe_clone: Vec<Model>,
|
||||
//camera must exist in state because wormholes modify the camera, also camera punch
|
||||
pub camera: Camera,
|
||||
pub mouse_interpolation: MouseInterpolationState,
|
||||
pub controls: u32,
|
||||
pub time: TIME,
|
||||
pub strafe_tick_num: TIME,
|
||||
pub strafe_tick_den: TIME,
|
||||
pub tick: u32,
|
||||
pub mv: f32,
|
||||
pub walk: WalkState,
|
||||
pub walkspeed: f32,
|
||||
pub friction: f32,
|
||||
pub walk_accel: f32,
|
||||
pub gravity: glam::Vec3,
|
||||
pub grounded: bool,
|
||||
pub jump_trying: bool,
|
||||
}
|
||||
|
||||
#[derive(Debug,Clone,Copy,Hash,Eq,PartialEq)]
|
||||
#[derive(Clone,Copy)]
|
||||
pub enum AabbFace{
|
||||
Right,//+X
|
||||
Top,
|
||||
@ -297,16 +68,6 @@ impl Aabb {
|
||||
// [0.0f32, 1., 0.],
|
||||
// [0.0f32, -1., 0.],
|
||||
// ];
|
||||
const VERTEX_DATA: [glam::Vec3; 8] = [
|
||||
glam::vec3(1., -1., -1.),
|
||||
glam::vec3(1., 1., -1.),
|
||||
glam::vec3(1., 1., 1.),
|
||||
glam::vec3(1., -1., 1.),
|
||||
glam::vec3(-1., -1., 1.),
|
||||
glam::vec3(-1., 1., 1.),
|
||||
glam::vec3(-1., 1., -1.),
|
||||
glam::vec3(-1., -1., -1.),
|
||||
];
|
||||
const VERTEX_DATA_RIGHT: [glam::Vec3; 4] = [
|
||||
glam::vec3(1., -1., -1.),
|
||||
glam::vec3(1., 1., -1.),
|
||||
@ -363,10 +124,7 @@ impl Aabb {
|
||||
AabbFace::Front => glam::vec3(0.,0.,-1.),
|
||||
}
|
||||
}
|
||||
pub fn unit_vertices() -> [glam::Vec3;8] {
|
||||
return Self::VERTEX_DATA;
|
||||
}
|
||||
pub fn unit_face_vertices(face:AabbFace) -> [glam::Vec3;4] {
|
||||
pub fn face_vertices(face:AabbFace) -> [glam::Vec3;4] {
|
||||
match face {
|
||||
AabbFace::Right => Self::VERTEX_DATA_RIGHT,
|
||||
AabbFace::Top => Self::VERTEX_DATA_TOP,
|
||||
@ -378,8 +136,7 @@ impl Aabb {
|
||||
}
|
||||
}
|
||||
|
||||
//pretend to be using what we want to eventually do
|
||||
type TreyMeshFace = AabbFace;
|
||||
type Face = AabbFace;
|
||||
type TreyMesh = Aabb;
|
||||
|
||||
pub struct Model {
|
||||
@ -392,42 +149,25 @@ impl Model {
|
||||
pub fn new(transform:glam::Mat4) -> Self {
|
||||
Self{transform}
|
||||
}
|
||||
pub fn unit_vertices(&self) -> [glam::Vec3;8] {
|
||||
Aabb::unit_vertices()
|
||||
pub fn face_vertices(&self,face:Face) -> [glam::Vec3;4] {
|
||||
Aabb::face_vertices(face)
|
||||
}
|
||||
pub fn mesh(&self) -> TreyMesh {
|
||||
pub fn face_mesh(&self,face:Face) -> TreyMesh {
|
||||
let mut aabb=Aabb::new();
|
||||
for &vertex in self.unit_vertices().iter() {
|
||||
aabb.grow(glam::Vec4Swizzles::xyz(self.transform*vertex.extend(1.0)));
|
||||
for &vertex in self.face_vertices(face).iter() {
|
||||
aabb.grow(vertex);
|
||||
}
|
||||
return aabb;
|
||||
}
|
||||
pub fn unit_face_vertices(&self,face:TreyMeshFace) -> [glam::Vec3;4] {
|
||||
Aabb::unit_face_vertices(face)
|
||||
}
|
||||
pub fn face_mesh(&self,face:TreyMeshFace) -> TreyMesh {
|
||||
let mut aabb=self.mesh();
|
||||
//in this implementation face = worldspace aabb face
|
||||
match face {
|
||||
AabbFace::Right => aabb.min.x=aabb.max.x,
|
||||
AabbFace::Top => aabb.min.y=aabb.max.y,
|
||||
AabbFace::Back => aabb.min.z=aabb.max.z,
|
||||
AabbFace::Left => aabb.max.x=aabb.min.x,
|
||||
AabbFace::Bottom => aabb.max.y=aabb.min.y,
|
||||
AabbFace::Front => aabb.max.z=aabb.min.z,
|
||||
}
|
||||
return aabb;
|
||||
}
|
||||
pub fn face_normal(&self,face:TreyMeshFace) -> glam::Vec3 {
|
||||
glam::Vec4Swizzles::xyz(Aabb::normal(face).extend(0.0))//this is wrong for scale
|
||||
pub fn face_normal(&self,face:Face) -> glam::Vec3 {
|
||||
let mut n=glam::Vec3Swizzles::xyzz(Aabb::normal(face));
|
||||
n.w=0.0;//what a man will do to avoid writing out the components
|
||||
glam::Vec4Swizzles::xyz(self.transform*n)//this is wrong for scale
|
||||
}
|
||||
}
|
||||
|
||||
//need non-face (full model) variant for CanCollide false objects
|
||||
//OR have a separate list from contacts for model intersection
|
||||
#[derive(Debug,Clone,Eq,Hash,PartialEq)]
|
||||
pub struct RelativeCollision {
|
||||
face: TreyMeshFace,//just an id
|
||||
face: Face,//just an id
|
||||
model: u32,//using id to avoid lifetimes
|
||||
}
|
||||
|
||||
@ -442,74 +182,30 @@ impl RelativeCollision {
|
||||
|
||||
pub type TIME = i64;
|
||||
|
||||
impl Body {
|
||||
pub fn with_pva(position:glam::Vec3,velocity:glam::Vec3,acceleration:glam::Vec3) -> Self {
|
||||
Self{
|
||||
position,
|
||||
velocity,
|
||||
acceleration,
|
||||
time: 0,
|
||||
}
|
||||
}
|
||||
pub fn extrapolated_position(&self,time: TIME)->glam::Vec3{
|
||||
let dt=(time-self.time) as f64/1_000_000_000f64;
|
||||
self.position+self.velocity*(dt as f32)+self.acceleration*((0.5*dt*dt) as f32)
|
||||
}
|
||||
pub fn extrapolated_velocity(&self,time: TIME)->glam::Vec3{
|
||||
let dt=(time-self.time) as f64/1_000_000_000f64;
|
||||
self.velocity+self.acceleration*(dt as f32)
|
||||
}
|
||||
pub fn advance_time(&mut self, time: TIME){
|
||||
self.position=self.extrapolated_position(time);
|
||||
self.velocity=self.extrapolated_velocity(time);
|
||||
self.time=time;
|
||||
}
|
||||
}
|
||||
|
||||
const CONTROL_JUMP:u32 = 0b01000000;//temp DATA NORMALIZATION!@#$
|
||||
impl PhysicsState {
|
||||
//tickless gaming
|
||||
pub fn run(&mut self, time_limit:TIME){
|
||||
//delete this, we are tickless gamers
|
||||
pub fn run(&mut self, time: TIME){
|
||||
//prepare is ommitted - everything is done via instructions.
|
||||
while let Some(instruction) = self.next_instruction(time_limit) {//collect
|
||||
while let Some(instruction) = self.next_instruction() {//collect
|
||||
if time<instruction.time {
|
||||
break;
|
||||
}
|
||||
//advance
|
||||
self.advance_time(instruction.time);
|
||||
//process
|
||||
self.process_instruction(instruction);
|
||||
//write hash lol
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
pub fn advance_time(&mut self, time: TIME){
|
||||
self.body.advance_time(time);
|
||||
self.time=time;
|
||||
//delete this
|
||||
pub fn extrapolate_position(&self, time: TIME) -> glam::Vec3 {
|
||||
let dt=(time-self.body.time) as f64/1_000_000_000f64;
|
||||
self.body.position+self.body.velocity*(dt as f32)+self.gravity*((0.5*dt*dt) as f32)
|
||||
}
|
||||
|
||||
fn set_control(&mut self,control:u32,state:bool){
|
||||
self.controls=if state{self.controls|control}else{self.controls&!control};
|
||||
}
|
||||
fn jump(&mut self){
|
||||
self.grounded=false;//do I need this?
|
||||
let mut v=self.body.velocity+glam::Vec3::new(0.0,0.715588/2.0*100.0,0.0);
|
||||
self.contact_constrain_velocity(&mut v);
|
||||
self.body.velocity=v;
|
||||
}
|
||||
|
||||
fn contact_constrain_velocity(&self,velocity:&mut glam::Vec3){
|
||||
for contact in self.contacts.iter() {
|
||||
let n=contact.normal(&self.models_cringe_clone);
|
||||
let d=velocity.dot(n);
|
||||
if d<0f32{
|
||||
(*velocity)-=d/n.length_squared()*n;
|
||||
}
|
||||
}
|
||||
}
|
||||
fn contact_constrain_acceleration(&self,acceleration:&mut glam::Vec3){
|
||||
for contact in self.contacts.iter() {
|
||||
let n=contact.normal(&self.models_cringe_clone);
|
||||
let d=acceleration.dot(n);
|
||||
if d<0f32{
|
||||
(*acceleration)-=d/n.length_squared()*n;
|
||||
}
|
||||
}
|
||||
}
|
||||
fn next_strafe_instruction(&self) -> Option<TimedInstruction<PhysicsInstruction>> {
|
||||
return Some(TimedInstruction{
|
||||
time:(self.time*self.strafe_tick_num/self.strafe_tick_den+1)*self.strafe_tick_den/self.strafe_tick_num,
|
||||
@ -549,338 +245,39 @@ impl PhysicsState {
|
||||
// });
|
||||
// }
|
||||
|
||||
fn refresh_walk_target(&mut self){
|
||||
//calculate acceleration yada yada
|
||||
if self.grounded{
|
||||
let mut v=self.walk.target_velocity;
|
||||
self.contact_constrain_velocity(&mut v);
|
||||
let mut target_diff=v-self.body.velocity;
|
||||
target_diff.y=0f32;
|
||||
if target_diff==glam::Vec3::ZERO{
|
||||
let mut a=glam::Vec3::ZERO;
|
||||
self.contact_constrain_acceleration(&mut a);
|
||||
self.body.acceleration=a;
|
||||
self.walk.state=WalkEnum::Reached;
|
||||
}else{
|
||||
let accel=self.walk_accel.min(self.gravity.length()*self.friction);
|
||||
let time_delta=target_diff.length()/accel;
|
||||
let mut a=target_diff/time_delta;
|
||||
self.contact_constrain_acceleration(&mut a);
|
||||
self.body.acceleration=a;
|
||||
self.walk.target_time=self.body.time+((time_delta as f64)*1_000_000_000f64) as TIME;
|
||||
self.walk.state=WalkEnum::Transient;
|
||||
}
|
||||
}else{
|
||||
self.walk.state=WalkEnum::Reached;//there is no walk target while not grounded
|
||||
}
|
||||
}
|
||||
fn next_walk_instruction(&self) -> Option<TimedInstruction<PhysicsInstruction>> {
|
||||
//check if you have a valid walk state and create an instruction
|
||||
if self.grounded{
|
||||
match self.walk.state{
|
||||
WalkEnum::Transient=>Some(TimedInstruction{
|
||||
time:self.walk.target_time,
|
||||
instruction:PhysicsInstruction::ReachWalkTargetVelocity
|
||||
}),
|
||||
WalkEnum::Reached=>None,
|
||||
}
|
||||
}else{
|
||||
return None;
|
||||
}
|
||||
//check if you are accelerating towards a walk target velocity and create an instruction
|
||||
return None;
|
||||
}
|
||||
fn mesh(&self) -> TreyMesh {
|
||||
let mut aabb=Aabb::new();
|
||||
for vertex in Aabb::unit_vertices(){
|
||||
aabb.grow(self.body.position+self.hitbox_halfsize*vertex);
|
||||
}
|
||||
aabb
|
||||
}
|
||||
fn predict_collision_end(&self,time:TIME,time_limit:TIME,collision_data:&RelativeCollision) -> Option<TimedInstruction<PhysicsInstruction>> {
|
||||
fn predict_collision_end(&self,model:&Model) -> Option<TimedInstruction<PhysicsInstruction>> {
|
||||
//must treat cancollide false objects differently: you may not exit through the same face you entered.
|
||||
//RelativeCollsion must reference the full model instead of a particular face
|
||||
//this is Ctrl+C Ctrl+V of predict_collision_start but with v=-v before the calc and t=-t after the calc
|
||||
//find best t
|
||||
let mut best_time=time_limit;
|
||||
let mut exit_face:Option<TreyMeshFace>=None;
|
||||
let mesh0=self.mesh();
|
||||
let mesh1=self.models_cringe_clone.get(collision_data.model as usize).unwrap().mesh();
|
||||
let (v,a)=(-self.body.velocity,self.body.acceleration);
|
||||
//collect x
|
||||
match collision_data.face {
|
||||
AabbFace::Top|AabbFace::Back|AabbFace::Bottom|AabbFace::Front=>{
|
||||
for t in zeroes2(mesh0.max.x-mesh1.min.x,v.x,0.5*a.x) {
|
||||
//negative t = back in time
|
||||
//must be moving towards surface to collide
|
||||
//must beat the current soonest collision time
|
||||
//must be moving towards surface
|
||||
let t_time=self.body.time+((-t as f64)*1_000_000_000f64) as TIME;
|
||||
if time<=t_time&&t_time<best_time&&0f32<v.x+a.x*-t{
|
||||
//collect valid t
|
||||
best_time=t_time;
|
||||
exit_face=Some(TreyMeshFace::Left);
|
||||
break;
|
||||
}
|
||||
}
|
||||
for t in zeroes2(mesh0.min.x-mesh1.max.x,v.x,0.5*a.x) {
|
||||
//negative t = back in time
|
||||
//must be moving towards surface to collide
|
||||
//must beat the current soonest collision time
|
||||
//must be moving towards surface
|
||||
let t_time=self.body.time+((-t as f64)*1_000_000_000f64) as TIME;
|
||||
if time<=t_time&&t_time<best_time&&v.x+a.x*-t<0f32{
|
||||
//collect valid t
|
||||
best_time=t_time;
|
||||
exit_face=Some(TreyMeshFace::Right);
|
||||
break;
|
||||
}
|
||||
}
|
||||
},
|
||||
AabbFace::Left=>{
|
||||
//generate event if v.x<0||a.x<0
|
||||
if -v.x<0f32{
|
||||
best_time=time;
|
||||
exit_face=Some(TreyMeshFace::Left);
|
||||
}
|
||||
},
|
||||
AabbFace::Right=>{
|
||||
//generate event if 0<v.x||0<a.x
|
||||
if 0f32<(-v.x){
|
||||
best_time=time;
|
||||
exit_face=Some(TreyMeshFace::Right);
|
||||
}
|
||||
},
|
||||
}
|
||||
//collect y
|
||||
match collision_data.face {
|
||||
AabbFace::Left|AabbFace::Back|AabbFace::Right|AabbFace::Front=>{
|
||||
for t in zeroes2(mesh0.max.y-mesh1.min.y,v.y,0.5*a.y) {
|
||||
//negative t = back in time
|
||||
//must be moving towards surface to collide
|
||||
//must beat the current soonest collision time
|
||||
//must be moving towards surface
|
||||
let t_time=self.body.time+((-t as f64)*1_000_000_000f64) as TIME;
|
||||
if time<=t_time&&t_time<best_time&&0f32<v.y+a.y*-t{
|
||||
//collect valid t
|
||||
best_time=t_time;
|
||||
exit_face=Some(TreyMeshFace::Bottom);
|
||||
break;
|
||||
}
|
||||
}
|
||||
for t in zeroes2(mesh0.min.y-mesh1.max.y,v.y,0.5*a.y) {
|
||||
//negative t = back in time
|
||||
//must be moving towards surface to collide
|
||||
//must beat the current soonest collision time
|
||||
//must be moving towards surface
|
||||
let t_time=self.body.time+((-t as f64)*1_000_000_000f64) as TIME;
|
||||
if time<=t_time&&t_time<best_time&&v.y+a.y*-t<0f32{
|
||||
//collect valid t
|
||||
best_time=t_time;
|
||||
exit_face=Some(TreyMeshFace::Top);
|
||||
break;
|
||||
}
|
||||
}
|
||||
},
|
||||
AabbFace::Bottom=>{
|
||||
//generate event if v.y<0||a.y<0
|
||||
if -v.y<0f32{
|
||||
best_time=time;
|
||||
exit_face=Some(TreyMeshFace::Bottom);
|
||||
}
|
||||
},
|
||||
AabbFace::Top=>{
|
||||
//generate event if 0<v.y||0<a.y
|
||||
if 0f32<(-v.y){
|
||||
best_time=time;
|
||||
exit_face=Some(TreyMeshFace::Top);
|
||||
}
|
||||
},
|
||||
}
|
||||
//collect z
|
||||
match collision_data.face {
|
||||
AabbFace::Left|AabbFace::Bottom|AabbFace::Right|AabbFace::Top=>{
|
||||
for t in zeroes2(mesh0.max.z-mesh1.min.z,v.z,0.5*a.z) {
|
||||
//negative t = back in time
|
||||
//must be moving towards surface to collide
|
||||
//must beat the current soonest collision time
|
||||
//must be moving towards surface
|
||||
let t_time=self.body.time+((-t as f64)*1_000_000_000f64) as TIME;
|
||||
if time<=t_time&&t_time<best_time&&0f32<v.z+a.z*-t{
|
||||
//collect valid t
|
||||
best_time=t_time;
|
||||
exit_face=Some(TreyMeshFace::Front);
|
||||
break;
|
||||
}
|
||||
}
|
||||
for t in zeroes2(mesh0.min.z-mesh1.max.z,v.z,0.5*a.z) {
|
||||
//negative t = back in time
|
||||
//must be moving towards surface to collide
|
||||
//must beat the current soonest collision time
|
||||
//must be moving towards surface
|
||||
let t_time=self.body.time+((-t as f64)*1_000_000_000f64) as TIME;
|
||||
if time<=t_time&&t_time<best_time&&v.z+a.z*-t<0f32{
|
||||
//collect valid t
|
||||
best_time=t_time;
|
||||
exit_face=Some(TreyMeshFace::Back);
|
||||
break;
|
||||
}
|
||||
}
|
||||
},
|
||||
AabbFace::Front=>{
|
||||
//generate event if v.z<0||a.z<0
|
||||
if -v.z<0f32{
|
||||
best_time=time;
|
||||
exit_face=Some(TreyMeshFace::Front);
|
||||
}
|
||||
},
|
||||
AabbFace::Back=>{
|
||||
//generate event if 0<v.z||0<a.z
|
||||
if 0f32<(-v.z){
|
||||
best_time=time;
|
||||
exit_face=Some(TreyMeshFace::Back);
|
||||
}
|
||||
},
|
||||
}
|
||||
//generate instruction
|
||||
if let Some(face) = exit_face{
|
||||
return Some(TimedInstruction {
|
||||
time: best_time,
|
||||
instruction: PhysicsInstruction::CollisionEnd(collision_data.clone())
|
||||
})
|
||||
}
|
||||
None
|
||||
}
|
||||
fn predict_collision_start(&self,time:TIME,time_limit:TIME,model_id:u32) -> Option<TimedInstruction<PhysicsInstruction>> {
|
||||
//find best t
|
||||
let mut best_time=time_limit;
|
||||
let mut best_face:Option<TreyMeshFace>=None;
|
||||
let mesh0=self.mesh();
|
||||
let mesh1=self.models_cringe_clone.get(model_id as usize).unwrap().mesh();
|
||||
let (p,v,a)=(self.body.position,self.body.velocity,self.body.acceleration);
|
||||
//collect x
|
||||
for t in zeroes2(mesh0.max.x-mesh1.min.x,v.x,0.5*a.x) {
|
||||
//must collide now or in the future
|
||||
//must beat the current soonest collision time
|
||||
//must be moving towards surface
|
||||
let t_time=self.body.time+((t as f64)*1_000_000_000f64) as TIME;
|
||||
if time<=t_time&&t_time<best_time&&0f32<v.x+a.x*t{
|
||||
let dp=self.body.extrapolated_position(t_time)-p;
|
||||
//faces must be overlapping
|
||||
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
|
||||
//collect valid t
|
||||
best_time=t_time;
|
||||
best_face=Some(TreyMeshFace::Left);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
for t in zeroes2(mesh0.min.x-mesh1.max.x,v.x,0.5*a.x) {
|
||||
//must collide now or in the future
|
||||
//must beat the current soonest collision time
|
||||
//must be moving towards surface
|
||||
let t_time=self.body.time+((t as f64)*1_000_000_000f64) as TIME;
|
||||
if time<=t_time&&t_time<best_time&&v.x+a.x*t<0f32{
|
||||
let dp=self.body.extrapolated_position(t_time)-p;
|
||||
//faces must be overlapping
|
||||
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
|
||||
//collect valid t
|
||||
best_time=t_time;
|
||||
best_face=Some(TreyMeshFace::Right);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
//collect y
|
||||
for t in zeroes2(mesh0.max.y-mesh1.min.y,v.y,0.5*a.y) {
|
||||
//must collide now or in the future
|
||||
//must beat the current soonest collision time
|
||||
//must be moving towards surface
|
||||
let t_time=self.body.time+((t as f64)*1_000_000_000f64) as TIME;
|
||||
if time<=t_time&&t_time<best_time&&0f32<v.y+a.y*t{
|
||||
let dp=self.body.extrapolated_position(t_time)-p;
|
||||
//faces must be overlapping
|
||||
if mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
|
||||
//collect valid t
|
||||
best_time=t_time;
|
||||
best_face=Some(TreyMeshFace::Bottom);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
for t in zeroes2(mesh0.min.y-mesh1.max.y,v.y,0.5*a.y) {
|
||||
//must collide now or in the future
|
||||
//must beat the current soonest collision time
|
||||
//must be moving towards surface
|
||||
let t_time=self.body.time+((t as f64)*1_000_000_000f64) as TIME;
|
||||
if time<=t_time&&t_time<best_time&&v.y+a.y*t<0f32{
|
||||
let dp=self.body.extrapolated_position(t_time)-p;
|
||||
//faces must be overlapping
|
||||
if mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
|
||||
//collect valid t
|
||||
best_time=t_time;
|
||||
best_face=Some(TreyMeshFace::Top);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
//collect z
|
||||
for t in zeroes2(mesh0.max.z-mesh1.min.z,v.z,0.5*a.z) {
|
||||
//must collide now or in the future
|
||||
//must beat the current soonest collision time
|
||||
//must be moving towards surface
|
||||
let t_time=self.body.time+((t as f64)*1_000_000_000f64) as TIME;
|
||||
if time<=t_time&&t_time<best_time&&0f32<v.z+a.z*t{
|
||||
let dp=self.body.extrapolated_position(t_time)-p;
|
||||
//faces must be overlapping
|
||||
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x {
|
||||
//collect valid t
|
||||
best_time=t_time;
|
||||
best_face=Some(TreyMeshFace::Front);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
for t in zeroes2(mesh0.min.z-mesh1.max.z,v.z,0.5*a.z) {
|
||||
//must collide now or in the future
|
||||
//must beat the current soonest collision time
|
||||
//must be moving towards surface
|
||||
let t_time=self.body.time+((t as f64)*1_000_000_000f64) as TIME;
|
||||
if time<=t_time&&t_time<best_time&&v.z+a.z*t<0f32{
|
||||
let dp=self.body.extrapolated_position(t_time)-p;
|
||||
//faces must be overlapping
|
||||
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x {
|
||||
//collect valid t
|
||||
best_time=t_time;
|
||||
best_face=Some(TreyMeshFace::Back);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
//generate instruction
|
||||
if let Some(face) = best_face{
|
||||
return Some(TimedInstruction {
|
||||
time: best_time,
|
||||
instruction: PhysicsInstruction::CollisionStart(RelativeCollision {
|
||||
face,
|
||||
model: model_id
|
||||
})
|
||||
})
|
||||
}
|
||||
fn predict_collision_start(&self,model:&Model) -> Option<TimedInstruction<PhysicsInstruction>> {
|
||||
None
|
||||
}
|
||||
}
|
||||
|
||||
impl crate::instruction::InstructionEmitter<PhysicsInstruction> for PhysicsState {
|
||||
//this little next instruction function can cache its return value and invalidate the cached value by watching the State.
|
||||
fn next_instruction(&self,time_limit:TIME) -> Option<TimedInstruction<PhysicsInstruction>> {
|
||||
fn next_instruction(&self) -> Option<TimedInstruction<PhysicsInstruction>> {
|
||||
//JUST POLLING!!! NO MUTATION
|
||||
let mut collector = crate::instruction::InstructionCollector::new(time_limit);
|
||||
let mut collector = crate::instruction::InstructionCollector::new();
|
||||
//autohop (already pressing spacebar; the signal to begin trying to jump is different)
|
||||
if self.grounded&&self.jump_trying {
|
||||
//scroll will be implemented with InputInstruction::Jump(true) but it blocks setting self.jump_trying=true
|
||||
collector.collect(Some(TimedInstruction{
|
||||
time:self.time,
|
||||
instruction:PhysicsInstruction::Jump
|
||||
}));
|
||||
}
|
||||
//check for collision stop instructions with curent contacts
|
||||
for collision_data in self.contacts.iter() {
|
||||
collector.collect(self.predict_collision_end(self.time,time_limit,collision_data));
|
||||
collector.collect(self.predict_collision_end(self.models_cringe_clone.get(collision_data.model as usize).unwrap()));
|
||||
}
|
||||
//check for collision start instructions (against every part in the game with no optimization!!)
|
||||
for i in 0..self.models_cringe_clone.len() {
|
||||
collector.collect(self.predict_collision_start(self.time,time_limit,i as u32));
|
||||
for model in &self.models_cringe_clone {
|
||||
collector.collect(self.predict_collision_start(model));
|
||||
}
|
||||
if self.grounded {
|
||||
//walk maintenance
|
||||
@ -895,126 +292,30 @@ impl crate::instruction::InstructionEmitter<PhysicsInstruction> for PhysicsState
|
||||
|
||||
impl crate::instruction::InstructionConsumer<PhysicsInstruction> for PhysicsState {
|
||||
fn process_instruction(&mut self, ins:TimedInstruction<PhysicsInstruction>) {
|
||||
match &ins.instruction {
|
||||
PhysicsInstruction::StrafeTick => (),
|
||||
PhysicsInstruction::Input(InputInstruction::MoveMouse(_)) => (),
|
||||
_=>println!("{:?}",ins),
|
||||
}
|
||||
//selectively update body
|
||||
match &ins.instruction {
|
||||
PhysicsInstruction::Input(_)
|
||||
|PhysicsInstruction::ReachWalkTargetVelocity
|
||||
|PhysicsInstruction::CollisionStart(_)
|
||||
|PhysicsInstruction::CollisionEnd(_)
|
||||
|PhysicsInstruction::StrafeTick => self.advance_time(ins.time),
|
||||
}
|
||||
//mutate position and velocity and time
|
||||
self.body.advance_time(ins.time);//should this be in a separate function: self.advance_time?
|
||||
match ins.instruction {
|
||||
PhysicsInstruction::CollisionStart(c) => {
|
||||
//check ground
|
||||
match &c.face {
|
||||
AabbFace::Top => {
|
||||
//ground
|
||||
self.grounded=true;
|
||||
},
|
||||
_ => (),
|
||||
}
|
||||
self.contacts.insert(c);
|
||||
//flatten v
|
||||
let mut v=self.body.velocity;
|
||||
self.contact_constrain_velocity(&mut v);
|
||||
self.body.velocity=v;
|
||||
if self.grounded&&self.controls&CONTROL_JUMP!=0{
|
||||
self.jump();
|
||||
}
|
||||
self.refresh_walk_target();
|
||||
},
|
||||
PhysicsInstruction::CollisionEnd(c) => {
|
||||
self.contacts.remove(&c);//remove contact before calling contact_constrain_acceleration
|
||||
let mut a=self.gravity;
|
||||
self.contact_constrain_acceleration(&mut a);
|
||||
self.body.acceleration=a;
|
||||
//check ground
|
||||
match &c.face {
|
||||
AabbFace::Top => {
|
||||
self.grounded=false;
|
||||
},
|
||||
_ => (),
|
||||
}
|
||||
self.refresh_walk_target();
|
||||
},
|
||||
PhysicsInstruction::StrafeTick => {
|
||||
let camera_mat=self.camera.simulate_move_rotation_y(self.mouse_interpolation.interpolated_position(self.time).x-self.mouse_interpolation.mouse0.x);
|
||||
let control_dir=camera_mat*get_control_dir(self.controls);
|
||||
let d=self.body.velocity.dot(control_dir);
|
||||
if d<self.mv {
|
||||
let mut v=self.body.velocity+(self.mv-d)*control_dir;
|
||||
self.contact_constrain_velocity(&mut v);
|
||||
self.body.velocity=v;
|
||||
}
|
||||
PhysicsInstruction::CollisionStart(_) => todo!(),
|
||||
PhysicsInstruction::CollisionEnd(_) => todo!(),
|
||||
PhysicsInstruction::StrafeTick => {
|
||||
let control_dir=self.get_control_dir();//this respects your mouse interpolation settings
|
||||
let d=self.body.velocity.dot(control_dir);
|
||||
if d<self.mv {
|
||||
self.body.velocity+=(self.mv-d)*control_dir;
|
||||
}
|
||||
}
|
||||
PhysicsInstruction::Jump => {
|
||||
self.grounded=false;//do I need this?
|
||||
self.body.velocity+=glam::Vec3::new(0.0,0.715588/2.0*100.0,0.0);
|
||||
}
|
||||
PhysicsInstruction::ReachWalkTargetVelocity => {
|
||||
//precisely set velocity
|
||||
let mut a=glam::Vec3::ZERO;
|
||||
self.contact_constrain_acceleration(&mut a);
|
||||
self.body.acceleration=a;
|
||||
let mut v=self.walk.target_velocity;
|
||||
self.contact_constrain_velocity(&mut v);
|
||||
self.body.velocity=v;
|
||||
self.walk.state=WalkEnum::Reached;
|
||||
},
|
||||
PhysicsInstruction::Input(input_instruction) => {
|
||||
let mut refresh_walk_target=false;
|
||||
match input_instruction{
|
||||
InputInstruction::MoveMouse(m) => {
|
||||
self.camera.angles=self.camera.simulate_move_angles(self.mouse_interpolation.mouse1-self.mouse_interpolation.mouse0);
|
||||
self.mouse_interpolation.move_mouse(self.time,m);
|
||||
refresh_walk_target=true;
|
||||
},
|
||||
InputInstruction::MoveForward(s) => {
|
||||
self.set_control(CONTROL_MOVEFORWARD,s);
|
||||
refresh_walk_target=true;
|
||||
},
|
||||
InputInstruction::MoveLeft(s) => {
|
||||
self.set_control(CONTROL_MOVELEFT,s);
|
||||
refresh_walk_target=true;
|
||||
},
|
||||
InputInstruction::MoveBack(s) => {
|
||||
self.set_control(CONTROL_MOVEBACK,s);
|
||||
refresh_walk_target=true;
|
||||
},
|
||||
InputInstruction::MoveRight(s) => {
|
||||
self.set_control(CONTROL_MOVERIGHT,s);
|
||||
refresh_walk_target=true;
|
||||
},
|
||||
InputInstruction::MoveUp(s) => {
|
||||
self.set_control(CONTROL_MOVEUP,s);
|
||||
refresh_walk_target=true;
|
||||
},
|
||||
InputInstruction::MoveDown(s) => {
|
||||
self.set_control(CONTROL_MOVEDOWN,s);
|
||||
refresh_walk_target=true;
|
||||
},
|
||||
InputInstruction::Jump(s) => {
|
||||
self.set_control(CONTROL_JUMP,s);
|
||||
refresh_walk_target=true;
|
||||
if self.grounded{
|
||||
self.jump();
|
||||
}
|
||||
},
|
||||
InputInstruction::Zoom(s) => {
|
||||
self.set_control(CONTROL_ZOOM,s);
|
||||
},
|
||||
InputInstruction::Reset => println!("reset"),
|
||||
}
|
||||
//calculate control dir
|
||||
let camera_mat=self.camera.simulate_move_rotation_y(self.mouse_interpolation.interpolated_position(self.time).x-self.mouse_interpolation.mouse0.x);
|
||||
let control_dir=camera_mat*get_control_dir(self.controls);
|
||||
//calculate walk target velocity
|
||||
if refresh_walk_target{
|
||||
self.walk.target_velocity=self.walkspeed*control_dir;
|
||||
self.refresh_walk_target();
|
||||
}
|
||||
},
|
||||
PhysicsInstruction::ReachWalkTargetVelocity => {
|
||||
//precisely set velocity
|
||||
self.body.velocity=self.walk_target_velocity;
|
||||
}
|
||||
PhysicsInstruction::SetWalkTargetVelocity(v) => {
|
||||
self.walk_target_velocity=v;
|
||||
//calculate acceleration yada yada
|
||||
},
|
||||
}
|
||||
}
|
||||
}
|
@ -1,10 +1,12 @@
|
||||
use std::future::Future;
|
||||
#[cfg(target_arch = "wasm32")]
|
||||
use std::str::FromStr;
|
||||
#[cfg(not(target_arch = "wasm32"))]
|
||||
use std::time::Instant;
|
||||
#[cfg(target_arch = "wasm32")]
|
||||
use web_sys::{ImageBitmapRenderingContext, OffscreenCanvas};
|
||||
use winit::{
|
||||
event::{self, WindowEvent, DeviceEvent},
|
||||
event::{self, WindowEvent},
|
||||
event_loop::{ControlFlow, EventLoop},
|
||||
};
|
||||
|
||||
@ -52,7 +54,7 @@ pub trait Example: 'static + Sized {
|
||||
queue: &wgpu::Queue,
|
||||
);
|
||||
fn update(&mut self, event: WindowEvent);
|
||||
fn device_event(&mut self, event: DeviceEvent);
|
||||
fn move_mouse(&mut self, delta: (f64,f64));
|
||||
fn render(
|
||||
&mut self,
|
||||
view: &wgpu::TextureView,
|
||||
@ -277,6 +279,11 @@ fn start<E: Example>(
|
||||
log::info!("Initializing the example...");
|
||||
let mut example = E::init(&config, &adapter, &device, &queue);
|
||||
|
||||
#[cfg(not(target_arch = "wasm32"))]
|
||||
let mut last_frame_inst = Instant::now();
|
||||
#[cfg(not(target_arch = "wasm32"))]
|
||||
let (mut frame_count, mut accum_time) = (0, 0.0);
|
||||
|
||||
log::info!("Entering render loop...");
|
||||
event_loop.run(move |event, _, control_flow| {
|
||||
let _ = (&instance, &adapter); // force ownership by the closure
|
||||
@ -348,12 +355,29 @@ fn start<E: Example>(
|
||||
}
|
||||
},
|
||||
event::Event::DeviceEvent {
|
||||
event,
|
||||
event:
|
||||
winit::event::DeviceEvent::MouseMotion {
|
||||
delta,
|
||||
},
|
||||
..
|
||||
} => {
|
||||
example.device_event(event);
|
||||
example.move_mouse(delta);
|
||||
},
|
||||
event::Event::RedrawRequested(_) => {
|
||||
#[cfg(not(target_arch = "wasm32"))]
|
||||
{
|
||||
accum_time += last_frame_inst.elapsed().as_secs_f32();
|
||||
last_frame_inst = Instant::now();
|
||||
frame_count += 1;
|
||||
if frame_count == 100 {
|
||||
println!(
|
||||
"Avg frame time {}ms",
|
||||
accum_time * 1000.0 / frame_count as f32
|
||||
);
|
||||
accum_time = 0.0;
|
||||
frame_count = 0;
|
||||
}
|
||||
}
|
||||
|
||||
let frame = match surface.get_current_texture() {
|
||||
Ok(frame) => frame,
|
||||
|
@ -1,11 +1,10 @@
|
||||
#[derive(Debug)]
|
||||
pub struct TimedInstruction<I> {
|
||||
pub time: crate::body::TIME,
|
||||
pub instruction: I,
|
||||
}
|
||||
|
||||
pub trait InstructionEmitter<I> {
|
||||
fn next_instruction(&self, time_limit:crate::body::TIME) -> Option<TimedInstruction<I>>;
|
||||
fn next_instruction(&self) -> Option<TimedInstruction<I>>;
|
||||
}
|
||||
pub trait InstructionConsumer<I> {
|
||||
fn process_instruction(&mut self, instruction:TimedInstruction<I>);
|
||||
@ -13,36 +12,26 @@ pub trait InstructionConsumer<I> {
|
||||
|
||||
//PROPER PRIVATE FIELDS!!!
|
||||
pub struct InstructionCollector<I> {
|
||||
time: crate::body::TIME,
|
||||
instruction: Option<I>,
|
||||
instruction: Option<TimedInstruction<I>>,
|
||||
}
|
||||
impl<I> InstructionCollector<I> {
|
||||
pub fn new(time:crate::body::TIME) -> Self {
|
||||
Self{
|
||||
time,
|
||||
instruction:None
|
||||
}
|
||||
pub fn new() -> Self {
|
||||
Self{instruction:None}
|
||||
}
|
||||
|
||||
pub fn collect(&mut self,instruction:Option<TimedInstruction<I>>){
|
||||
match instruction {
|
||||
Some(unwrap_instruction) => {
|
||||
if unwrap_instruction.time<self.time {
|
||||
self.time=unwrap_instruction.time;
|
||||
self.instruction=Some(unwrap_instruction.instruction);
|
||||
}
|
||||
match &instruction {
|
||||
Some(unwrap_instruction) => match &self.instruction {
|
||||
Some(unwrap_best_instruction) => if unwrap_instruction.time<unwrap_best_instruction.time {
|
||||
self.instruction=instruction;
|
||||
},
|
||||
None => self.instruction=instruction,
|
||||
},
|
||||
None => (),
|
||||
}
|
||||
}
|
||||
pub fn instruction(self) -> Option<TimedInstruction<I>> {
|
||||
//STEAL INSTRUCTION AND DESTROY INSTRUCTIONCOLLECTOR
|
||||
match self.instruction {
|
||||
Some(instruction)=>Some(TimedInstruction{
|
||||
time:self.time,
|
||||
instruction
|
||||
}),
|
||||
None => None,
|
||||
}
|
||||
return self.instruction
|
||||
}
|
||||
}
|
@ -1,4 +1,4 @@
|
||||
pub mod framework;
|
||||
pub mod body;
|
||||
pub mod zeroes;
|
||||
pub mod instruction;
|
||||
pub mod timelines;
|
||||
|
266
src/main.rs
266
src/main.rs
@ -1,5 +1,4 @@
|
||||
use bytemuck::{Pod, Zeroable};
|
||||
use strafe_client::{instruction::{TimedInstruction, InstructionConsumer},body::{InputInstruction, PhysicsInstruction}};
|
||||
use std::{borrow::Cow, time::Instant};
|
||||
use wgpu::{util::DeviceExt, AstcBlock, AstcChannel};
|
||||
|
||||
@ -33,11 +32,90 @@ struct ModelGraphics {
|
||||
model_buf: wgpu::Buffer,
|
||||
}
|
||||
|
||||
pub struct Skybox {
|
||||
block_mouse:strafe_client::body::TIME,
|
||||
period:strafe_client::body::TIME,
|
||||
start_time: std::time::Instant,
|
||||
// Note: we use the Y=up coordinate space in this example.
|
||||
struct Camera {
|
||||
screen_size: (u32, u32),
|
||||
offset: glam::Vec3,
|
||||
fov: f32,
|
||||
yaw: f32,
|
||||
pitch: f32,
|
||||
controls: u32,
|
||||
}
|
||||
|
||||
const CONTROL_MOVEFORWARD:u32 = 0b00000001;
|
||||
const CONTROL_MOVEBACK:u32 = 0b00000010;
|
||||
const CONTROL_MOVERIGHT:u32 = 0b00000100;
|
||||
const CONTROL_MOVELEFT:u32 = 0b00001000;
|
||||
const CONTROL_MOVEUP:u32 = 0b00010000;
|
||||
const CONTROL_MOVEDOWN:u32 = 0b00100000;
|
||||
const CONTROL_JUMP:u32 = 0b01000000;
|
||||
const CONTROL_ZOOM:u32 = 0b10000000;
|
||||
|
||||
const FORWARD_DIR:glam::Vec3 = glam::Vec3::new(0.0,0.0,-1.0);
|
||||
const RIGHT_DIR:glam::Vec3 = glam::Vec3::new(1.0,0.0,0.0);
|
||||
const UP_DIR:glam::Vec3 = glam::Vec3::new(0.0,1.0,0.0);
|
||||
|
||||
fn get_control_dir(controls: u32) -> glam::Vec3{
|
||||
//don't get fancy just do it
|
||||
let mut control_dir:glam::Vec3 = glam::Vec3::new(0.0,0.0,0.0);
|
||||
if controls & CONTROL_MOVEFORWARD == CONTROL_MOVEFORWARD {
|
||||
control_dir+=FORWARD_DIR;
|
||||
}
|
||||
if controls & CONTROL_MOVEBACK == CONTROL_MOVEBACK {
|
||||
control_dir+=-FORWARD_DIR;
|
||||
}
|
||||
if controls & CONTROL_MOVELEFT == CONTROL_MOVELEFT {
|
||||
control_dir+=-RIGHT_DIR;
|
||||
}
|
||||
if controls & CONTROL_MOVERIGHT == CONTROL_MOVERIGHT {
|
||||
control_dir+=RIGHT_DIR;
|
||||
}
|
||||
if controls & CONTROL_MOVEUP == CONTROL_MOVEUP {
|
||||
control_dir+=UP_DIR;
|
||||
}
|
||||
if controls & CONTROL_MOVEDOWN == CONTROL_MOVEDOWN {
|
||||
control_dir+=-UP_DIR;
|
||||
}
|
||||
return control_dir
|
||||
}
|
||||
|
||||
#[inline]
|
||||
fn perspective_rh(fov_y_slope: f32, aspect_ratio: f32, z_near: f32, z_far: f32) -> glam::Mat4 {
|
||||
//glam_assert!(z_near > 0.0 && z_far > 0.0);
|
||||
let r = z_far / (z_near - z_far);
|
||||
glam::Mat4::from_cols(
|
||||
glam::Vec4::new(1.0/(fov_y_slope * aspect_ratio), 0.0, 0.0, 0.0),
|
||||
glam::Vec4::new(0.0, 1.0/fov_y_slope, 0.0, 0.0),
|
||||
glam::Vec4::new(0.0, 0.0, r, -1.0),
|
||||
glam::Vec4::new(0.0, 0.0, r * z_near, 0.0),
|
||||
)
|
||||
}
|
||||
|
||||
impl Camera {
|
||||
fn to_uniform_data(&self, pos: glam::Vec3) -> [f32; 16 * 3 + 4] {
|
||||
let aspect = self.screen_size.0 as f32 / self.screen_size.1 as f32;
|
||||
let fov = if self.controls&CONTROL_ZOOM==0 {
|
||||
self.fov
|
||||
}else{
|
||||
self.fov/5.0
|
||||
};
|
||||
let proj = perspective_rh(fov, aspect, 0.5, 1000.0);
|
||||
let proj_inv = proj.inverse();
|
||||
let view = glam::Mat4::from_translation(pos+self.offset) * glam::Mat4::from_euler(glam::EulerRot::YXZ, self.yaw, self.pitch, 0f32);
|
||||
let view_inv = view.inverse();
|
||||
|
||||
let mut raw = [0f32; 16 * 3 + 4];
|
||||
raw[..16].copy_from_slice(&AsRef::<[f32; 16]>::as_ref(&proj)[..]);
|
||||
raw[16..32].copy_from_slice(&AsRef::<[f32; 16]>::as_ref(&proj_inv)[..]);
|
||||
raw[32..48].copy_from_slice(&AsRef::<[f32; 16]>::as_ref(&view_inv)[..]);
|
||||
raw[48..52].copy_from_slice(AsRef::<[f32; 4]>::as_ref(&view.col(3)));
|
||||
raw
|
||||
}
|
||||
}
|
||||
|
||||
pub struct Skybox {
|
||||
start_time: std::time::Instant,
|
||||
camera: Camera,
|
||||
physics: strafe_client::body::PhysicsState,
|
||||
sky_pipeline: wgpu::RenderPipeline,
|
||||
entity_pipeline: wgpu::RenderPipeline,
|
||||
@ -94,7 +172,7 @@ fn add_obj(device:&wgpu::Device,modeldatas:& mut Vec<ModelData>,source:&[u8]){
|
||||
for &index in &[0, end_index - 1, end_index] {
|
||||
let vert = poly.0[index];
|
||||
if let Some(&i)=vertex_index.get(&vert){
|
||||
indices.push(i);
|
||||
indices.push(i as u16);
|
||||
}else{
|
||||
let i=vertices.len() as u16;
|
||||
vertices.push(Vertex {
|
||||
@ -131,21 +209,6 @@ fn add_obj(device:&wgpu::Device,modeldatas:& mut Vec<ModelData>,source:&[u8]){
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
fn to_uniform_data(camera: &strafe_client::body::Camera, pos: glam::Vec3) -> [f32; 16 * 3 + 4] {
|
||||
let proj=camera.proj();
|
||||
let proj_inv = proj.inverse();
|
||||
let view=camera.view(pos);
|
||||
let view_inv = view.inverse();
|
||||
|
||||
let mut raw = [0f32; 16 * 3 + 4];
|
||||
raw[..16].copy_from_slice(&AsRef::<[f32; 16]>::as_ref(&proj)[..]);
|
||||
raw[16..32].copy_from_slice(&AsRef::<[f32; 16]>::as_ref(&proj_inv)[..]);
|
||||
raw[32..48].copy_from_slice(&AsRef::<[f32; 16]>::as_ref(&view_inv)[..]);
|
||||
raw[48..52].copy_from_slice(AsRef::<[f32; 4]>::as_ref(&view.col(3)));
|
||||
raw
|
||||
}
|
||||
|
||||
impl strafe_client::framework::Example for Skybox {
|
||||
fn optional_features() -> wgpu::Features {
|
||||
wgpu::Features::TEXTURE_COMPRESSION_ASTC
|
||||
@ -220,28 +283,35 @@ impl strafe_client::framework::Example for Skybox {
|
||||
source: wgpu::ShaderSource::Wgsl(Cow::Borrowed(include_str!("shader.wgsl"))),
|
||||
});
|
||||
|
||||
let camera = Camera {
|
||||
screen_size: (config.width, config.height),
|
||||
offset: glam::Vec3::new(0.0,4.5,0.0),
|
||||
fov: 1.0, //fov_slope = tan(fov_y/2)
|
||||
pitch: 0.0,
|
||||
yaw: 0.0,
|
||||
controls:0,
|
||||
};
|
||||
let physics = strafe_client::body::PhysicsState {
|
||||
body: strafe_client::body::Body::with_pva(glam::vec3(0.0,50.0,0.0),glam::vec3(0.0,0.0,0.0),glam::vec3(0.0,-100.0,0.0)),
|
||||
body: strafe_client::body::Body {
|
||||
position: glam::Vec3::new(5.0,0.0,5.0),
|
||||
velocity: glam::Vec3::new(0.0,0.0,0.0),
|
||||
time: 0,
|
||||
},
|
||||
time: 0,
|
||||
tick: 0,
|
||||
strafe_tick_num: 100,//100t
|
||||
strafe_tick_den: 1_000_000_000,
|
||||
gravity: glam::vec3(0.0,-100.0,0.0),
|
||||
friction: 1.2,
|
||||
walk_accel: 90.0,
|
||||
gravity: glam::Vec3::new(0.0,-100.0,0.0),
|
||||
friction: 90.0,
|
||||
mv: 2.7,
|
||||
grounded: false,
|
||||
grounded: true,
|
||||
jump_trying: false,
|
||||
walkspeed: 18.0,
|
||||
contacts: std::collections::HashSet::new(),
|
||||
models_cringe_clone: modeldatas.iter().map(|m|strafe_client::body::Model::new(m.transform)).collect(),
|
||||
walk: strafe_client::body::WalkState::new(),
|
||||
hitbox_halfsize: glam::vec3(1.0,2.5,1.0),
|
||||
camera: strafe_client::body::Camera::from_offset(glam::vec3(0.0,4.5-2.5,0.0),(config.width as f32)/(config.height as f32)),
|
||||
mouse_interpolation: strafe_client::body::MouseInterpolationState::new(),
|
||||
controls: 0,
|
||||
contacts: Vec::<strafe_client::body::RelativeCollision>::new(),
|
||||
models_cringe_clone: modeldatas.iter().map(|m|strafe_client::body::Model::new(m.transform)).collect(),
|
||||
};
|
||||
|
||||
let camera_uniforms = to_uniform_data(&physics.camera,physics.body.extrapolated_position(0));
|
||||
let camera_uniforms = camera.to_uniform_data(physics.extrapolate_position(0));
|
||||
let camera_buf = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
|
||||
label: Some("Camera"),
|
||||
contents: bytemuck::cast_slice(&camera_uniforms),
|
||||
@ -475,10 +545,8 @@ impl strafe_client::framework::Example for Skybox {
|
||||
let depth_view = Self::create_depth_texture(config, device);
|
||||
|
||||
Skybox {
|
||||
block_mouse:0,
|
||||
period:5_000_000,
|
||||
start_time: Instant::now(),
|
||||
screen_size: (config.width,config.height),
|
||||
camera,
|
||||
physics,
|
||||
sky_pipeline,
|
||||
entity_pipeline,
|
||||
@ -493,83 +561,61 @@ impl strafe_client::framework::Example for Skybox {
|
||||
|
||||
#[allow(clippy::single_match)]
|
||||
fn update(&mut self, event: winit::event::WindowEvent) {
|
||||
//nothing atm
|
||||
}
|
||||
|
||||
fn device_event(&mut self, event: winit::event::DeviceEvent) {
|
||||
//there's no way this is the best way get a timestamp.
|
||||
let time=self.start_time.elapsed().as_nanos() as i64;
|
||||
match event {
|
||||
winit::event::DeviceEvent::Key(winit::event::KeyboardInput {
|
||||
state,
|
||||
scancode: keycode,
|
||||
winit::event::WindowEvent::KeyboardInput {
|
||||
input:
|
||||
winit::event::KeyboardInput {
|
||||
state,
|
||||
virtual_keycode: Some(keycode),
|
||||
..
|
||||
},
|
||||
..
|
||||
}) => {
|
||||
let s=match state {
|
||||
winit::event::ElementState::Pressed => true,
|
||||
winit::event::ElementState::Released => false,
|
||||
};
|
||||
if let Some(input_instruction)=match keycode {
|
||||
17 => Some(InputInstruction::MoveForward(s)),//W
|
||||
30 => Some(InputInstruction::MoveLeft(s)),//A
|
||||
31 => Some(InputInstruction::MoveBack(s)),//S
|
||||
32 => Some(InputInstruction::MoveRight(s)),//D
|
||||
18 => Some(InputInstruction::MoveUp(s)),//E
|
||||
16 => Some(InputInstruction::MoveDown(s)),//Q
|
||||
57 => Some(InputInstruction::Jump(s)),//Space
|
||||
44 => Some(InputInstruction::Zoom(s)),//Z
|
||||
19 => if s{Some(InputInstruction::Reset)}else{None},//R
|
||||
_ => None,
|
||||
}
|
||||
{
|
||||
self.physics.run(time);//call it a day
|
||||
self.physics.process_instruction(TimedInstruction{
|
||||
time,
|
||||
instruction:PhysicsInstruction::Input(input_instruction),
|
||||
})
|
||||
}
|
||||
},
|
||||
winit::event::DeviceEvent::MouseMotion {
|
||||
delta,//these (f64,f64) are integers on my machine
|
||||
} => {
|
||||
let run_the_physics=
|
||||
if time<self.block_mouse{
|
||||
false
|
||||
}else{
|
||||
if time-self.block_mouse<2*self.period{
|
||||
self.block_mouse+=self.period
|
||||
}else{
|
||||
self.block_mouse=time+self.period
|
||||
match (state,keycode) {
|
||||
(k,winit::event::VirtualKeyCode::W) => match k {
|
||||
winit::event::ElementState::Pressed => self.camera.controls|=CONTROL_MOVEFORWARD,
|
||||
winit::event::ElementState::Released => self.camera.controls&=!CONTROL_MOVEFORWARD,
|
||||
}
|
||||
true
|
||||
};
|
||||
if run_the_physics{
|
||||
//This lags like crazy if you require a substep for every mouse event (every 3ms)
|
||||
//I'm going to forgo mouse interpolation for now
|
||||
//because it's actually a hard problem to prevent the physics from running on every mouse update
|
||||
self.physics.run(time);//call it a day
|
||||
self.physics.process_instruction(TimedInstruction{
|
||||
time,
|
||||
instruction:PhysicsInstruction::Input(InputInstruction::MoveMouse(glam::ivec2(delta.0 as i32,delta.1 as i32))),
|
||||
})
|
||||
}
|
||||
},
|
||||
winit::event::DeviceEvent::MouseWheel {
|
||||
delta,
|
||||
} => {
|
||||
println!("mousewheel{:?}",delta);
|
||||
if true{//self.physics.use_scroll
|
||||
self.physics.run(time);//call it a day
|
||||
self.physics.process_instruction(TimedInstruction{
|
||||
time,
|
||||
instruction:PhysicsInstruction::Input(InputInstruction::Jump(true)),//activates the immediate jump path, but the style modifier prevents controls&CONTROL_JUMP bit from being set to auto jump
|
||||
})
|
||||
(k,winit::event::VirtualKeyCode::A) => match k {
|
||||
winit::event::ElementState::Pressed => self.camera.controls|=CONTROL_MOVELEFT,
|
||||
winit::event::ElementState::Released => self.camera.controls&=!CONTROL_MOVELEFT,
|
||||
}
|
||||
(k,winit::event::VirtualKeyCode::S) => match k {
|
||||
winit::event::ElementState::Pressed => self.camera.controls|=CONTROL_MOVEBACK,
|
||||
winit::event::ElementState::Released => self.camera.controls&=!CONTROL_MOVEBACK,
|
||||
}
|
||||
(k,winit::event::VirtualKeyCode::D) => match k {
|
||||
winit::event::ElementState::Pressed => self.camera.controls|=CONTROL_MOVERIGHT,
|
||||
winit::event::ElementState::Released => self.camera.controls&=!CONTROL_MOVERIGHT,
|
||||
}
|
||||
(k,winit::event::VirtualKeyCode::E) => match k {
|
||||
winit::event::ElementState::Pressed => self.camera.controls|=CONTROL_MOVEUP,
|
||||
winit::event::ElementState::Released => self.camera.controls&=!CONTROL_MOVEUP,
|
||||
}
|
||||
(k,winit::event::VirtualKeyCode::Q) => match k {
|
||||
winit::event::ElementState::Pressed => self.camera.controls|=CONTROL_MOVEDOWN,
|
||||
winit::event::ElementState::Released => self.camera.controls&=!CONTROL_MOVEDOWN,
|
||||
}
|
||||
(k,winit::event::VirtualKeyCode::Space) => match k {
|
||||
winit::event::ElementState::Pressed => self.camera.controls|=CONTROL_JUMP,
|
||||
winit::event::ElementState::Released => self.camera.controls&=!CONTROL_JUMP,
|
||||
}
|
||||
(k,winit::event::VirtualKeyCode::Z) => match k {
|
||||
winit::event::ElementState::Pressed => self.camera.controls|=CONTROL_ZOOM,
|
||||
winit::event::ElementState::Released => self.camera.controls&=!CONTROL_ZOOM,
|
||||
}
|
||||
_ => (),
|
||||
}
|
||||
}
|
||||
_=>(),
|
||||
_ => {}
|
||||
}
|
||||
}
|
||||
|
||||
fn move_mouse(&mut self, delta: (f64,f64)) {
|
||||
self.camera.pitch=(self.camera.pitch as f64+delta.1/-2048.) as f32;
|
||||
self.camera.yaw=(self.camera.yaw as f64+delta.0/-2048.) as f32;
|
||||
}
|
||||
|
||||
fn resize(
|
||||
&mut self,
|
||||
config: &wgpu::SurfaceConfiguration,
|
||||
@ -577,8 +623,7 @@ impl strafe_client::framework::Example for Skybox {
|
||||
_queue: &wgpu::Queue,
|
||||
) {
|
||||
self.depth_view = Self::create_depth_texture(config, device);
|
||||
self.screen_size = (config.width, config.height);
|
||||
self.physics.camera.set_fov_aspect(1.0,(config.width as f32)/(config.height as f32));
|
||||
self.camera.screen_size = (config.width, config.height);
|
||||
}
|
||||
|
||||
fn render(
|
||||
@ -588,15 +633,18 @@ impl strafe_client::framework::Example for Skybox {
|
||||
queue: &wgpu::Queue,
|
||||
_spawner: &strafe_client::framework::Spawner,
|
||||
) {
|
||||
let camera_mat=glam::Mat3::from_euler(glam::EulerRot::YXZ,self.camera.yaw,0f32,0f32);
|
||||
let control_dir=camera_mat*get_control_dir(self.camera.controls&(CONTROL_MOVELEFT|CONTROL_MOVERIGHT|CONTROL_MOVEFORWARD|CONTROL_MOVEBACK)).normalize_or_zero();
|
||||
|
||||
let time=self.start_time.elapsed().as_nanos() as i64;
|
||||
|
||||
self.physics.run(time);
|
||||
self.physics.run(time,control_dir,self.camera.controls);
|
||||
|
||||
let mut encoder =
|
||||
device.create_command_encoder(&wgpu::CommandEncoderDescriptor { label: None });
|
||||
|
||||
// update rotation
|
||||
let camera_uniforms = to_uniform_data(&self.physics.camera,self.physics.body.extrapolated_position(time));
|
||||
let camera_uniforms = self.camera.to_uniform_data(self.physics.extrapolate_position(time));
|
||||
self.staging_belt
|
||||
.write_buffer(
|
||||
&mut encoder,
|
||||
|
47
src/timelines.rs
Normal file
47
src/timelines.rs
Normal file
@ -0,0 +1,47 @@
|
||||
type ORDER = u32;
|
||||
|
||||
pub struct Tracker {
|
||||
order: ORDER,
|
||||
}
|
||||
|
||||
pub struct TimelineInstruction<I>{
|
||||
pub order: ORDER,//absolute ordering of instructions which can be used for sorting even when there are multiple simultaneous timestamps
|
||||
pub instruction: crate::instruction::TimedInstruction<I>,
|
||||
}
|
||||
|
||||
pub struct Timeline<I>{
|
||||
instructions: std::collections::VecDeque<TimelineInstruction<I>>,
|
||||
trackers: Vec<Tracker>,//wrong
|
||||
}
|
||||
|
||||
impl<I> Timeline<I>{
|
||||
pub fn new() -> Self {
|
||||
Self{
|
||||
instructions:std::collections::VecDeque::<TimelineInstruction<I>>::new(),
|
||||
trackers:Vec::<Tracker>::new(),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn len(&self) -> usize {
|
||||
return self.instructions.len()
|
||||
}
|
||||
pub fn first(&self) -> Option<&TimelineInstruction<I>> {
|
||||
return self.instructions.get(0)
|
||||
}
|
||||
pub fn last(&self) -> Option<&TimelineInstruction<I>> {
|
||||
return self.instructions.get(self.instructions.len()-1)
|
||||
}
|
||||
pub fn append(&mut self,instruction:TimelineInstruction<I>){
|
||||
let i=self.instructions.len();
|
||||
self.instructions.push_back(instruction);
|
||||
for tracker in self.trackers.iter() {
|
||||
tracker.set_active(true);
|
||||
}
|
||||
}
|
||||
pub fn get_index_after_time(&mut self,time:crate::body::TIME) -> usize{
|
||||
self.instructions.partition_point(|ins|ins.instruction.time<time)
|
||||
}
|
||||
pub fn get_index_after_order(&mut self,order:ORDER) -> usize{
|
||||
self.instructions.partition_point(|ins|ins.order<order)
|
||||
}
|
||||
}
|
@ -1,27 +0,0 @@
|
||||
//find roots of polynomials
|
||||
pub fn zeroes2(a0:f32,a1:f32,a2:f32) -> Vec<f32>{
|
||||
if a2==0f32{
|
||||
return zeroes1(a0, a1);
|
||||
}
|
||||
let mut radicand=a1*a1-4f32*a2*a0;
|
||||
if 0f32<radicand {
|
||||
radicand=radicand.sqrt();
|
||||
if 0f32<a2 {
|
||||
return vec![(-a1-radicand)/(2f32*a2),(-a1+radicand)/(2f32*a2)];
|
||||
} else {
|
||||
return vec![(-a1+radicand)/(2f32*a2),(-a1-radicand)/(2f32*a2)];
|
||||
}
|
||||
} else if radicand==0f32 {
|
||||
return vec![-a1/(2f32*a2)];
|
||||
} else {
|
||||
return vec![];
|
||||
}
|
||||
}
|
||||
#[inline]
|
||||
pub fn zeroes1(a0:f32,a1:f32) -> Vec<f32> {
|
||||
if a1==0f32{
|
||||
return vec![];
|
||||
} else {
|
||||
return vec![-a0/a1];
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user