Compare commits

..

3 Commits

Author SHA1 Message Date
2a03987d89 fixme 2025-03-14 15:24:53 -07:00
57a4cadaf3 bsp_loader: max area triangulation 2025-03-14 15:24:53 -07:00
881bc60ab3 bsp_loader: truncate vertex precision to 16 bits
The physics algorithm expects vertices to align exactly with faces.  Since the face normal is calculated via the cross product of vertex positions, this allows the face normals to be exact with respect to the vertex positions.
2025-03-14 15:24:53 -07:00
5 changed files with 94 additions and 79 deletions

View File

@@ -103,26 +103,6 @@ impl std::default::Default for GraphicsCamera{
}
}
const MODEL_BUFFER_SIZE:usize=4*4 + 12 + 4;//let size=std::mem::size_of::<ModelInstance>();
const MODEL_BUFFER_SIZE_BYTES:usize=MODEL_BUFFER_SIZE*4;
fn get_instances_buffer_data(instances:&[GraphicsModelOwned])->Vec<f32>{
let mut raw=Vec::with_capacity(MODEL_BUFFER_SIZE*instances.len());
for mi in instances{
//model transform
raw.extend_from_slice(&AsRef::<[f32; 4*4]>::as_ref(&mi.transform)[..]);
//normal transform
raw.extend_from_slice(AsRef::<[f32; 3]>::as_ref(&mi.normal_transform.x_axis));
raw.extend_from_slice(&[0.0]);
raw.extend_from_slice(AsRef::<[f32; 3]>::as_ref(&mi.normal_transform.y_axis));
raw.extend_from_slice(&[0.0]);
raw.extend_from_slice(AsRef::<[f32; 3]>::as_ref(&mi.normal_transform.z_axis));
raw.extend_from_slice(&[0.0]);
//color
raw.extend_from_slice(AsRef::<[f32; 4]>::as_ref(&mi.color.get()));
}
raw
}
pub struct GraphicsState{
pipelines:GraphicsPipelines,
bind_groups:GraphicsBindGroups,
@@ -987,3 +967,22 @@ impl GraphicsState{
self.staging_belt.recall();
}
}
const MODEL_BUFFER_SIZE:usize=4*4 + 12 + 4;//let size=std::mem::size_of::<ModelInstance>();
const MODEL_BUFFER_SIZE_BYTES:usize=MODEL_BUFFER_SIZE*4;
fn get_instances_buffer_data(instances:&[GraphicsModelOwned])->Vec<f32>{
let mut raw=Vec::with_capacity(MODEL_BUFFER_SIZE*instances.len());
for mi in instances{
//model transform
raw.extend_from_slice(&AsRef::<[f32; 4*4]>::as_ref(&mi.transform)[..]);
//normal transform
raw.extend_from_slice(AsRef::<[f32; 3]>::as_ref(&mi.normal_transform.x_axis));
raw.extend_from_slice(&[0.0]);
raw.extend_from_slice(AsRef::<[f32; 3]>::as_ref(&mi.normal_transform.y_axis));
raw.extend_from_slice(&[0.0]);
raw.extend_from_slice(AsRef::<[f32; 3]>::as_ref(&mi.normal_transform.z_axis));
raw.extend_from_slice(&[0.0]);
//color
raw.extend_from_slice(AsRef::<[f32; 4]>::as_ref(&mi.color.get()));
}
raw
}

View File

@@ -314,6 +314,9 @@ impl TryFrom<&model::Mesh> for PhysicsMesh{
return Err(PhysicsMeshError::ZeroVertices);
}
let verts=mesh.unique_pos.iter().copied().map(Vert).collect();
// TODO: do not hash faces to get face id
// meshes can have multiple identical nd representations while still being distinct faces,
// especially when the complete mesh is a non-convex mesh.
//TODO: fix submeshes
//flat map mesh.physics_groups[$1].groups.polys()[$2] as face_id
//lower face_id points to upper face_id
@@ -757,7 +760,7 @@ impl MinkowskiMesh<'_>{
.map(|(face,time)|(face,-time))
})
}
pub fn predict_collision_face_out(&self,relative_body:&Body,Range{start:start_time,end:time_limit}:Range<Time>,contact_face_id:MinkowskiFace)->Option<(MinkowskiDirectedEdge,GigaTime)>{
pub fn predict_collision_face_out(&self,relative_body:&Body,Range{start:start_time,end:time_limit}:Range<Time>,contact_face_id:MinkowskiFace)->Option<(MinkowskiEdge,GigaTime)>{
//no algorithm needed, there is only one state and two cases (Edge,None)
//determine when it passes an edge ("sliding off" case)
let start_time={
@@ -787,7 +790,7 @@ impl MinkowskiMesh<'_>{
}
}
}
best_edge.map(|e|(e,best_time))
best_edge.map(|e|(e.as_undirected(),best_time))
}
fn infinity_in(&self,infinity_body:Body)->Option<(MinkowskiFace,GigaTime)>{
let infinity_fev=self.infinity_fev(-infinity_body.velocity,infinity_body.position);

View File

@@ -26,8 +26,6 @@ use strafesnet_common::physics::{Instruction,MouseInstruction,ModeInstruction,Mi
#[derive(Debug)]
pub enum InternalInstruction{
CollisionStart(Collision,model_physics::GigaTime),
// transfer to a flush minkowski face
CollisionTransfer(ContactCollision,model_physics::MinkowskiFace),
CollisionEnd(Collision,model_physics::GigaTime),
StrafeTick,
ReachWalkTargetVelocity,
@@ -787,39 +785,19 @@ impl TouchingState{
crate::push_solve::push_solve(&contacts,acceleration)
}
fn predict_collision_end(&self,collector:&mut instruction::InstructionCollector<InternalInstruction,Time>,models:&PhysicsModels,hitbox_mesh:&HitboxMesh,body:&Body,start_time:Time){
use model_physics::DirectedEdge;
// let relative_body=body.relative_to(&Body::ZERO);
let relative_body=body;
for contact in &self.contacts{
//detect face slide off
let model_mesh=models.contact_mesh(contact);
let minkowski=model_physics::MinkowskiMesh::minkowski_sum(model_mesh,hitbox_mesh.transformed_mesh());
collector.collect(minkowski.predict_collision_face_out(&relative_body,start_time..collector.time(),contact.face_id).map(|(out_edge,time)|{
// TODO: determine if this code should go inside predict_collision_face_out
// the face across may be left or right depending on the directed edge parity
let &[f0,f1]=minkowski.edge_faces(out_edge.as_undirected()).as_ref();
let (f0n,_f0d)=minkowski.face_nd(f0);
let (f1n,_f1d)=minkowski.face_nd(f1);
// are they exactly flush
if f0n.cross(f1n)==vec3::ZERO_6
// implicitly don't need to check d values because faces share two vertices
// && n0*d1==n1*d0
{
TimedInstruction{
time:relative_body.time+time.into(),
instruction:InternalInstruction::CollisionTransfer(
*contact,
if out_edge.parity(){f1}else{f0},
),
}
}else{
TimedInstruction{
time:relative_body.time+time.into(),
instruction:InternalInstruction::CollisionEnd(
Collision::Contact(*contact),
time
),
}
collector.collect(minkowski.predict_collision_face_out(&relative_body,start_time..collector.time(),contact.face_id).map(|(_face,time)|{
TimedInstruction{
time:relative_body.time+time.into(),
instruction:InternalInstruction::CollisionEnd(
Collision::Contact(*contact),
time
),
}
}));
}
@@ -1004,7 +982,7 @@ impl PhysicsContext<'_>{
impl PhysicsData{
/// use with caution, this is the only non-instruction way to mess with physics
pub fn generate_models(&mut self,map:&map::CompleteMap){
let modes=map.modes.clone().denormalize();
let mut modes=map.modes.clone().denormalize();
let mut used_contact_attributes=Vec::new();
let mut used_intersect_attributes=Vec::new();
@@ -1678,7 +1656,6 @@ fn atomic_internal_instruction(state:&mut PhysicsState,data:&PhysicsData,ins:Tim
|InternalInstruction::CollisionEnd(_,dt)=>(true,Some(dt)),
InternalInstruction::StrafeTick
|InternalInstruction::ReachWalkTargetVelocity=>(true,None),
InternalInstruction::CollisionTransfer(..)=>(false,None),
};
if should_advance_body{
match goober_time{
@@ -1723,15 +1700,6 @@ fn atomic_internal_instruction(state:&mut PhysicsState,data:&PhysicsData,ins:Tim
state.time
),
},
InternalInstruction::CollisionTransfer(collision,dst_face)=>{
// transfer to a flush surface of the same object
state.touching.contacts.remove(&collision);
state.touching.contacts.insert(ContactCollision{
face_id:dst_face,
model_id:collision.model_id,
submesh_id:collision.submesh_id,
});
},
InternalInstruction::StrafeTick=>{
//TODO make this less huge
if let Some(strafe_settings)=&state.style.strafe{

View File

@@ -1,5 +1,5 @@
use strafesnet_common::integer::Planar64;
use strafesnet_common::{model,integer};
use strafesnet_common::integer::{self,Planar64,Planar64Vec3};
use strafesnet_common::model::{self,VertexId};
use strafesnet_common::integer::{vec3::Vector3,Fixed,Ratio};
use crate::{valve_transform_normal,valve_transform_dist};
@@ -138,7 +138,15 @@ fn planes_to_faces(face_list:std::collections::HashSet<Face>)->Result<Faces,Plan
loop{
// push point onto vertices
// problem: this may push a vertex that does not fit in the fixed point range and is thus meaningless
face.push(intersection.divide().narrow_1().unwrap());
//
// physics bug 2 originates from vertices being imprecise?
//
// Mask off the most precise 16 bits so that
// when face normals are calculated from
// the remaining 16 fractional bits
// they never exceed 32 bits of precision.
const MASK:Planar64=Planar64::raw(!((1<<16)-1));
face.push(intersection.divide().narrow_1().unwrap().map(|c|c&MASK));
// we looped back around to face1, we're done!
if core::ptr::eq(face1,face2){
@@ -204,6 +212,33 @@ impl std::fmt::Display for BrushToMeshError{
}
impl core::error::Error for BrushToMeshError{}
fn subdivide_max_area(tris:&mut Vec<Vec<VertexId>>,cw_verts:&[(VertexId,Planar64Vec3)],i0:usize,i2:usize,id0:VertexId,id2:VertexId,v0:Planar64Vec3,v2:Planar64Vec3){
if i0+1==i2{
return;
}
let mut best_i1=i0+1;
if i0+2<i2{
let mut best_area={
let (_,v1)=cw_verts[best_i1.rem_euclid(cw_verts.len())];
(v2-v0).cross(v1-v0).length_squared()
};
for i1 in i0+2..=i2-1{
let (_,v1)=cw_verts[i1.rem_euclid(cw_verts.len())];
let area=(v2-v0).cross(v1-v0).length_squared();
if best_area<area{
best_i1=i1;
best_area=area;
}
}
}
let i1=best_i1;
let (id1,v1)=cw_verts[i1.rem_euclid(cw_verts.len())];
// draw max area first
tris.push(vec![id0,id1,id2]);
subdivide_max_area(tris,cw_verts,i0,i1,id0,id1,v0,v1);
subdivide_max_area(tris,cw_verts,i1,i2,id1,id2,v1,v2);
}
pub fn faces_to_mesh(faces:Vec<Vec<integer::Planar64Vec3>>)->model::Mesh{
// generate the mesh
let mut mb=model::MeshBuilder::new();
@@ -212,16 +247,34 @@ pub fn faces_to_mesh(faces:Vec<Vec<integer::Planar64Vec3>>)->model::Mesh{
// normals are ignored by physics
let normal=mb.acquire_normal_id(integer::vec3::ZERO);
let polygon_list=faces.into_iter().map(|face|{
face.into_iter().map(|pos|{
let pos=mb.acquire_pos_id(pos);
mb.acquire_vertex_id(model::IndexedVertex{
let polygon_list=faces.into_iter().flat_map(|face|{
let cw_verts=face.into_iter().map(|position|{
let pos=mb.acquire_pos_id(position);
(mb.acquire_vertex_id(model::IndexedVertex{
pos,
tex,
normal,
color,
})
}).collect()
}),position)
}).collect::<Vec<_>>();
// scan and select maximum area triangle O(n^3)
let len=cw_verts.len();
let cw_verts=cw_verts.as_slice();
let ((i0,i1,i2),(v0,v1,v2))=cw_verts[..len-2].iter().enumerate().flat_map(|(i0,&(_,v0))|
cw_verts[i0+1..len-1].iter().enumerate().flat_map(move|(i1,&(_,v1))|
cw_verts[i0+i1+2..].iter().enumerate().map(move|(i2,&(_,v2))|((i0,i0+i1+1,i0+i1+i2+2),(v0,v1,v2)))
)
).max_by_key(|&(_,(v0,v1,v2))|(v2-v0).cross(v1-v0).length_squared()).unwrap();
// scan and select more maximum area triangles n * O(n)
let mut tris=Vec::with_capacity(len-2);
// da big one
let (id0,id1,id2)=(cw_verts[i0].0,cw_verts[i1].0,cw_verts[i2].0);
tris.push(vec![id0,id1,id2]);
subdivide_max_area(&mut tris,cw_verts,i0,i1,id0,id1,v0,v1);
subdivide_max_area(&mut tris,cw_verts,i1,i2,id1,id2,v1,v2);
subdivide_max_area(&mut tris,cw_verts,i2,i0+len,id2,id0,v2,v0);
tris
}).collect();
let polygon_groups=vec![model::PolygonGroup::PolygonList(model::PolygonList::new(polygon_list))];

View File

@@ -401,10 +401,6 @@ impl Angle32{
pub const NEG_FRAC_PI_2:Self=Self(-1<<30);
pub const PI:Self=Self(-1<<31);
#[inline]
pub const fn raw(num:i32)->Self{
Self(num)
}
#[inline]
pub const fn wrap_from_i64(theta:i64)->Self{
//take lower bits
//note: this was checked on compiler explorer and compiles to 1 instruction!
@@ -562,10 +558,6 @@ pub mod vec3{
pub const MAX:Planar64Vec3=Planar64Vec3::new([Planar64::MAX;3]);
pub const ZERO:Planar64Vec3=Planar64Vec3::new([Planar64::ZERO;3]);
pub const ZERO_2:linear_ops::types::Vector3<Fixed::<2,64>>=linear_ops::types::Vector3::new([Fixed::<2,64>::ZERO;3]);
pub const ZERO_3:linear_ops::types::Vector3<Fixed::<3,96>>=linear_ops::types::Vector3::new([Fixed::<3,96>::ZERO;3]);
pub const ZERO_4:linear_ops::types::Vector3<Fixed::<4,128>>=linear_ops::types::Vector3::new([Fixed::<4,128>::ZERO;3]);
pub const ZERO_5:linear_ops::types::Vector3<Fixed::<5,160>>=linear_ops::types::Vector3::new([Fixed::<5,160>::ZERO;3]);
pub const ZERO_6:linear_ops::types::Vector3<Fixed::<6,192>>=linear_ops::types::Vector3::new([Fixed::<6,192>::ZERO;3]);
pub const X:Planar64Vec3=Planar64Vec3::new([Planar64::ONE,Planar64::ZERO,Planar64::ZERO]);
pub const Y:Planar64Vec3=Planar64Vec3::new([Planar64::ZERO,Planar64::ONE,Planar64::ZERO]);
pub const Z:Planar64Vec3=Planar64Vec3::new([Planar64::ZERO,Planar64::ZERO,Planar64::ONE]);