strafe-client-jed/src/model_physics.rs

729 lines
25 KiB
Rust
Raw Normal View History

2023-10-26 23:18:32 +00:00
use crate::integer::{Planar64,Planar64Vec3};
use std::borrow::{Borrow,Cow};
2023-10-26 23:18:32 +00:00
2023-10-31 05:11:54 +00:00
#[derive(Debug,Clone,Copy,Hash,Eq,PartialEq)]
2023-10-26 23:18:32 +00:00
pub struct VertId(usize);
2023-10-31 05:11:54 +00:00
#[derive(Debug,Clone,Copy,Hash,Eq,PartialEq)]
2023-10-26 23:18:32 +00:00
pub struct EdgeId(usize);
2023-11-21 03:14:19 +00:00
pub trait UndirectedEdge{
type DirectedEdge:Copy+DirectedEdge;
fn as_directed(&self,parity:bool)->Self::DirectedEdge;
}
impl UndirectedEdge for EdgeId{
type DirectedEdge=DirectedEdgeId;
2023-11-17 00:56:34 +00:00
fn as_directed(&self,parity:bool)->DirectedEdgeId{
2023-11-10 23:23:28 +00:00
DirectedEdgeId(self.0|((parity as usize)<<(usize::BITS-1)))
}
}
2023-11-17 00:56:34 +00:00
pub trait DirectedEdge{
2023-11-21 03:14:19 +00:00
type UndirectedEdge:Copy+UndirectedEdge;
2023-11-17 00:56:34 +00:00
fn as_undirected(&self)->Self::UndirectedEdge;
fn parity(&self)->bool;
2023-11-21 03:14:41 +00:00
//this is stupid but may work fine
2023-11-22 00:02:33 +00:00
fn reverse(&self)-><<Self as DirectedEdge>::UndirectedEdge as UndirectedEdge>::DirectedEdge{
2023-11-21 03:14:41 +00:00
self.as_undirected().as_directed(!self.parity())
}
2023-11-17 00:56:34 +00:00
}
2023-11-10 23:23:28 +00:00
/// DirectedEdgeId refers to an EdgeId when undirected.
#[derive(Debug,Clone,Copy,Hash,Eq,PartialEq)]
pub struct DirectedEdgeId(usize);
2023-11-17 00:56:34 +00:00
impl DirectedEdge for DirectedEdgeId{
type UndirectedEdge=EdgeId;
fn as_undirected(&self)->EdgeId{
2023-11-10 23:23:28 +00:00
EdgeId(self.0&!(1<<(usize::BITS-1)))
}
2023-11-17 00:56:34 +00:00
fn parity(&self)->bool{
self.0&(1<<(usize::BITS-1))!=0
2023-11-10 23:23:28 +00:00
}
}
2023-10-31 05:11:54 +00:00
#[derive(Debug,Clone,Copy,Hash,Eq,PartialEq)]
2023-10-26 23:18:32 +00:00
pub struct FaceId(usize);
//Vertex <-> Edge <-> Face -> Collide
2023-11-17 00:56:34 +00:00
pub enum FEV<F,E:DirectedEdge,V>{
2023-10-27 21:18:50 +00:00
Face(F),
2023-11-17 00:56:34 +00:00
Edge(E::UndirectedEdge),
2023-10-27 21:18:50 +00:00
Vert(V),
2023-10-26 23:18:32 +00:00
}
//use Unit32 #[repr(C)] for map files
struct Face{
normal:Planar64Vec3,
dot:Planar64,
}
2023-10-27 21:18:50 +00:00
struct Vert(Planar64Vec3);
2023-11-17 00:56:34 +00:00
pub trait MeshQuery<FACE:Clone,EDGE:Clone+DirectedEdge,VERT:Clone>{
fn edge_n(&self,edge_id:EDGE::UndirectedEdge)->Planar64Vec3{
let verts=self.edge_verts(edge_id);
self.vert(verts[1].clone())-self.vert(verts[0].clone())
}
fn directed_edge_n(&self,directed_edge_id:EDGE)->Planar64Vec3{
let verts=self.edge_verts(directed_edge_id.as_undirected());
(self.vert(verts[1].clone())-self.vert(verts[0].clone()))*((directed_edge_id.parity() as i64)*2-1)
}
fn vert(&self,vert_id:VERT)->Planar64Vec3;
fn face_nd(&self,face_id:FACE)->(Planar64Vec3,Planar64);
fn face_edges(&self,face_id:FACE)->Cow<Vec<EDGE>>;
fn edge_faces(&self,edge_id:EDGE::UndirectedEdge)->Cow<[FACE;2]>;
fn edge_verts(&self,edge_id:EDGE::UndirectedEdge)->Cow<[VERT;2]>;
fn vert_edges(&self,vert_id:VERT)->Cow<Vec<EDGE>>;
fn vert_faces(&self,vert_id:VERT)->Cow<Vec<FACE>>;
}
2023-10-26 23:18:32 +00:00
struct FaceRefs{
2023-11-17 00:56:34 +00:00
edges:Vec<DirectedEdgeId>,
//verts:Vec<VertId>,
2023-10-26 23:18:32 +00:00
}
struct EdgeRefs{
2023-10-26 23:28:07 +00:00
faces:[FaceId;2],//left, right
verts:[VertId;2],//bottom, top
2023-10-26 23:18:32 +00:00
}
struct VertRefs{
2023-11-10 22:02:17 +00:00
faces:Vec<FaceId>,
2023-11-10 23:23:28 +00:00
edges:Vec<DirectedEdgeId>,
2023-10-26 23:18:32 +00:00
}
pub struct PhysicsMesh{
faces:Vec<Face>,
2023-10-27 21:18:50 +00:00
verts:Vec<Vert>,
2023-10-26 23:18:32 +00:00
face_topology:Vec<FaceRefs>,
edge_topology:Vec<EdgeRefs>,
vert_topology:Vec<VertRefs>,
}
2023-10-27 21:18:50 +00:00
2023-10-31 22:25:06 +00:00
#[derive(Default,Clone)]
struct VertRefGuy{
2023-11-10 23:23:28 +00:00
edges:std::collections::HashSet<DirectedEdgeId>,
2023-11-10 22:02:17 +00:00
faces:std::collections::HashSet<FaceId>,
2023-10-31 22:25:06 +00:00
}
2023-11-04 01:57:34 +00:00
#[derive(Clone,Hash,Eq,PartialEq)]
2023-10-31 22:25:06 +00:00
struct EdgeIdGuy([VertId;2]);
impl EdgeIdGuy{
2023-11-10 23:23:28 +00:00
fn new(v0:VertId,v1:VertId)->(Self,bool){
(if v0.0<v1.0{
2023-10-31 22:25:06 +00:00
Self([v0,v1])
}else{
Self([v1,v0])
2023-11-10 23:23:28 +00:00
},v0.0<v1.0)
2023-10-31 22:25:06 +00:00
}
}
struct EdgeRefGuy([FaceId;2]);
impl EdgeRefGuy{
fn new()->Self{
Self([FaceId(0);2])
}
fn push(&mut self,i:usize,face_id:FaceId){
self.0[i]=face_id;
}
}
2023-11-17 00:56:34 +00:00
struct FaceRefGuy(Vec<DirectedEdgeId>);
2023-10-31 22:25:06 +00:00
#[derive(Default)]
struct EdgePool{
edge_guys:Vec<(EdgeIdGuy,EdgeRefGuy)>,
edge_id_from_guy:std::collections::HashMap<EdgeIdGuy,usize>,
}
impl EdgePool{
2023-11-16 01:59:24 +00:00
fn push(&mut self,edge_id_guy:EdgeIdGuy)->(&mut EdgeRefGuy,EdgeId){
let edge_id=if let Some(&edge_id)=self.edge_id_from_guy.get(&edge_id_guy){
edge_id
2023-10-31 22:25:06 +00:00
}else{
let edge_id=self.edge_guys.len();
2023-11-04 01:57:34 +00:00
self.edge_guys.push((edge_id_guy.clone(),EdgeRefGuy::new()));
2023-10-31 22:25:06 +00:00
self.edge_id_from_guy.insert(edge_id_guy,edge_id);
2023-11-16 01:59:24 +00:00
edge_id
};
(&mut unsafe{self.edge_guys.get_unchecked_mut(edge_id)}.1,EdgeId(edge_id))
2023-10-31 22:25:06 +00:00
}
}
impl From<&crate::model::IndexedModel> for PhysicsMesh{
fn from(indexed_model:&crate::model::IndexedModel)->Self{
2023-11-17 02:39:46 +00:00
assert!(indexed_model.unique_pos.len()!=0,"Mesh cannot have 0 vertices");
2023-10-31 22:25:06 +00:00
let verts=indexed_model.unique_pos.iter().map(|v|Vert(v.clone())).collect();
2023-11-10 23:23:28 +00:00
let mut vert_ref_guys=vec![VertRefGuy::default();indexed_model.unique_pos.len()];
2023-10-31 22:25:06 +00:00
let mut edge_pool=EdgePool::default();
2023-11-06 23:57:55 +00:00
let mut face_i=0;
let mut faces=Vec::new();
let mut face_ref_guys=Vec::new();
for group in indexed_model.groups.iter(){for poly in group.polys.iter(){
let face_id=FaceId(face_i);
2023-10-31 22:25:06 +00:00
//one face per poly
let mut normal=Planar64Vec3::ZERO;
let len=poly.vertices.len();
let face_edges=poly.vertices.iter().enumerate().map(|(i,&vert_id)|{
2023-11-04 02:08:34 +00:00
let vert0_id=indexed_model.unique_vertices[vert_id as usize].pos as usize;
let vert1_id=indexed_model.unique_vertices[poly.vertices[(i+1)%len] as usize].pos as usize;
2023-10-31 22:25:06 +00:00
//https://www.khronos.org/opengl/wiki/Calculating_a_Surface_Normal (Newell's Method)
let v0=indexed_model.unique_pos[vert0_id];
let v1=indexed_model.unique_pos[vert1_id];
normal+=Planar64Vec3::new(
(v0.y()-v1.y())*(v0.z()+v1.z()),
(v0.z()-v1.z())*(v0.x()+v1.x()),
(v0.x()-v1.x())*(v0.y()+v1.y()),
);
//get/create edge and push face into it
2023-11-10 23:23:28 +00:00
let (edge_id_guy,is_sorted)=EdgeIdGuy::new(VertId(vert0_id),VertId(vert1_id));
2023-11-16 01:59:24 +00:00
let (edge_ref_guy,edge_id)=edge_pool.push(edge_id_guy);
//polygon vertices as assumed to be listed clockwise
//populate the edge face on the left or right depending on how the edge vertices got sorted
edge_ref_guy.push(is_sorted as usize,face_id);
2023-11-10 22:02:17 +00:00
//index edges & face into vertices
{
2023-11-10 23:23:28 +00:00
let vert_ref_guy=unsafe{vert_ref_guys.get_unchecked_mut(vert0_id)};
2023-11-20 23:34:44 +00:00
vert_ref_guy.edges.insert(edge_id.as_directed(is_sorted));
2023-11-10 22:02:17 +00:00
vert_ref_guy.faces.insert(face_id);
2023-11-20 23:34:44 +00:00
unsafe{vert_ref_guys.get_unchecked_mut(vert1_id)}.edges.insert(edge_id.as_directed(!is_sorted));
2023-11-10 22:02:17 +00:00
}
2023-11-17 00:56:34 +00:00
//return directed_edge_id
edge_id.as_directed(is_sorted)
2023-10-31 22:25:06 +00:00
}).collect();
//choose precision loss randomly idk
normal=normal/len as i64;
let mut dot=Planar64::ZERO;
for &v in poly.vertices.iter(){
2023-11-04 02:08:34 +00:00
dot+=normal.dot(indexed_model.unique_pos[indexed_model.unique_vertices[v as usize].pos as usize]);
2023-10-31 22:25:06 +00:00
}
2023-11-06 23:57:55 +00:00
faces.push(Face{normal,dot:dot/len as i64});
face_ref_guys.push(FaceRefGuy(face_edges));
face_i+=1;
}}
2023-10-31 22:25:06 +00:00
//conceivably faces, edges, and vertices exist now
Self{
faces,
verts,
face_topology:face_ref_guys.into_iter().map(|face_ref_guy|{
FaceRefs{edges:face_ref_guy.0}
2023-10-31 22:25:06 +00:00
}).collect(),
edge_topology:edge_pool.edge_guys.into_iter().map(|(edge_id_guy,edge_ref_guy)|
EdgeRefs{faces:edge_ref_guy.0,verts:edge_id_guy.0}
).collect(),
2023-11-10 23:23:28 +00:00
vert_topology:vert_ref_guys.into_iter().map(|vert_ref_guy|
2023-11-10 22:02:17 +00:00
VertRefs{
edges:vert_ref_guy.edges.into_iter().collect(),
faces:vert_ref_guy.faces.into_iter().collect(),
}
2023-10-31 22:25:06 +00:00
).collect(),
}
}
}
impl PhysicsMesh{
pub fn verts<'a>(&'a self)->impl Iterator<Item=Planar64Vec3>+'a{
self.verts.iter().map(|Vert(pos)|*pos)
}
}
2023-11-17 00:56:34 +00:00
impl MeshQuery<FaceId,DirectedEdgeId,VertId> for PhysicsMesh{
2023-10-27 21:18:50 +00:00
fn face_nd(&self,face_id:FaceId)->(Planar64Vec3,Planar64){
2023-10-27 02:38:34 +00:00
(self.faces[face_id.0].normal,self.faces[face_id.0].dot)
2023-10-26 23:43:58 +00:00
}
//ideally I never calculate the vertex position, but I have to for the graphical meshes...
2023-10-27 21:18:50 +00:00
fn vert(&self,vert_id:VertId)->Planar64Vec3{
2023-10-29 07:15:51 +00:00
self.verts[vert_id.0].0
2023-10-27 21:18:50 +00:00
}
2023-11-17 00:56:34 +00:00
fn face_edges(&self,face_id:FaceId)->Cow<Vec<DirectedEdgeId>>{
2023-10-27 22:10:38 +00:00
Cow::Borrowed(&self.face_topology[face_id.0].edges)
2023-10-26 23:18:32 +00:00
}
2023-10-27 23:04:44 +00:00
fn edge_faces(&self,edge_id:EdgeId)->Cow<[FaceId;2]>{
2023-10-27 22:10:38 +00:00
Cow::Borrowed(&self.edge_topology[edge_id.0].faces)
2023-10-26 23:18:32 +00:00
}
fn edge_verts(&self,edge_id:EdgeId)->Cow<[VertId;2]>{
2023-10-27 22:10:38 +00:00
Cow::Borrowed(&self.edge_topology[edge_id.0].verts)
2023-10-26 23:18:32 +00:00
}
2023-11-17 00:56:34 +00:00
fn vert_edges(&self,vert_id:VertId)->Cow<Vec<DirectedEdgeId>>{
Cow::Borrowed(&self.vert_topology[vert_id.0].edges)
2023-10-26 23:18:32 +00:00
}
2023-11-10 22:02:17 +00:00
fn vert_faces(&self,vert_id:VertId)->Cow<Vec<FaceId>>{
Cow::Borrowed(&self.vert_topology[vert_id.0].faces)
}
2023-10-26 23:18:32 +00:00
}
pub struct TransformedMesh<'a>{
2023-10-31 05:11:54 +00:00
mesh:&'a PhysicsMesh,
transform:&'a crate::integer::Planar64Affine3,
normal_transform:&'a crate::integer::Planar64Mat3,
}
2023-11-02 23:44:14 +00:00
impl TransformedMesh<'_>{
2023-11-04 01:57:49 +00:00
pub fn new<'a>(
mesh:&'a PhysicsMesh,
transform:&'a crate::integer::Planar64Affine3,
normal_transform:&'a crate::integer::Planar64Mat3,
)->TransformedMesh<'a>{
TransformedMesh{
mesh,
transform,
normal_transform,
}
}
2023-11-16 05:05:18 +00:00
fn farthest_vert(&self,dir:Planar64Vec3)->VertId{
2023-11-17 02:39:46 +00:00
let mut best_dot=Planar64::MIN;
let mut best_vert=VertId(0);
2023-11-16 05:05:18 +00:00
for (i,vert) in self.mesh.verts.iter().enumerate(){
let p=self.transform.transform_point3(vert.0);
let d=dir.dot(p);
if best_dot<d{
best_dot=d;
best_vert=VertId(i);
}
}
best_vert
}
2023-11-02 23:44:14 +00:00
}
2023-11-17 00:56:34 +00:00
impl MeshQuery<FaceId,DirectedEdgeId,VertId> for TransformedMesh<'_>{
2023-10-31 05:11:54 +00:00
fn face_nd(&self,face_id:FaceId)->(Planar64Vec3,Planar64){
let (n,d)=self.mesh.face_nd(face_id);
2023-11-06 23:57:24 +00:00
let transformed_n=*self.normal_transform*n;
2023-11-10 01:27:07 +00:00
let transformed_d=Planar64::raw(((transformed_n.dot128(self.transform.matrix3*(n*d))<<32)/n.dot128(n)) as i64)+transformed_n.dot(self.transform.translation);
2023-11-06 23:57:24 +00:00
(transformed_n,transformed_d)
2023-10-31 05:11:54 +00:00
}
fn vert(&self,vert_id:VertId)->Planar64Vec3{
self.transform.transform_point3(self.mesh.vert(vert_id))
}
#[inline]
2023-11-17 00:56:34 +00:00
fn face_edges(&self,face_id:FaceId)->Cow<Vec<DirectedEdgeId>>{
2023-10-31 05:11:54 +00:00
self.mesh.face_edges(face_id)
}
#[inline]
fn edge_faces(&self,edge_id:EdgeId)->Cow<[FaceId;2]>{
self.mesh.edge_faces(edge_id)
}
#[inline]
fn edge_verts(&self,edge_id:EdgeId)->Cow<[VertId;2]>{
2023-10-31 05:11:54 +00:00
self.mesh.edge_verts(edge_id)
}
#[inline]
2023-11-17 00:56:34 +00:00
fn vert_edges(&self,vert_id:VertId)->Cow<Vec<DirectedEdgeId>>{
2023-10-31 05:11:54 +00:00
self.mesh.vert_edges(vert_id)
}
2023-11-10 22:02:17 +00:00
#[inline]
fn vert_faces(&self,vert_id:VertId)->Cow<Vec<FaceId>>{
self.mesh.vert_faces(vert_id)
}
2023-10-31 05:11:54 +00:00
}
2023-10-26 23:18:32 +00:00
//Note that a face on a minkowski mesh refers to a pair of fevs on the meshes it's summed from
//(face,vertex)
//(edge,edge)
//(vertex,face)
2023-10-27 21:18:50 +00:00
#[derive(Clone,Copy)]
2023-11-17 02:40:34 +00:00
pub enum MinkowskiVert{
2023-10-27 21:18:50 +00:00
VertVert(VertId,VertId),
}
#[derive(Clone,Copy)]
2023-11-17 00:56:34 +00:00
pub enum MinkowskiEdge{
2023-10-27 21:18:50 +00:00
VertEdge(VertId,EdgeId),
EdgeVert(EdgeId,VertId),
//EdgeEdge when edges are parallel
2023-10-27 21:18:50 +00:00
}
2023-11-21 03:14:19 +00:00
impl UndirectedEdge for MinkowskiEdge{
type DirectedEdge=MinkowskiDirectedEdge;
fn as_directed(&self,parity:bool)->Self::DirectedEdge{
match self{
MinkowskiEdge::VertEdge(v0,e1)=>MinkowskiDirectedEdge::VertEdge(*v0,e1.as_directed(parity)),
MinkowskiEdge::EdgeVert(e0,v1)=>MinkowskiDirectedEdge::EdgeVert(e0.as_directed(parity),*v1),
}
}
}
2023-11-17 00:56:34 +00:00
#[derive(Clone,Copy)]
2023-11-17 02:40:34 +00:00
pub enum MinkowskiDirectedEdge{
2023-11-17 00:56:34 +00:00
VertEdge(VertId,DirectedEdgeId),
EdgeVert(DirectedEdgeId,VertId),
//EdgeEdge when edges are parallel
}
impl DirectedEdge for MinkowskiDirectedEdge{
type UndirectedEdge=MinkowskiEdge;
fn as_undirected(&self)->Self::UndirectedEdge{
match self{
MinkowskiDirectedEdge::VertEdge(v0,e1)=>MinkowskiEdge::VertEdge(*v0,e1.as_undirected()),
MinkowskiDirectedEdge::EdgeVert(e0,v1)=>MinkowskiEdge::EdgeVert(e0.as_undirected(),*v1),
}
}
fn parity(&self)->bool{
match self{
MinkowskiDirectedEdge::VertEdge(_,e)
|MinkowskiDirectedEdge::EdgeVert(e,_)=>e.parity(),
}
}
}
2023-10-31 05:11:54 +00:00
#[derive(Debug,Clone,Copy,Hash,Eq,PartialEq)]
pub enum MinkowskiFace{
2023-10-27 21:18:50 +00:00
VertFace(VertId,FaceId),
2023-11-17 00:56:34 +00:00
EdgeEdge(EdgeId,EdgeId,bool),
2023-11-16 00:05:42 +00:00
FaceVert(FaceId,VertId),
//EdgeFace
//FaceEdge
//FaceFace
2023-10-27 21:18:50 +00:00
}
2023-10-26 23:18:32 +00:00
2023-10-27 21:18:50 +00:00
pub struct MinkowskiMesh<'a>{
2023-11-01 02:33:16 +00:00
mesh0:&'a TransformedMesh<'a>,
mesh1:&'a TransformedMesh<'a>,
2023-10-26 23:18:32 +00:00
}
//infinity fev algorithm state transition
enum Transition{
Done,//found closest vert, no edges are better
Vert(MinkowskiVert),//transition to vert
Edge(MinkowskiEdge),//transition to edge, algorithm finished
}
enum EV{
Vert(MinkowskiVert),
Edge(MinkowskiEdge),
}
2023-10-27 21:18:50 +00:00
impl MinkowskiMesh<'_>{
2023-11-01 02:33:16 +00:00
pub fn minkowski_sum<'a>(mesh0:&'a TransformedMesh,mesh1:&'a TransformedMesh)->MinkowskiMesh<'a>{
2023-10-27 21:18:50 +00:00
MinkowskiMesh{
2023-10-26 23:18:32 +00:00
mesh0,
mesh1,
}
}
2023-11-16 05:05:18 +00:00
fn farthest_vert(&self,dir:Planar64Vec3)->MinkowskiVert{
MinkowskiVert::VertVert(self.mesh0.farthest_vert(dir),self.mesh1.farthest_vert(-dir))
}
fn next_transition(&self,vert_id:MinkowskiVert,best_distance_squared:&mut Planar64,infinity_dir:Planar64Vec3,point:Planar64Vec3)->Transition{
let mut best_transition=Transition::Done;
2023-11-22 02:18:37 +00:00
for &directed_edge_id in self.vert_edges(vert_id).iter(){
let edge_n=self.directed_edge_n(directed_edge_id);
2023-11-24 02:59:52 +00:00
let edge_nn=edge_n.dot(edge_n);
//is boundary uncrossable by a crawl from infinity
if infinity_dir.dot(edge_n)==Planar64::ZERO{
let edge_verts=self.edge_verts(directed_edge_id.as_undirected());
//select opposite vertex
let test_vert_id=edge_verts[directed_edge_id.parity() as usize];
//test if it's closer
let diff=point-self.vert(test_vert_id);
let distance_squared=diff.dot(diff);
if distance_squared<*best_distance_squared{
best_transition=Transition::Vert(test_vert_id);
*best_distance_squared=distance_squared;
}
2023-11-23 23:48:23 +00:00
//test the edge. negative because this is from the opposite vert's perspective.
let d=-diff.dot(edge_n);
2023-11-24 02:59:52 +00:00
if Planar64::ZERO<=d&&d<=edge_nn{
let distance_squared={
let c=diff.cross(edge_n);
2023-11-24 02:59:52 +00:00
c.dot(c)/edge_nn
};
2023-11-23 23:48:23 +00:00
if distance_squared<=*best_distance_squared{
best_transition=Transition::Edge(directed_edge_id.as_undirected());
*best_distance_squared=distance_squared;
}
}
2023-11-22 02:18:37 +00:00
}
}
best_transition
}
fn crawl_boundaries(&self,mut vert_id:MinkowskiVert,infinity_dir:Planar64Vec3,point:Planar64Vec3)->EV{
let mut best_distance_squared={
let diff=point-self.vert(vert_id);
diff.dot(diff)
};
loop{
match self.next_transition(vert_id,&mut best_distance_squared,infinity_dir,point){
Transition::Done=>return EV::Vert(vert_id),
Transition::Vert(new_vert_id)=>vert_id=new_vert_id,
Transition::Edge(edge_id)=>return EV::Edge(edge_id),
2023-11-22 02:18:37 +00:00
}
}
}
/// This function drops a vertex down to an edge or a face if the path from infinity did not cross any vertex-edge boundaries but the point is supposed to have already crossed a boundary down from a vertex
fn infinity_fev(&self,infinity_dir:Planar64Vec3,point:Planar64Vec3)->FEV::<MinkowskiFace,MinkowskiDirectedEdge,MinkowskiVert>{
//start on any vertex
//cross uncrossable vertex-edge boundaries until you find the closest vertex or edge
//cross edge-face boundary if it's uncrossable
match self.crawl_boundaries(self.farthest_vert(infinity_dir),infinity_dir,point){
//if a vert is returned, it is the closest point to the infinity point
EV::Vert(vert_id)=>FEV::<MinkowskiFace,MinkowskiDirectedEdge,MinkowskiVert>::Vert(vert_id),
EV::Edge(edge_id)=>{
//cross to face if the boundary is not crossable and we are on the wrong side
let edge_n=self.edge_n(edge_id);
let vert_sum={
let &[v0,v1]=self.edge_verts(edge_id).borrow();
self.vert(v0)+self.vert(v1)
};
for (i,&face_id) in self.edge_faces(edge_id).iter().enumerate(){
let face_n=self.face_nd(face_id).0;
//edge-face boundary nd, n facing out of the face towards the edge
2023-11-23 23:48:38 +00:00
let boundary_n=edge_n.cross(face_n)*(i as i64*2-1);
let boundary_d=boundary_n.dot(vert_sum);
2023-11-23 23:48:38 +00:00
// point.dot(boundary_n) is multiplied by two because vert_sum sums two vertices.
if infinity_dir.dot(boundary_n)==Planar64::ZERO&&point.dot(boundary_n)*2<=boundary_d{
//both faces cannot pass this condition, return early if one does.
return FEV::<MinkowskiFace,MinkowskiDirectedEdge,MinkowskiVert>::Face(face_id);
}
}
FEV::<MinkowskiFace,MinkowskiDirectedEdge,MinkowskiVert>::Edge(edge_id)
},
2023-11-22 02:18:37 +00:00
}
}
fn closest_fev_not_inside(&self,mut infinity_body:crate::physics::Body)->Option<FEV::<MinkowskiFace,MinkowskiDirectedEdge,MinkowskiVert>>{
infinity_body.infinity_dir().map_or(None,|dir|{
let infinity_fev=self.infinity_fev(-dir,infinity_body.position);
//a line is simpler to solve than a parabola
infinity_body.velocity=dir;
infinity_body.acceleration=Planar64Vec3::ZERO;
//crawl in from negative infinity along a tangent line to get the closest fev
match crate::face_crawler::crawl_fev(infinity_fev,self,&infinity_body,crate::integer::Time::MIN,infinity_body.time){
crate::face_crawler::CrawlResult::Miss(fev)=>Some(fev),
crate::face_crawler::CrawlResult::Hit(_,_)=>None,
}
2023-11-17 03:57:50 +00:00
})
}
pub fn predict_collision_in(&self,relative_body:&crate::physics::Body,time_limit:crate::integer::Time)->Option<(MinkowskiFace,crate::integer::Time)>{
self.closest_fev_not_inside(relative_body.clone()).map_or(None,|fev|{
//continue forwards along the body parabola
match crate::face_crawler::crawl_fev(fev,self,relative_body,relative_body.time,time_limit){
crate::face_crawler::CrawlResult::Miss(_)=>None,
crate::face_crawler::CrawlResult::Hit(face,time)=>Some((face,time)),
}
})
}
pub fn predict_collision_out(&self,relative_body:&crate::physics::Body,time_limit:crate::integer::Time)->Option<(MinkowskiFace,crate::integer::Time)>{
//create an extrapolated body at time_limit
let infinity_body=crate::physics::Body::new(
relative_body.extrapolated_position(time_limit),
-relative_body.extrapolated_velocity(time_limit),
relative_body.acceleration,
-time_limit,
);
self.closest_fev_not_inside(infinity_body).map_or(None,|fev|{
//continue backwards along the body parabola
match crate::face_crawler::crawl_fev(fev,self,&-relative_body.clone(),-time_limit,-relative_body.time){
crate::face_crawler::CrawlResult::Miss(_)=>None,
crate::face_crawler::CrawlResult::Hit(face,time)=>Some((face,-time)),//no need to test -time<time_limit because of the first step
}
2023-11-17 03:57:50 +00:00
})
}
2023-11-16 05:06:24 +00:00
pub fn predict_collision_face_out(&self,relative_body:&crate::physics::Body,time_limit:crate::integer::Time,contact_face_id:MinkowskiFace)->Option<(MinkowskiEdge,crate::integer::Time)>{
//no algorithm needed, there is only one state and two cases (Edge,None)
//determine when it passes an edge ("sliding off" case)
let mut best_time=time_limit;
let mut best_edge=None;
let face_n=self.face_nd(contact_face_id).0;
2023-11-17 00:56:34 +00:00
for &directed_edge_id in self.face_edges(contact_face_id).iter(){
let edge_n=self.directed_edge_n(directed_edge_id);
2023-11-24 03:00:52 +00:00
//f x e points in
let n=face_n.cross(edge_n);
2023-11-17 00:56:34 +00:00
let verts=self.edge_verts(directed_edge_id.as_undirected());
2023-11-23 06:26:23 +00:00
let d=n.dot(self.vert(verts[0])+self.vert(verts[1]));
2023-11-17 00:56:34 +00:00
//WARNING! d outside of *2
for t in crate::zeroes::zeroes2((n.dot(relative_body.position))*2-d,n.dot(relative_body.velocity)*2,n.dot(relative_body.acceleration)){
let t=relative_body.time+crate::integer::Time::from(t);
if relative_body.time<t&&t<best_time&&n.dot(relative_body.extrapolated_velocity(t))<Planar64::ZERO{
best_time=t;
2023-11-17 00:56:34 +00:00
best_edge=Some(directed_edge_id);
break;
}
}
}
2023-11-17 00:56:34 +00:00
best_edge.map(|e|(e.as_undirected(),best_time))
}
}
2023-11-17 00:56:34 +00:00
impl MeshQuery<MinkowskiFace,MinkowskiDirectedEdge,MinkowskiVert> for MinkowskiMesh<'_>{
2023-10-27 21:18:50 +00:00
fn face_nd(&self,face_id:MinkowskiFace)->(Planar64Vec3,Planar64){
2023-10-27 21:19:17 +00:00
match face_id{
2023-11-16 00:05:42 +00:00
MinkowskiFace::VertFace(v0,f1)=>{
let (n,d)=self.mesh1.face_nd(f1);
(-n,d-n.dot(self.mesh0.vert(v0)))
2023-10-27 21:19:17 +00:00
},
2023-11-17 00:56:34 +00:00
MinkowskiFace::EdgeEdge(e0,e1,parity)=>{
let edge0_n=self.mesh0.edge_n(e0);
let edge1_n=self.mesh1.edge_n(e1);
let &[e0v0,e0v1]=self.mesh0.edge_verts(e0).borrow();
let &[e1v0,e1v1]=self.mesh1.edge_verts(e1).borrow();
let n=edge0_n.cross(edge1_n);
let e0d=n.dot(self.mesh0.vert(e0v0)+self.mesh0.vert(e0v1));
2023-11-21 03:57:27 +00:00
let e1d=n.dot(self.mesh1.vert(e1v0)+self.mesh1.vert(e1v1));
2023-11-17 00:56:34 +00:00
(n*(parity as i64*4-2),(e0d-e1d)*(parity as i64*2-1))
2023-10-27 21:19:17 +00:00
},
2023-11-16 00:05:42 +00:00
MinkowskiFace::FaceVert(f0,v1)=>{
let (n,d)=self.mesh0.face_nd(f0);
2023-11-18 01:47:31 +00:00
(n,d-n.dot(self.mesh1.vert(v1)))
2023-10-27 21:19:17 +00:00
},
}
2023-10-27 03:52:28 +00:00
}
2023-10-27 21:18:50 +00:00
fn vert(&self,vert_id:MinkowskiVert)->Planar64Vec3{
2023-10-27 22:09:53 +00:00
match vert_id{
MinkowskiVert::VertVert(v0,v1)=>{
self.mesh0.vert(v0)-self.mesh1.vert(v1)
},
}
2023-10-27 21:18:50 +00:00
}
2023-11-17 00:56:34 +00:00
fn face_edges(&self,face_id:MinkowskiFace)->Cow<Vec<MinkowskiDirectedEdge>>{
2023-10-27 22:09:53 +00:00
match face_id{
2023-11-16 00:05:42 +00:00
MinkowskiFace::VertFace(v0,f1)=>{
Cow::Owned(self.mesh1.face_edges(f1).iter().map(|&edge_id1|{
2023-11-22 00:02:33 +00:00
MinkowskiDirectedEdge::VertEdge(v0,edge_id1.reverse())
2023-10-27 22:09:53 +00:00
}).collect())
},
2023-11-17 00:56:34 +00:00
MinkowskiFace::EdgeEdge(e0,e1,parity)=>{
2023-10-27 22:09:53 +00:00
let e0v=self.mesh0.edge_verts(e0);
let e1v=self.mesh1.edge_verts(e1);
//could sort this if ordered edges are needed
Cow::Owned(vec![
2023-11-17 00:56:34 +00:00
MinkowskiDirectedEdge::VertEdge(e0v[0],e1.as_directed(parity)),
MinkowskiDirectedEdge::EdgeVert(e0.as_directed(parity),e1v[0]),
MinkowskiDirectedEdge::VertEdge(e0v[1],e1.as_directed(!parity)),
MinkowskiDirectedEdge::EdgeVert(e0.as_directed(!parity),e1v[1]),
])
2023-10-27 22:09:53 +00:00
},
2023-11-16 00:05:42 +00:00
MinkowskiFace::FaceVert(f0,v1)=>{
Cow::Owned(self.mesh0.face_edges(f0).iter().map(|&edge_id0|{
2023-11-17 00:56:34 +00:00
MinkowskiDirectedEdge::EdgeVert(edge_id0,v1)
2023-10-27 22:09:53 +00:00
}).collect())
},
}
2023-10-27 03:52:28 +00:00
}
2023-10-27 23:04:44 +00:00
fn edge_faces(&self,edge_id:MinkowskiEdge)->Cow<[MinkowskiFace;2]>{
2023-10-27 23:23:35 +00:00
match edge_id{
MinkowskiEdge::VertEdge(v0,e1)=>{
2023-11-21 02:49:36 +00:00
//faces are listed backwards from the minkowski mesh
2023-11-22 01:33:24 +00:00
let v0e=self.mesh0.vert_edges(v0);
let &[e1f0,e1f1]=self.mesh1.edge_faces(e1).borrow();
let e1f0_n=self.mesh0.face_nd(e1f0).0;
let e1f1_n=self.mesh0.face_nd(e1f1).0;
Cow::Owned([(e1f1,e1f1_n,e1f0_n,false),(e1f0,e1f0_n,e1f1_n,true)].map(|(edge_face_id1,edge_face1_n,edge_other_face1_n,face_parity)|{
2023-11-16 01:59:47 +00:00
let mut best_edge=None;
let mut best_d=Planar64::MAX;
2023-11-24 02:46:09 +00:00
let edge_face1_nn=edge_face1_n.dot(edge_face1_n);
2023-11-22 01:33:24 +00:00
for &directed_edge_id0 in v0e.iter(){
2023-11-16 01:59:47 +00:00
let edge0_n=self.mesh0.directed_edge_n(directed_edge_id0);
//must be behind other face.
if edge_other_face1_n.dot(edge0_n)<Planar64::ZERO{
let edge0_nn=edge0_n.dot(edge0_n);
let d=edge_face1_n.dot(edge0_n);
let dd=d*d/(edge_face1_nn*edge0_nn);
if dd<best_d{
best_d=dd;
best_edge=Some(directed_edge_id0);
}
2023-11-16 01:59:47 +00:00
}
}
best_edge.map_or(
MinkowskiFace::VertFace(v0,edge_face_id1),
2023-11-24 02:46:09 +00:00
|directed_edge_id0|MinkowskiFace::EdgeEdge(directed_edge_id0.as_undirected(),e1,directed_edge_id0.parity()^face_parity)
2023-11-16 01:59:47 +00:00
)
2023-10-27 23:23:35 +00:00
}))
},
MinkowskiEdge::EdgeVert(e0,v1)=>{
2023-11-21 02:49:36 +00:00
//tracking index with an external variable because .enumerate() is not available
2023-11-22 01:33:24 +00:00
let v1e=self.mesh1.vert_edges(v1);
let &[e0f0,e0f1]=self.mesh0.edge_faces(e0).borrow();
let e0f0_n=self.mesh0.face_nd(e0f0).0;
let e0f1_n=self.mesh0.face_nd(e0f1).0;
Cow::Owned([(e0f0,e0f0_n,e0f1_n,false),(e0f1,e0f1_n,e0f0_n,true)].map(|(edge_face_id0,edge_face0_n,edge_other_face0_n,face_parity)|{
2023-11-16 01:59:47 +00:00
let mut best_edge=None;
let mut best_d=Planar64::MAX;
2023-11-24 02:46:09 +00:00
let edge_face0_nn=edge_face0_n.dot(edge_face0_n);
2023-11-22 01:33:24 +00:00
for &directed_edge_id1 in v1e.iter(){
2023-11-16 01:59:47 +00:00
let edge1_n=self.mesh1.directed_edge_n(directed_edge_id1);
if edge_other_face0_n.dot(edge1_n)<Planar64::ZERO{
let edge1_nn=edge1_n.dot(edge1_n);
let d=edge_face0_n.dot(edge1_n);
let dd=d*d/(edge_face0_nn*edge1_nn);
if dd<best_d{
best_d=dd;
best_edge=Some(directed_edge_id1);
}
2023-11-16 01:59:47 +00:00
}
}
best_edge.map_or(
MinkowskiFace::FaceVert(edge_face_id0,v1),
2023-11-24 02:46:09 +00:00
|directed_edge_id1|MinkowskiFace::EdgeEdge(e0,directed_edge_id1.as_undirected(),directed_edge_id1.parity()^face_parity)
2023-11-16 01:59:47 +00:00
)
2023-10-27 23:23:35 +00:00
}))
},
}
2023-10-27 03:52:28 +00:00
}
fn edge_verts(&self,edge_id:MinkowskiEdge)->Cow<[MinkowskiVert;2]>{
2023-10-27 23:27:57 +00:00
match edge_id{
MinkowskiEdge::VertEdge(v0,e1)=>{
2023-11-02 01:03:11 +00:00
Cow::Owned(self.mesh1.edge_verts(e1).map(|vert_id1|{
MinkowskiVert::VertVert(v0,vert_id1)
2023-10-27 23:27:57 +00:00
}))
},
MinkowskiEdge::EdgeVert(e0,v1)=>{
2023-11-02 01:03:11 +00:00
Cow::Owned(self.mesh0.edge_verts(e0).map(|vert_id0|{
MinkowskiVert::VertVert(vert_id0,v1)
2023-10-27 23:27:57 +00:00
}))
},
}
2023-10-27 03:52:28 +00:00
}
2023-11-17 00:56:34 +00:00
fn vert_edges(&self,vert_id:MinkowskiVert)->Cow<Vec<MinkowskiDirectedEdge>>{
2023-10-27 23:44:00 +00:00
match vert_id{
MinkowskiVert::VertVert(v0,v1)=>{
2023-11-10 22:02:39 +00:00
let mut edges=Vec::new();
2023-11-28 03:43:09 +00:00
//detect shared volume when the other mesh is mirrored along a test edge dir
let v0f=self.mesh0.vert_faces(v0);
2023-11-10 22:02:39 +00:00
let v1f=self.mesh1.vert_faces(v1);
2023-11-28 03:43:09 +00:00
let v0f_n:Vec<Planar64Vec3>=v0f.iter().map(|&face_id|self.mesh0.face_nd(face_id).0).collect();
let v1f_n:Vec<Planar64Vec3>=v1f.iter().map(|&face_id|self.mesh1.face_nd(face_id).0).collect();
let the_len=v0f.len()+v1f.len();
2023-11-17 23:00:25 +00:00
for &directed_edge_id in self.mesh0.vert_edges(v0).iter(){
2023-11-10 22:02:39 +00:00
let n=self.mesh0.directed_edge_n(directed_edge_id);
2023-11-28 03:43:09 +00:00
let nn=n.dot(n);
//make a set of faces
let mut face_normals=Vec::with_capacity(the_len);
//add mesh0 faces as-is
face_normals.clone_from(&v0f_n);
for face_n in &v1f_n{
//add reflected mesh1 faces
face_normals.push(*face_n-n*(face_n.dot(n)*2/nn));
}
if is_empty_volume(face_normals){
2023-11-17 00:56:34 +00:00
edges.push(MinkowskiDirectedEdge::EdgeVert(directed_edge_id,v1));
2023-11-10 22:02:39 +00:00
}
}
2023-11-17 23:00:25 +00:00
for &directed_edge_id in self.mesh1.vert_edges(v1).iter(){
2023-11-10 22:02:39 +00:00
let n=self.mesh1.directed_edge_n(directed_edge_id);
2023-11-28 03:43:09 +00:00
let nn=n.dot(n);
let mut face_normals=Vec::with_capacity(the_len);
face_normals.clone_from(&v1f_n);
for face_n in &v0f_n{
face_normals.push(*face_n-n*(face_n.dot(n)*2/nn));
}
if is_empty_volume(face_normals){
2023-11-17 00:56:34 +00:00
edges.push(MinkowskiDirectedEdge::VertEdge(v0,directed_edge_id));
2023-11-10 22:02:39 +00:00
}
}
Cow::Owned(edges)
2023-10-27 23:44:00 +00:00
},
}
2023-10-27 03:52:28 +00:00
}
2023-11-22 01:35:00 +00:00
fn vert_faces(&self,_vert_id:MinkowskiVert)->Cow<Vec<MinkowskiFace>>{
unimplemented!()
2023-11-10 22:02:17 +00:00
}
2023-10-26 23:18:32 +00:00
}
2023-11-06 23:58:22 +00:00
2023-11-28 03:43:09 +00:00
fn is_empty_volume(normals:Vec<Planar64Vec3>)->bool{
let len=normals.len();
for i in 0..len-1{
for j in i+1..len{
let n=normals[i].cross(normals[j]);
let mut d_comp=None;
for k in 0..len{
if k!=i&&k!=j{
let d=n.dot(normals[k]);
if let Some(comp)=&d_comp{
if *comp*d<Planar64::ZERO{
return true;
}
}else{
d_comp=Some(d);
}
}
}
}
}
return false;
}
#[test]
fn test_is_empty_volume(){
assert!(!is_empty_volume([Planar64Vec3::X,Planar64Vec3::Y,Planar64Vec3::Z].to_vec()));
assert!(is_empty_volume([Planar64Vec3::X,Planar64Vec3::Y,Planar64Vec3::Z,Planar64Vec3::NEG_X].to_vec()));
}
2023-11-06 23:58:22 +00:00
#[test]
fn build_me_a_cube(){
let unit_cube=crate::primitives::unit_cube();
let mesh=PhysicsMesh::from(&unit_cube);
2023-11-17 22:10:26 +00:00
//println!("mesh={:?}",mesh);
2023-11-06 23:58:22 +00:00
}