Compare commits

..

5 Commits

Author SHA1 Message Date
6516b3ee30 cleaner 2025-12-22 14:09:36 -08:00
32d0e96958 stop sending instructions when paused 2025-12-22 14:06:59 -08:00
087e95b1f7 delete TogglePaused 2025-12-22 13:54:35 -08:00
e46a51319f delete unused models 2025-12-20 16:31:05 -08:00
a3b0306430 rbx_loader: fix regex 2025-12-19 13:10:04 -08:00
19 changed files with 268 additions and 13793 deletions

1
Cargo.lock generated
View File

@@ -3892,7 +3892,6 @@ dependencies = [
"glam",
"id",
"strafesnet_common",
"strafesnet_physics",
"strafesnet_session",
"strafesnet_settings",
"wgpu",

View File

@@ -9,7 +9,6 @@ ddsfile = "0.5.1"
glam = "0.30.0"
id = { version = "0.1.0", registry = "strafesnet" }
strafesnet_common = { path = "../../lib/common", registry = "strafesnet" }
strafesnet_physics = { path = "../physics", registry = "strafesnet" }
strafesnet_session = { path = "../session", registry = "strafesnet" }
strafesnet_settings = { path = "../settings", registry = "strafesnet" }
wgpu = "28.0.0"

View File

@@ -5,20 +5,10 @@ use strafesnet_settings::settings;
use strafesnet_session::session;
use strafesnet_common::model::{self, ColorId, NormalId, PolygonIter, PositionId, RenderConfigId, TextureCoordinateId, VertexId};
use wgpu::{util::DeviceExt,AstcBlock,AstcChannel};
use crate::model::{self as model_graphics,IndexedGraphicsMeshOwnedRenderConfig,IndexedGraphicsMeshOwnedRenderConfigId,GraphicsMeshOwnedRenderConfig,GraphicsModelColor4,GraphicsModelOwned,GraphicsVertex,DebugGraphicsVertex};
use crate::model::{self as model_graphics,IndexedGraphicsMeshOwnedRenderConfig,IndexedGraphicsMeshOwnedRenderConfigId,GraphicsMeshOwnedRenderConfig,GraphicsModelColor4,GraphicsModelOwned,GraphicsVertex};
pub fn required_limits()->wgpu::Limits{
let mut limits=wgpu::Limits::default();
limits.max_task_invocations_per_dimension=1;
limits.max_task_invocations_per_workgroup=1;
limits.max_mesh_invocations_per_dimension=1;
limits.max_mesh_invocations_per_workgroup=1;
limits.max_task_mesh_workgroup_total_count=1;
limits.max_task_mesh_workgroups_per_dimension=1;
limits.max_task_payload_size=4;
limits.max_mesh_output_vertices=2*(3+2+4+8);
limits.max_mesh_output_primitives=2*(1+2+4+8)+2;
limits
wgpu::Limits::default()
}
struct Indices{
@@ -46,32 +36,12 @@ struct GraphicsModel{
instance_count:u32,
}
struct DebugGraphicsSubmesh{
verts:Vec<strafesnet_physics::model::MeshVertId>,
edges:Vec<[strafesnet_physics::model::MeshVertId;2]>,
faces:Vec<Indices>,
}
struct DebugGraphicsMesh{
vertices:Vec<DebugGraphicsVertex>,
submeshes:Vec<DebugGraphicsSubmesh>,
vertex_buf:wgpu::Buffer,
}
struct DebugGraphicsModel{
debug_mesh_id:u32,
bind_group:wgpu::BindGroup,
// 32 bytes used to tell the mesh shader where to draw
// Vert: [vec4,_]
// Edge: [vec4,vec4]
debug_buf:wgpu::Buffer,
}
struct GraphicsSamplers{
repeat:wgpu::Sampler,
}
struct GraphicsBindGroupLayouts{
model:wgpu::BindGroupLayout,
debug_model:wgpu::BindGroupLayout,
}
struct GraphicsBindGroups{
@@ -82,9 +52,6 @@ struct GraphicsBindGroups{
struct GraphicsPipelines{
skybox:wgpu::RenderPipeline,
model:wgpu::RenderPipeline,
debug_face:wgpu::RenderPipeline,
debug_edge:wgpu::RenderPipeline,
debug_vert:wgpu::RenderPipeline,
}
struct GraphicsCamera{
@@ -165,8 +132,6 @@ pub struct GraphicsState{
camera_buf:wgpu::Buffer,
temp_squid_texture_view:wgpu::TextureView,
models:Vec<GraphicsModel>,
debug_meshes:Vec<DebugGraphicsMesh>,
debug_models:Vec<DebugGraphicsModel>,
depth_view:wgpu::TextureView,
staging_belt:wgpu::util::StagingBelt,
}
@@ -201,98 +166,6 @@ impl GraphicsState{
self.camera.fov=user_settings.calculate_fov(1.0,&self.camera.screen_size).as_vec2();
}
pub fn generate_models(&mut self,device:&wgpu::Device,queue:&wgpu::Queue,map:&map::CompleteMap){
//generate debug meshes, each debug model refers to one
self.debug_meshes=map.meshes.iter().map(|mesh|{
let vertices:Vec<DebugGraphicsVertex>=mesh.unique_pos.iter().copied().map(|pos|{
DebugGraphicsVertex{
pos:pos.to_array().map(Into::into),
}
}).collect();
let vertex_buf=device.create_buffer_init(&wgpu::util::BufferInitDescriptor{
label:Some("Vertex"),
contents:bytemuck::cast_slice(&vertices),
usage:wgpu::BufferUsages::VERTEX,
});
macro_rules! indices{
($indices:expr)=>{
if (u32::MAX as usize)<vertices.len(){
panic!("Model has too many vertices!");
}else if (u16::MAX as usize)<vertices.len(){
Indices::new(device,&$indices.into_iter().map(|vertex_idx|vertex_idx.get() as u32).collect(),wgpu::IndexFormat::Uint32)
}else{
Indices::new(device,&$indices.into_iter().map(|vertex_idx|vertex_idx.get() as u16).collect(),wgpu::IndexFormat::Uint16)
}
};
}
let submeshes=if let Ok(physics_mesh)=strafesnet_physics::model::PhysicsMesh::try_from(mesh){
physics_mesh.submesh_views().into_iter().map(|submesh_view|DebugGraphicsSubmesh{
verts:submesh_view.verts().to_owned(),
edges:submesh_view.edge_vert_ids_iter().collect(),
faces:submesh_view.face_vert_ids_iter().map(|face_verts|{
// triangulate
let mut indices=Vec::new();
let mut poly_vertices=face_verts.into_iter();
if let (Some(a),Some(mut b))=(poly_vertices.next(),poly_vertices.next()){
for c in poly_vertices{
indices.extend([a,b,c]);
b=c;
}
}
indices!(indices)
}).collect(),
}).collect()
}else{
//idc
Vec::new()
};
DebugGraphicsMesh{
vertices,
submeshes,
vertex_buf,
}
}).collect();
//generate debug models, only one will be rendered at a time
self.debug_models=map.models.iter().enumerate().map(|(model_id,model)|{
let model_uniforms=get_instances_buffer_data(&[GraphicsModelOwned{
transform:model.transform.into(),
normal_transform:glam::Mat3::from_cols_array_2d(&model.transform.matrix3.to_array().map(|row|row.map(Into::into))).inverse().transpose(),
color:GraphicsModelColor4::new(glam::vec4(1.0,0.0,0.0,0.2)),
}]);
let model_buf=device.create_buffer_init(&wgpu::util::BufferInitDescriptor{
label:Some(format!("Debug Model{} Buf",model_id).as_str()),
contents:bytemuck::cast_slice(&model_uniforms),
usage:wgpu::BufferUsages::UNIFORM|wgpu::BufferUsages::COPY_DST,
});
let debug_buf=device.create_buffer_init(&wgpu::util::BufferInitDescriptor{
label:Some(format!("Debug Model{} EV Buf",model_id).as_str()),
contents:bytemuck::cast_slice(&[0u8;32]),
usage:wgpu::BufferUsages::UNIFORM|wgpu::BufferUsages::COPY_DST,
});
let bind_group=device.create_bind_group(&wgpu::BindGroupDescriptor{
layout:&self.bind_group_layouts.debug_model,
entries:&[
wgpu::BindGroupEntry{
binding:0,
resource:model_buf.as_entire_binding(),
},
wgpu::BindGroupEntry{
binding:1,
resource:debug_buf.as_entire_binding(),
},
],
label:Some(format!("Debug Model{} Bind Group",model_id).as_str()),
});
DebugGraphicsModel{
debug_mesh_id:model.mesh.get(),
bind_group,
debug_buf,
}
}).collect();
//generate texture view per texture
let texture_views:HashMap<model::TextureId,wgpu::TextureView>=map.textures.iter().enumerate().filter_map(|(texture_id,texture_data)|{
let texture_id=model::TextureId::new(texture_id as u32);
@@ -673,7 +546,7 @@ impl GraphicsState{
entries:&[
wgpu::BindGroupLayoutEntry{
binding:0,
visibility:wgpu::ShaderStages::VERTEX|wgpu::ShaderStages::MESH,
visibility:wgpu::ShaderStages::VERTEX,
ty:wgpu::BindingType::Buffer{
ty:wgpu::BufferBindingType::Uniform,
has_dynamic_offset:false,
@@ -735,31 +608,6 @@ impl GraphicsState{
},
],
});
let debug_model_bind_group_layout=device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor{
label:Some("Debug Model Bind Group Layout"),
entries:&[
wgpu::BindGroupLayoutEntry{
binding:0,
visibility:wgpu::ShaderStages::VERTEX_FRAGMENT|wgpu::ShaderStages::MESH,
ty:wgpu::BindingType::Buffer{
ty:wgpu::BufferBindingType::Uniform,
has_dynamic_offset:false,
min_binding_size:None,
},
count:None,
},
wgpu::BindGroupLayoutEntry{
binding:1,
visibility:wgpu::ShaderStages::MESH,
ty:wgpu::BindingType::Buffer{
ty:wgpu::BufferBindingType::Uniform,
has_dynamic_offset:false,
min_binding_size:None,
},
count:None,
},
],
});
let clamp_sampler=device.create_sampler(&wgpu::SamplerDescriptor{
label:Some("Clamp Sampler"),
@@ -908,14 +756,6 @@ impl GraphicsState{
],
immediate_size:0,
});
let debug_model_pipeline_layout=device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor{
label:None,
bind_group_layouts:&[
&camera_bind_group_layout,
&debug_model_bind_group_layout,
],
immediate_size:0,
});
let sky_pipeline_layout=device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor{
label:None,
bind_group_layouts:&[
@@ -991,92 +831,6 @@ impl GraphicsState{
multiview_mask:None,
cache:None,
});
let debug_model_pipeline_face=device.create_render_pipeline(&wgpu::RenderPipelineDescriptor{
label:Some("Debug Face Pipeline"),
layout:Some(&debug_model_pipeline_layout),
vertex:wgpu::VertexState{
module:&shader,
entry_point:Some("vs_debug_face"),
buffers:&[wgpu::VertexBufferLayout{
array_stride:size_of::<DebugGraphicsVertex>() as wgpu::BufferAddress,
step_mode:wgpu::VertexStepMode::Vertex,
attributes:&wgpu::vertex_attr_array![0=>Float32x3],
}],
compilation_options:wgpu::PipelineCompilationOptions::default(),
},
fragment:Some(wgpu::FragmentState{
module:&shader,
entry_point:Some("fs_debug"),
targets:&[Some(wgpu::ColorTargetState{
format:config.view_formats[0],
blend:Some(wgpu::BlendState::ALPHA_BLENDING),
write_mask:wgpu::ColorWrites::default(),
})],
compilation_options:wgpu::PipelineCompilationOptions::default(),
}),
primitive:wgpu::PrimitiveState{
topology:wgpu::PrimitiveTopology::TriangleList,
front_face:wgpu::FrontFace::Cw,
cull_mode:Some(wgpu::Face::Front),
..Default::default()
},
depth_stencil:Some(wgpu::DepthStencilState{
format:Self::DEPTH_FORMAT,
depth_write_enabled:true,
depth_compare:wgpu::CompareFunction::Always,
stencil:wgpu::StencilState::default(),
bias:wgpu::DepthBiasState::default(),
}),
multisample:wgpu::MultisampleState::default(),
multiview_mask:None,
cache:None,
});
let mut debug_model_pipeline=wgpu::MeshPipelineDescriptor{
label:None,//filled in below
layout:Some(&debug_model_pipeline_layout),
task:Some(wgpu::TaskState{
module:&shader,
entry_point:Some("ts_main"),
compilation_options:wgpu::PipelineCompilationOptions::default(),
}),
mesh:wgpu::MeshState{
module:&shader,
entry_point:None,//filled in below
compilation_options:wgpu::PipelineCompilationOptions::default(),
},
fragment:Some(wgpu::FragmentState{
module:&shader,
entry_point:Some("fs_debug"),
targets:&[Some(wgpu::ColorTargetState{
format:config.view_formats[0],
blend:Some(wgpu::BlendState::ALPHA_BLENDING),
write_mask:wgpu::ColorWrites::default(),
})],
compilation_options:wgpu::PipelineCompilationOptions::default(),
}),
primitive:wgpu::PrimitiveState{
topology:wgpu::PrimitiveTopology::TriangleList,
front_face:wgpu::FrontFace::Cw,
cull_mode:None,
..Default::default()
},
depth_stencil:Some(wgpu::DepthStencilState{
format:Self::DEPTH_FORMAT,
depth_write_enabled:true,
depth_compare:wgpu::CompareFunction::Always,
stencil:wgpu::StencilState::default(),
bias:wgpu::DepthBiasState::default(),
}),
multisample:wgpu::MultisampleState::default(),
multiview:None,
cache:None,
};
debug_model_pipeline.label=Some("Debug Vert Pipeline");
debug_model_pipeline.mesh.entry_point=Some("ms_debug_vert");
let debug_model_pipeline_vert=device.create_mesh_pipeline(&debug_model_pipeline);
debug_model_pipeline.label=Some("Debug Edge Pipeline");
debug_model_pipeline.mesh.entry_point=Some("ms_debug_edge");
let debug_model_pipeline_edge=device.create_mesh_pipeline(&debug_model_pipeline);
let camera=GraphicsCamera::default();
let camera_uniforms=camera.to_uniform_data(glam::Vec3::ZERO,glam::Vec2::ZERO);
@@ -1116,10 +870,7 @@ impl GraphicsState{
Self{
pipelines:GraphicsPipelines{
skybox:sky_pipeline,
model:model_pipeline,
debug_face:debug_model_pipeline_face,
debug_edge:debug_model_pipeline_edge,
debug_vert:debug_model_pipeline_vert,
model:model_pipeline
},
bind_groups:GraphicsBindGroups{
camera:camera_bind_group,
@@ -1128,14 +879,9 @@ impl GraphicsState{
camera,
camera_buf,
models:Vec::new(),
debug_meshes:Vec::new(),
debug_models:Vec::new(),
depth_view,
staging_belt:wgpu::util::StagingBelt::new(device.clone(),0x100),
bind_group_layouts:GraphicsBindGroupLayouts{
model:model_bind_group_layout,
debug_model:debug_model_bind_group_layout,
},
bind_group_layouts:GraphicsBindGroupLayouts{model:model_bind_group_layout},
samplers:GraphicsSamplers{repeat:repeat_sampler},
temp_squid_texture_view:squid_texture_view,
}
@@ -1189,49 +935,6 @@ impl GraphicsState{
.copy_from_slice(bytemuck::cast_slice(&model_uniforms));
}
*/
// upload the edge or vertex for teh mesh shader to highlight
if let Some(hit)=&frame_state.hit{
if let Some(closest_fev)=&hit.closest_fev{
let model_id:model::ModelId=hit.convex_mesh_id.model_id.into();
if let Some(model)=self.debug_models.get(model_id.get() as usize){
let mesh=&self.debug_meshes[model.debug_mesh_id as usize];
match closest_fev{
strafesnet_physics::model::FEV::Face(_face)=>{
// face is rendered normally
},
strafesnet_physics::model::FEV::Edge(edge)=>{
let [v0_id,v1_id]=mesh.submeshes[hit.convex_mesh_id.submesh_id.get() as usize].edges[edge.get() as usize];
let v0_pos=mesh.vertices[v0_id.get() as usize].pos;
let v1_pos=mesh.vertices[v1_id.get() as usize].pos;
let debug_data=[glam::Vec3A::from_array(v0_pos).extend(1.0).to_array(),glam::Vec3A::from_array(v1_pos).extend(1.0).to_array()];
let debug_slice=bytemuck::cast_slice(&debug_data);
self.staging_belt
.write_buffer(
&mut encoder,
&model.debug_buf,
0,
wgpu::BufferSize::new(debug_slice.len() as wgpu::BufferAddress).unwrap(),
)
.copy_from_slice(debug_slice);
},
strafesnet_physics::model::FEV::Vert(vert)=>{
let vert_id=mesh.submeshes[hit.convex_mesh_id.submesh_id.get() as usize].verts[vert.get() as usize].get();
let pos=mesh.vertices[vert_id as usize].pos;
let debug_data=[glam::Vec3A::from_array(pos).extend(1.0).to_array()];
let debug_slice=bytemuck::cast_slice(&debug_data);
self.staging_belt
.write_buffer(
&mut encoder,
&model.debug_buf,
0,
wgpu::BufferSize::new(debug_slice.len() as wgpu::BufferAddress).unwrap(),
)
.copy_from_slice(debug_slice);
},
}
}
}
}
self.staging_belt.finish();
{
@@ -1267,7 +970,6 @@ impl GraphicsState{
rpass.set_bind_group(0,&self.bind_groups.camera,&[]);
rpass.set_bind_group(1,&self.bind_groups.skybox_texture,&[]);
// Draw all models.
rpass.set_pipeline(&self.pipelines.model);
for model in &self.models{
rpass.set_bind_group(2,&model.bind_group,&[]);
@@ -1279,37 +981,6 @@ impl GraphicsState{
rpass.set_pipeline(&self.pipelines.skybox);
rpass.draw(0..3,0..1);
// render a single debug_model in red
if let Some(hit)=&frame_state.hit{
if let Some(closest_fev)=&hit.closest_fev{
let model_id:model::ModelId=hit.convex_mesh_id.model_id.into();
if let Some(model)=self.debug_models.get(model_id.get() as usize){
let mesh=&self.debug_meshes[model.debug_mesh_id as usize];
rpass.set_bind_group(1,&model.bind_group,&[]);
rpass.set_vertex_buffer(0,mesh.vertex_buf.slice(..));
match closest_fev{
strafesnet_physics::model::FEV::Face(face)=>{
rpass.set_pipeline(&self.pipelines.debug_face);
let indices=&mesh.submeshes[hit.convex_mesh_id.submesh_id.get() as usize].faces[face.get() as usize];
rpass.set_index_buffer(indices.buf.slice(..),indices.format);
//TODO: loop over triangle strips
rpass.draw_indexed(0..indices.count,0,0..1);
},
strafesnet_physics::model::FEV::Edge(_edge)=>{
rpass.set_pipeline(&self.pipelines.debug_edge);
// the data has already been primed by the staging belt
rpass.draw_mesh_tasks(1, 1, 1);
},
strafesnet_physics::model::FEV::Vert(_vert)=>{
rpass.set_pipeline(&self.pipelines.debug_vert);
// the data has already been primed by the staging belt
rpass.draw_mesh_tasks(1, 1, 1);
},
}
}
}
}
}
queue.submit(std::iter::once(encoder.finish()));

View File

@@ -8,11 +8,6 @@ pub struct GraphicsVertex{
pub normal:[f32;3],
pub color:[f32;4],
}
#[derive(Clone,Copy,Pod,Zeroable)]
#[repr(C)]
pub struct DebugGraphicsVertex{
pub pos:[f32;3],
}
#[derive(Clone,Copy,id::Id)]
pub struct IndexedGraphicsMeshOwnedRenderConfigId(u32);
pub struct IndexedGraphicsMeshOwnedRenderConfig{

View File

@@ -21,6 +21,12 @@ impl<M:MeshQuery> CrawlResult<M>{
CrawlResult::Hit(face,time)=>Some((face,time)),
}
}
pub fn miss(self)->Option<FEV<M>>{
match self{
CrawlResult::Miss(fev)=>Some(fev),
CrawlResult::Hit(_,_)=>None,
}
}
}
// TODO: move predict_collision_face_out algorithm in here or something

View File

@@ -1,8 +1,7 @@
mod body;
mod face_crawler;
pub mod model;
mod push_solve;
mod minimum_difference;
mod face_crawler;
mod model;
pub mod physics;

View File

@@ -1,913 +0,0 @@
use strafesnet_common::integer::vec3;
use strafesnet_common::integer::vec3::Vector3;
use strafesnet_common::integer::{Fixed,Planar64,Planar64Vec3};
use crate::model::{DirectedEdge,FEV,MeshQuery};
// TODO: remove mesh invert
use crate::model::{MinkowskiMesh,MinkowskiVert};
// This algorithm is based on Lua code
// written by Trey Reynolds in 2021
type Simplex<const N:usize,Vert>=[Vert;N];
#[derive(Clone,Copy)]
enum Simplex1_3<Vert>{
Simplex1(Simplex<1,Vert>),
Simplex2(Simplex<2,Vert>),
Simplex3(Simplex<3,Vert>),
}
impl<Vert> Simplex1_3<Vert>{
fn push_front(self,v:Vert)->Simplex2_4<Vert>{
match self{
Simplex1_3::Simplex1([v0])=>Simplex2_4::Simplex2([v,v0]),
Simplex1_3::Simplex2([v0,v1])=>Simplex2_4::Simplex3([v,v0,v1]),
Simplex1_3::Simplex3([v0,v1,v2])=>Simplex2_4::Simplex4([v,v0,v1,v2]),
}
}
}
#[derive(Clone,Copy)]
enum Simplex2_4<Vert>{
Simplex2(Simplex<2,Vert>),
Simplex3(Simplex<3,Vert>),
Simplex4(Simplex<4,Vert>),
}
/*
local function absDet(r, u, v, w)
if w then
return math.abs((u - r):Cross(v - r):Dot(w - r))
elseif v then
return (u - r):Cross(v - r).magnitude
elseif u then
return (u - r).magnitude
else
return 1
end
end
*/
impl<Vert> Simplex2_4<Vert>{
fn det_is_zero<M:MeshQuery<Vert=Vert>>(self,mesh:&M)->bool{
match self{
Self::Simplex4([p0,p1,p2,p3])=>{
let p0=mesh.vert(p0);
let p1=mesh.vert(p1);
let p2=mesh.vert(p2);
let p3=mesh.vert(p3);
(p1-p0).cross(p2-p0).dot(p3-p0)==Fixed::ZERO
},
Self::Simplex3([p0,p1,p2])=>{
let p0=mesh.vert(p0);
let p1=mesh.vert(p1);
let p2=mesh.vert(p2);
(p1-p0).cross(p2-p0)==vec3::zero()
},
Self::Simplex2([p0,p1])=>{
let p0=mesh.vert(p0);
let p1=mesh.vert(p1);
p1-p0==vec3::zero()
}
}
}
}
/*
local function choosePerpendicularDirection(d)
local x, y, z = d.x, d.y, d.z
local best = math.min(x*x, y*y, z*z)
if x*x == best then
return Vector3.new(y*y + z*z, -x*y, -x*z)
elseif y*y == best then
return Vector3.new(-x*y, x*x + z*z, -y*z)
else
return Vector3.new(-x*z, -y*z, x*x + y*y)
end
end
*/
fn choose_perpendicular_direction(d:Planar64Vec3)->Planar64Vec3{
let x=d.x.abs();
let y=d.y.abs();
let z=d.z.abs();
if x<y&&x<z{
Vector3::new([Fixed::ZERO,-d.z,d.y])
}else if y<z{
Vector3::new([d.z,Fixed::ZERO,-d.x])
}else{
Vector3::new([-d.y,d.x,Fixed::ZERO])
}
}
const fn choose_any_direction()->Planar64Vec3{
vec3::X
}
fn narrow_dir2(dir:Vector3<Fixed<2,64>>)->Planar64Vec3{
if dir==vec3::zero(){
return dir.narrow_1().unwrap();
}
let x=dir.x.as_bits().unsigned_abs().bits();
let y=dir.y.as_bits().unsigned_abs().bits();
let z=dir.z.as_bits().unsigned_abs().bits();
let big=x.max(y).max(z);
const MAX_BITS:u32=64+31;
if MAX_BITS<big{
dir>>(big-MAX_BITS)
}else{
dir
}.narrow_1().unwrap()
}
fn narrow_dir3(dir:Vector3<Fixed<3,96>>)->Planar64Vec3{
if dir==vec3::zero(){
return dir.narrow_1().unwrap();
}
let x=dir.x.as_bits().unsigned_abs().bits();
let y=dir.y.as_bits().unsigned_abs().bits();
let z=dir.z.as_bits().unsigned_abs().bits();
let big=x.max(y).max(z);
const MAX_BITS:u32=96+31;
if MAX_BITS<big{
dir>>(big-MAX_BITS)
}else{
dir
}.narrow_1().unwrap()
}
fn reduce1<M:MeshQuery>(
[v0]:Simplex<1,M::Vert>,
mesh:&M,
point:Planar64Vec3,
)->Reduced<M::Vert>{
// --debug.profilebegin("reduceSimplex0")
// local a = a1 - a0
let p0=mesh.vert(v0);
// local p = -a
let p=-(p0+point);
// local direction = p
let mut dir=p;
// if direction.magnitude == 0 then
// direction = chooseAnyDirection()
if dir==vec3::zero(){
dir=choose_any_direction();
}
// return direction, a0, a1
Reduced{
dir,
simplex:Simplex1_3::Simplex1([v0]),
}
}
// local function reduceSimplex1(a0, a1, b0, b1)
fn reduce2<M:MeshQuery>(
[v0,v1]:Simplex<2,M::Vert>,
mesh:&M,
point:Planar64Vec3,
)->Reduced<M::Vert>{
// --debug.profilebegin("reduceSimplex1")
// local a = a1 - a0
// local b = b1 - b0
let p0=mesh.vert(v0);
let p1=mesh.vert(v1);
// local p = -a
// local u = b - a
let p=-(p0+point);
let u=p1-p0;
// -- modify to take into account the radiuses
// local p_u = p:Dot(u)
let p_u=p.dot(u);
// if p_u >= 0 then
if !p_u.is_negative(){
// local direction = u:Cross(p):Cross(u)
let direction=u.cross(p).cross(u);
// if direction.magnitude == 0 then
if direction==vec3::zero(){
return Reduced{
dir:choose_perpendicular_direction(u),
simplex:Simplex1_3::Simplex2([v0,v1]),
};
}
// -- modify the direction to take into account a0R and b0R
// return direction, a0, a1, b0, b1
return Reduced{
dir:narrow_dir3(direction),
simplex:Simplex1_3::Simplex2([v0,v1]),
};
}
// local direction = p
let mut dir=p;
// if direction.magnitude == 0 then
if dir==vec3::zero(){
dir=choose_perpendicular_direction(u);
}
// return direction, a0, a1
Reduced{
dir,
simplex:Simplex1_3::Simplex1([v0]),
}
}
// local function reduceSimplex2(a0, a1, b0, b1, c0, c1)
fn reduce3<M:MeshQuery>(
[v0,mut v1,v2]:Simplex<3,M::Vert>,
mesh:&M,
point:Planar64Vec3,
)->Reduced<M::Vert>{
// --debug.profilebegin("reduceSimplex2")
// local a = a1 - a0
// local b = b1 - b0
// local c = c1 - c0
let p0=mesh.vert(v0);
let p1=mesh.vert(v1);
let p2=mesh.vert(v2);
// local p = -a
// local u = b - a
// local v = c - a
let p=-(p0+point);
let mut u=p1-p0;
let v=p2-p0;
// local uv = u:Cross(v)
// local up = u:Cross(p)
// local pv = p:Cross(v)
// local uv_up = uv:Dot(up)
// local uv_pv = uv:Dot(pv)
let mut uv=u.cross(v);
let mut up=u.cross(p);
let pv=p.cross(v);
let uv_up=uv.dot(up);
let uv_pv=uv.dot(pv);
// if uv_up >= 0 and uv_pv >= 0 then
if !uv_up.is_negative()&&!uv_pv.is_negative(){
// local uvp = uv:Dot(p)
let uvp=uv.dot(p);
// local direction = uvp < 0 and -uv or uv
let direction=if uvp.is_negative(){
-uv
}else{
uv
};
// return direction, a0, a1, b0, b1, c0, c1
return Reduced{
dir:narrow_dir2(direction),
simplex:Simplex1_3::Simplex3([v0,v1,v2]),
};
}
// local u_u = u:Dot(u)
// local v_v = v:Dot(v)
// local uDist = uv_up/(u_u*v.magnitude)
// local vDist = uv_pv/(v_v*u.magnitude)
// local minDist2 = math.min(uDist, vDist)
let u_dist=uv_up*v.length();
let v_dist=uv_pv*u.length();
// if vDist == minDist2 then
if v_dist<u_dist{
u=v;
up=-pv;
uv=-uv;
// b0 = c0
// b1 = c1
v1=v2;
}
// local p_u = p:Dot(u)
let p_u=p.dot(u);
// if p_u >= 0 then
if !p_u.is_negative(){
// local direction = up:Cross(u)
let direction=up.cross(u);
// if direction.magnitude == 0 then
if direction==vec3::zero(){
// direction = uv
return Reduced{
dir:narrow_dir2(uv),
simplex:Simplex1_3::Simplex2([v0,v1]),
};
}
// return direction, a0, a1, b0, b1
return Reduced{
dir:narrow_dir3(direction),
simplex:Simplex1_3::Simplex2([v0,v1]),
};
}
// local direction = p
let dir=p;
// if direction.magnitude == 0 then
if dir==vec3::zero(){
// direction = uv
return Reduced{
dir:narrow_dir2(uv),
simplex:Simplex1_3::Simplex1([v0]),
};
}
// return direction, a0, a0
Reduced{
dir,
simplex:Simplex1_3::Simplex1([v0]),
}
}
// local function reduceSimplex3(a0, a1, b0, b1, c0, c1, d0, d1)
fn reduce4<M:MeshQuery>(
[v0,mut v1,mut v2,v3]:Simplex<4,M::Vert>,
mesh:&M,
point:Planar64Vec3,
)->Reduce<M::Vert>{
// --debug.profilebegin("reduceSimplex3")
// local a = a1 - a0
// local b = b1 - b0
// local c = c1 - c0
// local d = d1 - d0
let p0=mesh.vert(v0);
let p1=mesh.vert(v1);
let p2=mesh.vert(v2);
let p3=mesh.vert(v3);
// local p = -a
// local u = b - a
// local v = c - a
// local w = d - a
let p=-(p0+point);
let mut u=p1-p0;
let mut v=p2-p0;
let w=p3-p0;
// local uv = u:Cross(v)
// local vw = v:Cross(w)
// local wu = w:Cross(u)
// local uvw = uv:Dot(w)
// local pvw = vw:Dot(p)
// local upw = wu:Dot(p)
// local uvp = uv:Dot(p)
let mut uv=u.cross(v);
let vw=v.cross(w);
let wu=w.cross(u);
let uv_w=uv.dot(w);
let pv_w=vw.dot(p);
let up_w=wu.dot(p);
let uv_p=uv.dot(p);
// if pvw/uvw >= 0 and upw/uvw >= 0 and uvp/uvw >= 0 then
if !pv_w.div_sign(uv_w).is_negative()
||!up_w.div_sign(uv_w).is_negative()
||!uv_p.div_sign(uv_w).is_negative(){
// origin is contained, this is a positive detection
// local direction = Vector3.new(0, 0, 0)
// return direction, a0, a1, b0, b1, c0, c1, d0, d1
return Reduce::Escape([v0,v1,v2,v3]);
}
// local uvwSign = uvw < 0 and -1 or uvw > 0 and 1 or 0
// local uvDist = uvp*uvwSign/uv.magnitude
// local vwDist = pvw*uvwSign/vw.magnitude
// local wuDist = upw*uvwSign/wu.magnitude
// local minDist3 = math.min(uvDist, vwDist, wuDist)
let uv_dist=uv_p.mul_sign(uv_w);
let vw_dist=pv_w.mul_sign(uv_w);
let wu_dist=up_w.mul_sign(uv_w);
let wu_len=wu.length();
let uv_len=uv.length();
let vw_len=vw.length();
if vw_dist*wu_len<wu_dist*vw_len{
// if vwDist == minDist3 then
if vw_dist*uv_len<uv_dist*vw_len{
(u,v)=(v,w);
uv=vw;
// uv_p=pv_w; // unused
// b0, c0 = c0, d0
// b1, c1 = c1, d1
(v1,v2)=(v2,v3);
}else{
v2=v3;
}
}else{
// elseif wuDist == minDist3 then
if wu_dist*uv_len<uv_dist*wu_len{
(u,v)=(w,u);
uv=wu;
// uv_p=up_w; // unused
// b0, c0 = d0, b0
// b1, c1 = d1, b1
// before [a,b,c,d]
(v1,v2)=(v3,v1);
// after [a,d,b]
}else{
v2=v3;
}
}
// local up = u:Cross(p)
// local pv = p:Cross(v)
// local uv_up = uv:Dot(up)
// local uv_pv = uv:Dot(pv)
let mut up=u.cross(p);
let pv=p.cross(v);
let uv_up=uv.dot(up);
let uv_pv=uv.dot(pv);
// if uv_up >= 0 and uv_pv >= 0 then
if !uv_up.is_negative()&&!uv_pv.is_negative(){
// local direction = uvw < 0 and uv or -uv
// return direction, a0, a1, b0, b1, c0, c1
if uv_w.is_negative(){
return Reduce::Reduced(Reduced{
dir:narrow_dir2(uv),
simplex:Simplex1_3::Simplex3([v0,v1,v2]),
});
}else{
return Reduce::Reduced(Reduced{
dir:narrow_dir2(-uv),
simplex:Simplex1_3::Simplex3([v0,v1,v2]),
});
}
}
// local u_u = u:Dot(u)
// local v_v = v:Dot(v)
// local uDist = uv_up/(u_u*v.magnitude)
// local vDist = uv_pv/(v_v*u.magnitude)
// local minDist2 = math.min(uDist, vDist)
let u_dist=uv_up*v.length();
let v_dist=uv_pv*u.length();
// if vDist == minDist2 then
if v_dist<u_dist{
u=v;
up=-pv;
uv=-uv;
// b0 = c0
// b1 = c1
v1=v2;
}
// local p_u = p:Dot(u)
let p_u=p.dot(u);
// if p_u >= 0 then
if !p_u.is_negative(){
// local direction = up:Cross(u)
let direction=up.cross(u);
// if direction.magnitude == 0 then
if direction==vec3::zero(){
// direction = uvw < 0 and uv or -uv
// return direction, a0, a1, b0, b1
if uv_w.is_negative(){
return Reduce::Reduced(Reduced{
dir:narrow_dir2(uv),
simplex:Simplex1_3::Simplex2([v0,v1]),
});
}else{
return Reduce::Reduced(Reduced{
dir:narrow_dir2(-uv),
simplex:Simplex1_3::Simplex2([v0,v1]),
});
}
}
// return direction, a0, a1, b0, b1
return Reduce::Reduced(Reduced{
dir:narrow_dir3(direction),
simplex:Simplex1_3::Simplex2([v0,v1]),
});
}
// local direction = p
let dir=p;
// if direction.magnitude == 0 then
if dir==vec3::zero(){
// direction = uvw < 0 and uv or -uv
if uv_w.is_negative(){
return Reduce::Reduced(Reduced{
dir:narrow_dir2(uv),
simplex:Simplex1_3::Simplex1([v0]),
});
}else{
return Reduce::Reduced(Reduced{
dir:narrow_dir2(-uv),
simplex:Simplex1_3::Simplex1([v0]),
});
}
}
// return direction, a0, a1
Reduce::Reduced(Reduced{
dir,
simplex:Simplex1_3::Simplex1([v0]),
})
}
struct Reduced<Vert>{
dir:Planar64Vec3,
simplex:Simplex1_3<Vert>,
}
enum Reduce<Vert>{
Escape(Simplex<4,Vert>),
Reduced(Reduced<Vert>),
}
impl<Vert> Simplex2_4<Vert>{
fn reduce<M:MeshQuery<Vert=Vert>>(self,mesh:&M,point:Planar64Vec3)->Reduce<Vert>{
match self{
Self::Simplex2(simplex)=>Reduce::Reduced(reduce2(simplex,mesh,point)),
Self::Simplex3(simplex)=>Reduce::Reduced(reduce3(simplex,mesh,point)),
Self::Simplex4(simplex)=>reduce4(simplex,mesh,point),
}
}
}
pub fn contains_point(mesh:&MinkowskiMesh<'_>,point:Planar64Vec3)->bool{
const ENABLE_FAST_FAIL:bool=true;
// TODO: remove mesh negation
minimum_difference::<ENABLE_FAST_FAIL,_,_>(&-mesh,point,
// on_exact
|is_intersecting,_simplex|{
is_intersecting
},
// on_escape
|_simplex|{
// intersection is guaranteed at this point
true
},
// fast_fail value
||false
)
}
//infinity fev algorithm state transition
#[derive(Debug)]
enum Transition<Vert>{
Done,//found closest vert, no edges are better
Vert(Vert),//transition to vert
}
enum EV<M:MeshQuery>{
Vert(M::Vert),
Edge(<M::Edge as DirectedEdge>::UndirectedEdge),
}
impl<M:MeshQuery> From<EV<M>> for FEV<M>{
fn from(value:EV<M>)->Self{
match value{
EV::Vert(minkowski_vert)=>FEV::Vert(minkowski_vert),
EV::Edge(minkowski_edge)=>FEV::Edge(minkowski_edge),
}
}
}
trait Contains{
fn contains(&self,point:Planar64Vec3)->bool;
}
// convenience type to check if a point is within some threshold of a plane.
struct ThickPlane{
point:Planar64Vec3,
normal:Vector3<Fixed<2,64>>,
epsilon:Fixed<3,96>,
}
impl ThickPlane{
fn new<M:MeshQuery>(mesh:&M,[v0,v1,v2]:Simplex<3,M::Vert>)->Self{
let p0=mesh.vert(v0);
let p1=mesh.vert(v1);
let p2=mesh.vert(v2);
let point=p0;
let normal=(p1-p0).cross(p2-p0);
// Allow ~ 2*sqrt(3) units of thickness on the plane
// This is to account for the variance of two voxels across the longest diagonal
let epsilon=(normal.length()*(Planar64::EPSILON*3)).wrap_3();
Self{point,normal,epsilon}
}
}
impl Contains for ThickPlane{
fn contains(&self,point:Planar64Vec3)->bool{
(point-self.point).dot(self.normal).abs()<=self.epsilon
}
}
struct ThickLine{
point:Planar64Vec3,
dir:Planar64Vec3,
epsilon:Fixed<4,128>,
}
impl ThickLine{
fn new<M:MeshQuery>(mesh:&M,[v0,v1]:Simplex<2,M::Vert>)->Self{
let p0=mesh.vert(v0);
let p1=mesh.vert(v1);
let point=p0;
let dir=p1-p0;
// Allow ~ 2*sqrt(3) units of thickness on the plane
// This is to account for the variance of two voxels across the longest diagonal
let epsilon=(dir.length_squared()*(Planar64::EPSILON*3)).widen_4();
Self{point,dir,epsilon}
}
}
impl Contains for ThickLine{
fn contains(&self,point:Planar64Vec3)->bool{
(point-self.point).cross(self.dir).length_squared()<=self.epsilon
}
}
struct EVFinder<'a,M,C>{
mesh:&'a M,
constraint:C,
best_distance_squared:Fixed<2,64>,
}
impl<M:MeshQuery,C:Contains> EVFinder<'_,M,C>{
fn next_transition_vert(&mut self,vert_id:M::Vert,point:Planar64Vec3)->Transition<M::Vert>{
let mut best_transition=Transition::Done;
for &directed_edge_id in self.mesh.vert_edges(vert_id).as_ref(){
//test if this edge's opposite vertex closer
let edge_verts=self.mesh.edge_verts(directed_edge_id.as_undirected());
//select opposite vertex
let test_vert_id=edge_verts.as_ref()[directed_edge_id.parity() as usize];
let test_pos=self.mesh.vert(test_vert_id);
let diff=point-test_pos;
let distance_squared=diff.dot(diff);
// ensure test_vert_id is coplanar to simplex
if distance_squared<self.best_distance_squared&&self.constraint.contains(test_pos){
best_transition=Transition::Vert(test_vert_id);
self.best_distance_squared=distance_squared;
}
}
best_transition
}
fn final_ev(&mut self,vert_id:M::Vert,point:Planar64Vec3)->EV<M>{
let mut best_transition=EV::Vert(vert_id);
let vert_pos=self.mesh.vert(vert_id);
let diff=point-vert_pos;
for &directed_edge_id in self.mesh.vert_edges(vert_id).as_ref(){
//test if this edge is closer
let edge_verts=self.mesh.edge_verts(directed_edge_id.as_undirected());
let test_vert_id=edge_verts.as_ref()[directed_edge_id.parity() as usize];
let test_pos=self.mesh.vert(test_vert_id);
let edge_n=test_pos-vert_pos;
let d=edge_n.dot(diff);
//test the edge
let edge_nn=edge_n.dot(edge_n);
// ensure edge contains closest point and directed_edge_id is coplanar to simplex
if !d.is_negative()&&d<=edge_nn&&self.constraint.contains(test_pos){
let distance_squared={
let c=diff.cross(edge_n);
//wrap for speed
(c.dot(c)/edge_nn).divide().wrap_2()
};
if distance_squared<=self.best_distance_squared{
best_transition=EV::Edge(directed_edge_id.as_undirected());
self.best_distance_squared=distance_squared;
}
}
}
best_transition
}
fn crawl_boundaries(&mut self,mut vert_id:M::Vert,point:Planar64Vec3)->EV<M>{
loop{
match self.next_transition_vert(vert_id,point){
Transition::Done=>return self.final_ev(vert_id,point),
Transition::Vert(new_vert_id)=>vert_id=new_vert_id,
}
}
}
}
/// This function drops a vertex down to an edge or a face if the path from infinity did not cross any vertex-edge boundaries but the point is supposed to have already crossed a boundary down from a vertex
fn crawl_to_closest_ev<M:MeshQuery>(mesh:&M,simplex:Simplex<2,M::Vert>,point:Planar64Vec3)->EV<M>{
// naively start at the closest vertex
// the closest vertex is not necessarily the one with the fewest boundary hops
// but it doesn't matter, we will get there regardless.
let (vert_id,best_distance_squared)=simplex.into_iter().map(|vert_id|{
let diff=point-mesh.vert(vert_id);
(vert_id,diff.dot(diff))
}).min_by_key(|&(_,d)|d).unwrap();
let constraint=ThickLine::new(mesh,simplex);
let mut finder=EVFinder{constraint,mesh,best_distance_squared};
//start on any vertex
//cross uncrossable vertex-edge boundaries until you find the closest vertex or edge
//cross edge-face boundary if it's uncrossable
finder.crawl_boundaries(vert_id,point)
}
/// This function drops a vertex down to an edge or a face if the path from infinity did not cross any vertex-edge boundaries but the point is supposed to have already crossed a boundary down from a vertex
fn crawl_to_closest_fev<'a>(mesh:&MinkowskiMesh<'a>,simplex:Simplex<3,MinkowskiVert>,point:Planar64Vec3)->FEV::<MinkowskiMesh<'a>>{
// naively start at the closest vertex
// the closest vertex is not necessarily the one with the fewest boundary hops
// but it doesn't matter, we will get there regardless.
let (vert_id,best_distance_squared)=simplex.into_iter().map(|vert_id|{
let diff=point-mesh.vert(vert_id);
(vert_id,diff.dot(diff))
}).min_by_key(|&(_,d)|d).unwrap();
let constraint=ThickPlane::new(mesh,simplex);
let mut finder=EVFinder{constraint,mesh,best_distance_squared};
//start on any vertex
//cross uncrossable vertex-edge boundaries until you find the closest vertex or edge
//cross edge-face boundary if it's uncrossable
match finder.crawl_boundaries(vert_id,point){
//if a vert is returned, it is the closest point to the infinity point
EV::Vert(vert_id)=>FEV::Vert(vert_id),
EV::Edge(edge_id)=>{
//cross to face if we are on the wrong side
let edge_n=mesh.edge_n(edge_id);
// point is multiplied by two because vert_sum sums two vertices.
let delta_pos=point*2-{
let &[v0,v1]=mesh.edge_verts(edge_id).as_ref();
mesh.vert(v0)+mesh.vert(v1)
};
for (i,&face_id) in mesh.edge_faces(edge_id).as_ref().iter().enumerate(){
//test if this face is closer
let (face_n,d)=mesh.face_nd(face_id);
//if test point is behind face, the face is invalid
// TODO: find out why I thought of this backwards
if !(face_n.dot(point)-d).is_positive(){
continue;
}
//edge-face boundary nd, n facing out of the face towards the edge
let boundary_n=face_n.cross(edge_n)*(i as i64*2-1);
let boundary_d=boundary_n.dot(delta_pos);
//is test point behind edge, i.e. contained in the face
if !boundary_d.is_positive(){
//both faces cannot pass this condition, return early if one does.
return FEV::Face(face_id);
}
}
FEV::Edge(edge_id)
},
}
}
pub fn closest_fev_not_inside<'a>(mesh:&MinkowskiMesh<'a>,point:Planar64Vec3)->Option<FEV<MinkowskiMesh<'a>>>{
const ENABLE_FAST_FAIL:bool=false;
// TODO: remove mesh negation
minimum_difference::<ENABLE_FAST_FAIL,_,_>(&-mesh,point,
// on_exact
|is_intersecting,simplex|{
if is_intersecting{
return None;
}
// Convert simplex to FEV
// Vertices must be inverted since the mesh is inverted
Some(match simplex{
Simplex1_3::Simplex1([v0])=>FEV::Vert(-v0),
Simplex1_3::Simplex2([v0,v1])=>{
// invert
let (v0,v1)=(-v0,-v1);
let ev=crawl_to_closest_ev(mesh,[v0,v1],point);
if !matches!(ev,EV::Edge(_)){
println!("I can't believe it's not an edge!");
}
ev.into()
},
Simplex1_3::Simplex3([v0,v1,v2])=>{
// invert
let (v0,v1,v2)=(-v0,-v1,-v2);
// Shimmy to the side until you find a face that contains the closest point
// it's ALWAYS representable as a face, but this algorithm may
// return E or V in edge cases but I don't think that will break the face crawler
let fev=crawl_to_closest_fev(mesh,[v0,v1,v2],point);
if !matches!(fev,FEV::Face(_)){
println!("I can't believe it's not a face!");
}
fev
},
})
},
// on_escape
|_simplex|{
// intersection is guaranteed at this point
// local norm, dist, u0, u1, v0, v1, w0, w1 = expand(queryP, queryQ, a0, a1, b0, b1, c0, c1, d0, d1, 1e-5)
// let simplex=refine_to_exact(mesh,simplex);
None
},
// fast_fail value is irrelevant and will never be returned!
||unreachable!()
)
}
// local function minimumDifference(
// queryP, radiusP,
// queryQ, radiusQ,
// exitRadius, testIntersection
// )
fn minimum_difference<const ENABLE_FAST_FAIL:bool,T,M:MeshQuery>(
mesh:&M,
point:Planar64Vec3,
on_exact:impl FnOnce(bool,Simplex1_3<M::Vert>)->T,
on_escape:impl FnOnce(Simplex<4,M::Vert>)->T,
on_fast_fail:impl FnOnce()->T,
)->T{
// local initialAxis = queryQ() - queryP()
// local new_point_p = queryP(initialAxis)
// local new_point_q = queryQ(-initialAxis)
// local direction, a0, a1, b0, b1, c0, c1, d0, d1
let mut initial_axis=mesh.hint_point()+point;
// degenerate case
if initial_axis==vec3::zero(){
initial_axis=choose_any_direction();
}
let last_point=mesh.farthest_vert(-initial_axis);
// this represents the 'a' value in the commented code
let mut last_pos=mesh.vert(last_point);
let Reduced{dir:mut direction,simplex:mut simplex_small}=reduce1([last_point],mesh,point);
// exitRadius = testIntersection and 0 or exitRadius or 1/0
// for _ = 1, 100 do
loop{
// new_point_p = queryP(-direction)
// new_point_q = queryQ(direction)
// local next_point = new_point_q - new_point_p
let next_point=mesh.farthest_vert(direction);
let next_pos=mesh.vert(next_point);
// if -direction:Dot(next_point) > (exitRadius + radiusP + radiusQ)*direction.magnitude then
if ENABLE_FAST_FAIL&&direction.dot(next_pos+point).is_negative(){
return on_fast_fail();
}
let simplex_big=simplex_small.push_front(next_point);
// if
// direction:Dot(next_point - a) <= 0 or
// absDet(next_point, a, b, c) < 1e-6
if !direction.dot(next_pos-last_pos).is_positive()
||simplex_big.det_is_zero(mesh){
// Found enough information to compute the exact closest point.
// local norm = direction.unit
// local dist = a:Dot(norm)
// local hits = -dist < radiusP + radiusQ
let is_intersecting=(last_pos+point).dot(direction).is_positive();
return on_exact(is_intersecting,simplex_small);
}
// direction, a0, a1, b0, b1, c0, c1, d0, d1 = reduceSimplex(new_point_p, new_point_q, a0, a1, b0, b1, c0, c1)
match simplex_big.reduce(mesh,point){
// if a and b and c and d then
Reduce::Escape(simplex)=>{
// Enough information to conclude that the meshes are intersecting.
// Topology information is computed if needed.
return on_escape(simplex);
},
Reduce::Reduced(reduced)=>{
direction=reduced.dir;
simplex_small=reduced.simplex;
},
}
// next loop this will be a
last_pos=next_pos;
}
}
#[cfg(test)]
mod test{
use super::*;
use crate::model::{PhysicsMesh,PhysicsMeshView};
fn mesh_contains_point(mesh:PhysicsMeshView<'_>,point:Planar64Vec3)->bool{
const ENABLE_FAST_FAIL:bool=true;
// TODO: remove mesh negation
minimum_difference::<ENABLE_FAST_FAIL,_,_>(&mesh,point,
// on_exact
|is_intersecting,_simplex|{
is_intersecting
},
// on_escape
|_simplex|{
// intersection is guaranteed at this point
true
},
// fast_fail value
||false
)
}
#[test]
fn test_cube_points(){
let mesh=PhysicsMesh::unit_cube();
let mesh_view=mesh.complete_mesh_view();
for x in -2..=2{
for y in -2..=2{
for z in -2..=2{
let point=vec3::int(x,y,z)>>1;
assert!(mesh_contains_point(mesh_view,point),"Mesh did not contain point {point}");
}
}
}
}
}

View File

@@ -60,7 +60,7 @@ impl DirectedEdge for SubmeshDirectedEdgeId{
}
//Vertex <-> Edge <-> Face -> Collide
#[derive(Debug,Clone)]
#[derive(Debug)]
pub enum FEV<M:MeshQuery>{
Face(M::Face),
Edge(<M::Edge as DirectedEdge>::UndirectedEdge),
@@ -93,7 +93,6 @@ pub trait MeshQuery{
/// This must return a point inside the mesh.
#[expect(dead_code)]
fn hint_point(&self)->Planar64Vec3;
fn farthest_vert(&self,dir:Planar64Vec3)->Self::Vert;
fn vert(&self,vert_id:Self::Vert)->Planar64Vec3;
fn face_nd(&self,face_id:Self::Face)->(Self::Normal,Self::Offset);
fn face_edges(&self,face_id:Self::Face)->impl AsRef<[Self::Edge]>;
@@ -440,29 +439,11 @@ impl TryFrom<&model::Mesh> for PhysicsMesh{
}
}
#[derive(Debug,Clone,Copy)]
#[derive(Debug)]
pub struct PhysicsMeshView<'a>{
data:&'a PhysicsMeshData,
topology:&'a PhysicsMeshTopology,
}
impl PhysicsMeshView<'_>{
pub fn verts(&self)->&[MeshVertId]{
&self.topology.verts
}
pub fn edge_vert_ids_iter(&self)->impl Iterator<Item=[MeshVertId;2]>+'_{
self.topology.edge_topology.iter().map(|edge|{
edge.verts.map(|vert_id|self.topology.verts[vert_id.get() as usize])
})
}
pub fn face_vert_ids_iter(&self)->impl Iterator<Item=impl Iterator<Item=MeshVertId>>+'_{
self.topology.face_topology.iter().map(|face|{
face.edges.iter().map(|edge_id|{
let vert_id=self.topology.edge_topology[edge_id.as_undirected().get() as usize].verts[edge_id.parity() as usize];
self.topology.verts[vert_id.get() as usize]
})
})
}
}
impl MeshQuery for PhysicsMeshView<'_>{
type Face=SubmeshFaceId;
type Edge=SubmeshDirectedEdgeId;
@@ -477,18 +458,6 @@ impl MeshQuery for PhysicsMeshView<'_>{
// invariant: meshes always encompass the origin
vec3::zero()
}
fn farthest_vert(&self,dir:Planar64Vec3)->SubmeshVertId{
//this happens to be well-defined. there are no virtual virtices
SubmeshVertId::new(
self.topology.verts.iter()
.enumerate()
.max_by_key(|&(_,&vert_id)|
dir.dot(self.data.verts[vert_id.get() as usize].0)
)
//assume there is more than zero vertices.
.unwrap().0 as u32
)
}
//ideally I never calculate the vertex position, but I have to for the graphical meshes...
fn vert(&self,vert_id:SubmeshVertId)->Planar64Vec3{
let vert_idx=self.topology.verts[vert_id.get() as usize].get() as usize;
@@ -527,7 +496,7 @@ impl PhysicsMeshTransform{
}
}
#[derive(Debug,Clone,Copy)]
#[derive(Debug)]
pub struct TransformedMesh<'a>{
view:PhysicsMeshView<'a>,
transform:&'a PhysicsMeshTransform,
@@ -545,8 +514,17 @@ impl TransformedMesh<'_>{
pub fn verts<'a>(&'a self)->impl Iterator<Item=Vector3<Fixed<2,64>>>+'a{
self.view.data.verts.iter().map(|&Vert(pos)|self.transform.vertex.transform_point3(pos))
}
pub fn faces(&self)->impl Iterator<Item=SubmeshFaceId>{
(0..self.view.topology.faces.len() as u32).map(SubmeshFaceId::new)
fn farthest_vert(&self,dir:Planar64Vec3)->SubmeshVertId{
//this happens to be well-defined. there are no virtual virtices
SubmeshVertId::new(
self.view.topology.verts.iter()
.enumerate()
.max_by_key(|&(_,&vert_id)|
dir.dot(self.transform.vertex.transform_point3(self.view.data.verts[vert_id.get() as usize].0))
)
//assume there is more than zero vertices.
.unwrap().0 as u32
)
}
}
impl MeshQuery for TransformedMesh<'_>{
@@ -568,18 +546,6 @@ impl MeshQuery for TransformedMesh<'_>{
fn hint_point(&self)->Planar64Vec3{
self.transform.vertex.translation
}
fn farthest_vert(&self,dir:Planar64Vec3)->SubmeshVertId{
//this happens to be well-defined. there are no virtual virtices
SubmeshVertId::new(
self.view.topology.verts.iter()
.enumerate()
.max_by_key(|&(_,&vert_id)|
dir.dot(self.transform.vertex.transform_point3(self.view.data.verts[vert_id.get() as usize].0))
)
//assume there is more than zero vertices.
.unwrap().0 as u32
)
}
#[inline]
fn face_edges(&self,face_id:SubmeshFaceId)->impl AsRef<[SubmeshDirectedEdgeId]>{
self.view.face_edges(face_id)
@@ -606,20 +572,11 @@ impl MeshQuery for TransformedMesh<'_>{
//(face,vertex)
//(edge,edge)
//(vertex,face)
#[derive(Clone,Copy,Debug,Eq,PartialEq)]
#[derive(Clone,Copy,Debug)]
pub enum MinkowskiVert{
VertVert(SubmeshVertId,SubmeshVertId),
}
// TODO: remove this
impl core::ops::Neg for MinkowskiVert{
type Output=Self;
fn neg(self)->Self::Output{
match self{
MinkowskiVert::VertVert(v0,v1)=>MinkowskiVert::VertVert(v1,v0),
}
}
}
#[derive(Clone,Copy,Debug,Eq,PartialEq)]
#[derive(Clone,Copy,Debug)]
pub enum MinkowskiEdge{
VertEdge(SubmeshVertId,SubmeshEdgeId),
EdgeVert(SubmeshEdgeId,SubmeshVertId),
@@ -634,7 +591,7 @@ impl UndirectedEdge for MinkowskiEdge{
}
}
}
#[derive(Clone,Copy,Debug,Eq,PartialEq)]
#[derive(Clone,Copy,Debug)]
pub enum MinkowskiDirectedEdge{
VertEdge(SubmeshVertId,SubmeshDirectedEdgeId),
EdgeVert(SubmeshDirectedEdgeId,SubmeshVertId),
@@ -655,7 +612,7 @@ impl DirectedEdge for MinkowskiDirectedEdge{
}
}
}
#[derive(Clone,Copy,Debug,Hash)]
#[derive(Clone,Copy,Debug,Hash,Eq,PartialEq)]
pub enum MinkowskiFace{
VertFace(SubmeshVertId,SubmeshFaceId),
EdgeEdge(SubmeshEdgeId,SubmeshEdgeId,bool),
@@ -671,20 +628,23 @@ pub struct MinkowskiMesh<'a>{
mesh1:TransformedMesh<'a>,
}
//infinity fev algorithm state transition
#[derive(Debug)]
enum Transition{
Done,//found closest vert, no edges are better
Vert(MinkowskiVert),//transition to vert
}
enum EV{
Vert(MinkowskiVert),
Edge(MinkowskiEdge),
}
pub type GigaTime=Ratio<Fixed<4,128>,Fixed<4,128>>;
pub fn into_giga_time(time:Time,relative_to:Time)->GigaTime{
let r=(time-relative_to).to_ratio();
Ratio::new(r.num.widen_4(),r.den.widen_4())
}
// TODO: remove this
impl<'a> core::ops::Neg for &MinkowskiMesh<'a>{
type Output=MinkowskiMesh<'a>;
fn neg(self)->Self::Output{
MinkowskiMesh::minkowski_sum(self.mesh1,self.mesh0)
}
}
impl MinkowskiMesh<'_>{
pub fn minkowski_sum<'a>(mesh0:TransformedMesh<'a>,mesh1:TransformedMesh<'a>)->MinkowskiMesh<'a>{
MinkowskiMesh{
@@ -692,27 +652,140 @@ impl MinkowskiMesh<'_>{
mesh1,
}
}
fn farthest_vert(&self,dir:Planar64Vec3)->MinkowskiVert{
MinkowskiVert::VertVert(self.mesh0.farthest_vert(dir),self.mesh1.farthest_vert(-dir))
}
fn next_transition_vert(&self,vert_id:MinkowskiVert,best_distance_squared:&mut Fixed<2,64>,infinity_dir:Planar64Vec3,point:Planar64Vec3)->Transition{
let mut best_transition=Transition::Done;
for &directed_edge_id in self.vert_edges(vert_id).as_ref(){
let edge_n=self.directed_edge_n(directed_edge_id);
//is boundary uncrossable by a crawl from infinity
let edge_verts=self.edge_verts(directed_edge_id.as_undirected());
//select opposite vertex
let test_vert_id=edge_verts.as_ref()[directed_edge_id.parity() as usize];
//test if it's closer
let diff=point-self.vert(test_vert_id);
if edge_n.dot(infinity_dir).is_zero(){
let distance_squared=diff.dot(diff);
if distance_squared<*best_distance_squared{
best_transition=Transition::Vert(test_vert_id);
*best_distance_squared=distance_squared;
}
}
}
best_transition
}
fn final_ev(&self,vert_id:MinkowskiVert,best_distance_squared:&mut Fixed<2,64>,infinity_dir:Planar64Vec3,point:Planar64Vec3)->EV{
let mut best_transition=EV::Vert(vert_id);
let diff=point-self.vert(vert_id);
for &directed_edge_id in self.vert_edges(vert_id).as_ref(){
let edge_n=self.directed_edge_n(directed_edge_id);
//is boundary uncrossable by a crawl from infinity
//check if time of collision is outside Time::MIN..Time::MAX
if edge_n.dot(infinity_dir).is_zero(){
let d=edge_n.dot(diff);
//test the edge
let edge_nn=edge_n.dot(edge_n);
if !d.is_negative()&&d<=edge_nn{
let distance_squared={
let c=diff.cross(edge_n);
//wrap for speed
(c.dot(c)/edge_nn).divide().wrap_2()
};
if distance_squared<=*best_distance_squared{
best_transition=EV::Edge(directed_edge_id.as_undirected());
*best_distance_squared=distance_squared;
}
}
}
}
best_transition
}
fn crawl_boundaries(&self,mut vert_id:MinkowskiVert,infinity_dir:Planar64Vec3,point:Planar64Vec3)->EV{
let mut best_distance_squared={
let diff=point-self.vert(vert_id);
diff.dot(diff)
};
loop{
match self.next_transition_vert(vert_id,&mut best_distance_squared,infinity_dir,point){
Transition::Done=>return self.final_ev(vert_id,&mut best_distance_squared,infinity_dir,point),
Transition::Vert(new_vert_id)=>vert_id=new_vert_id,
}
}
}
/// This function drops a vertex down to an edge or a face if the path from infinity did not cross any vertex-edge boundaries but the point is supposed to have already crossed a boundary down from a vertex
fn infinity_fev(&self,infinity_dir:Planar64Vec3,point:Planar64Vec3)->FEV::<MinkowskiMesh<'_>>{
//start on any vertex
//cross uncrossable vertex-edge boundaries until you find the closest vertex or edge
//cross edge-face boundary if it's uncrossable
match self.crawl_boundaries(self.farthest_vert(infinity_dir),infinity_dir,point){
//if a vert is returned, it is the closest point to the infinity point
EV::Vert(vert_id)=>FEV::Vert(vert_id),
EV::Edge(edge_id)=>{
//cross to face if the boundary is not crossable and we are on the wrong side
let edge_n=self.edge_n(edge_id);
// point is multiplied by two because vert_sum sums two vertices.
let delta_pos=point*2-{
let &[v0,v1]=self.edge_verts(edge_id).as_ref();
self.vert(v0)+self.vert(v1)
};
for (i,&face_id) in self.edge_faces(edge_id).as_ref().iter().enumerate(){
let face_n=self.face_nd(face_id).0;
//edge-face boundary nd, n facing out of the face towards the edge
let boundary_n=face_n.cross(edge_n)*(i as i64*2-1);
let boundary_d=boundary_n.dot(delta_pos);
//check if time of collision is outside Time::MIN..Time::MAX
//infinity_dir can always be treated as a velocity
if !boundary_d.is_positive()&&boundary_n.dot(infinity_dir).is_zero(){
//both faces cannot pass this condition, return early if one does.
return FEV::Face(face_id);
}
}
FEV::Edge(edge_id)
},
}
}
// TODO: fundamentally improve this algorithm.
// All it needs to do is find the closest point on the mesh
// and return the FEV which the point resides on.
//
// What it actually does is use the above functions to trace a ray in from infinity,
// crawling the closest point along the mesh surface until the ray reaches
// the starting point to discover the final FEV.
//
// The actual collision prediction probably does a single test
// and then immediately returns with 0 FEV transitions on average,
// because of the strict time_limit constraint.
//
// Most of the calculation time is just calculating the starting point
// for the "actual" crawling algorithm below (predict_collision_{in|out}).
fn closest_fev_not_inside(&self,mut infinity_body:Body,start_time:Bound<&Time>)->Option<FEV<MinkowskiMesh<'_>>>{
infinity_body.infinity_dir().and_then(|dir|{
let infinity_fev=self.infinity_fev(-dir,infinity_body.position);
//a line is simpler to solve than a parabola
infinity_body.velocity=dir;
infinity_body.acceleration=vec3::zero();
//crawl in from negative infinity along a tangent line to get the closest fev
infinity_fev.crawl(self,&infinity_body,Bound::Unbounded,start_time).miss()
})
}
pub fn predict_collision_in(&self,relative_body:&Body,range:impl RangeBounds<Time>)->Option<(MinkowskiFace,GigaTime)>{
let fev=crate::minimum_difference::closest_fev_not_inside(self,relative_body.position)?;
//continue forwards along the body parabola
fev.crawl(self,relative_body,range.start_bound(),range.end_bound()).hit()
self.closest_fev_not_inside(*relative_body,range.start_bound()).and_then(|fev|{
//continue forwards along the body parabola
fev.crawl(self,relative_body,range.start_bound(),range.end_bound()).hit()
})
}
pub fn predict_collision_out(&self,relative_body:&Body,range:impl RangeBounds<Time>)->Option<(MinkowskiFace,GigaTime)>{
let (lower_bound,upper_bound)=(range.start_bound(),range.end_bound());
// TODO: handle unbounded collision using infinity fev
let time=match upper_bound{
Bound::Included(&time)=>time,
Bound::Excluded(&time)=>time,
Bound::Unbounded=>unimplemented!("unbounded collision out"),
};
let fev=crate::minimum_difference::closest_fev_not_inside(self,relative_body.extrapolated_position(time))?;
// swap and negate bounds to do a time inversion
let (lower_bound,upper_bound)=(upper_bound.map(|&t|-t),lower_bound.map(|&t|-t));
let infinity_body=-relative_body;
//continue backwards along the body parabola
fev.crawl(self,&infinity_body,lower_bound.as_ref(),upper_bound.as_ref()).hit()
//no need to test -time<time_limit because of the first step
.map(|(face,time)|(face,-time))
self.closest_fev_not_inside(infinity_body,lower_bound.as_ref()).and_then(|fev|{
//continue backwards along the body parabola
fev.crawl(self,&infinity_body,lower_bound.as_ref(),upper_bound.as_ref()).hit()
//no need to test -time<time_limit because of the first step
.map(|(face,time)|(face,-time))
})
}
pub fn predict_collision_face_out(&self,relative_body:&Body,range:impl RangeBounds<Time>,contact_face_id:MinkowskiFace)->Option<(MinkowskiDirectedEdge,GigaTime)>{
// TODO: make better
@@ -742,8 +815,20 @@ impl MinkowskiMesh<'_>{
}
best_edge
}
pub fn contains_point(&self,point:Planar64Vec3)->bool{
crate::minimum_difference::contains_point(self,point)
fn infinity_in(&self,infinity_body:Body)->Option<(MinkowskiFace,GigaTime)>{
let infinity_fev=self.infinity_fev(-infinity_body.velocity,infinity_body.position);
// Bound::Included means that the surface of the mesh is included in the mesh
infinity_fev.crawl(self,&infinity_body,Bound::Unbounded,Bound::Included(&infinity_body.time)).hit()
}
pub fn is_point_in_mesh(&self,point:Planar64Vec3)->bool{
let infinity_body=Body::new(point,vec3::Y,vec3::zero(),Time::ZERO);
//movement must escape the mesh forwards and backwards in time,
//otherwise the point is not inside the mesh
self.infinity_in(infinity_body)
.is_some_and(|_|
self.infinity_in(-infinity_body)
.is_some()
)
}
}
impl MeshQuery for MinkowskiMesh<'_>{
@@ -783,10 +868,8 @@ impl MeshQuery for MinkowskiMesh<'_>{
}
}
fn hint_point(&self)->Planar64Vec3{
self.mesh0.transform.vertex.translation-self.mesh1.transform.vertex.translation
}
fn farthest_vert(&self,dir:Planar64Vec3)->MinkowskiVert{
MinkowskiVert::VertVert(self.mesh0.farthest_vert(dir),self.mesh1.farthest_vert(-dir))
self.mesh1.transform.vertex.translation-
self.mesh0.transform.vertex.translation
}
fn face_edges(&self,face_id:MinkowskiFace)->impl AsRef<[MinkowskiDirectedEdge]>{
match face_id{

View File

@@ -1,5 +1,4 @@
use std::collections::{HashMap,HashSet};
use crate::model::DirectedEdge;
use crate::model::{self as model_physics,PhysicsMesh,PhysicsMeshTransform,TransformedMesh,MeshQuery,PhysicsMeshId,PhysicsSubmeshId};
use strafesnet_common::bvh;
use strafesnet_common::map;
@@ -287,8 +286,7 @@ impl PhysicsCamera{
.clamp(Self::ANGLE_PITCH_LOWER_LIMIT,Self::ANGLE_PITCH_UPPER_LIMIT);
mat3::from_rotation_yx(ax,ay)
}
#[inline]
pub fn rotation(&self)->Planar64Mat3{
fn rotation(&self)->Planar64Mat3{
self.get_rotation(self.clamped_mouse_pos)
}
#[expect(dead_code)]
@@ -670,7 +668,7 @@ impl From<CollisionAttributesId> for IntersectAttributesId{
}
}
#[derive(Debug,Clone,Copy,Hash,id::Id,Eq,PartialEq)]
pub struct ContactModelId(u32);
struct ContactModelId(u32);
impl From<ContactModelId> for ModelId{
fn from(value:ContactModelId)->ModelId{
ModelId::new(value.get())
@@ -682,7 +680,7 @@ impl From<ModelId> for ContactModelId{
}
}
#[derive(Debug,Clone,Copy,Hash,id::Id,Eq,PartialEq)]
pub struct IntersectModelId(u32);
struct IntersectModelId(u32);
impl From<IntersectModelId> for ModelId{
fn from(value:IntersectModelId)->ModelId{
ModelId::new(value.get())
@@ -694,7 +692,7 @@ impl From<ModelId> for IntersectModelId{
}
}
#[derive(Debug,Clone,Copy,Hash,Eq,PartialEq)]
pub enum PhysicsModelId{
enum PhysicsModelId{
Contact(ContactModelId),
Intersect(IntersectModelId),
}
@@ -708,9 +706,9 @@ impl From<PhysicsModelId> for ModelId{
}
//unique physics meshes indexed by this
#[derive(Debug,Clone,Copy,Eq,Hash,PartialEq)]
pub struct ConvexMeshId<Id>{
pub model_id:Id,
pub submesh_id:PhysicsSubmeshId,
struct ConvexMeshId<Id>{
model_id:Id,
submesh_id:PhysicsSubmeshId,
}
impl<Id> ConvexMeshId<Id>{
fn map<NewId>(self,model_id:NewId)->ConvexMeshId<NewId>{
@@ -731,7 +729,7 @@ struct IntersectModel{
transform:PhysicsMeshTransform,
}
#[derive(Debug,Clone,Copy,Hash)]
#[derive(Debug,Clone,Copy,Eq,Hash,PartialEq)]
pub struct ContactCollision{
convex_mesh_id:ConvexMeshId<ContactModelId>,
face_id:model_physics::MinkowskiFace,
@@ -740,7 +738,7 @@ pub struct ContactCollision{
pub struct IntersectCollision{
convex_mesh_id:ConvexMeshId<IntersectModelId>,
}
#[derive(Debug,Clone,Hash)]
#[derive(Debug,Clone,Eq,Hash,PartialEq)]
pub enum Collision{
Contact(ContactCollision),
Intersect(IntersectCollision),
@@ -999,70 +997,6 @@ impl PhysicsData{
hitbox_mesh:StyleModifiers::default().calculate_mesh(),
}
}
pub fn trace_ray(&self,ray:strafesnet_common::ray::Ray)->Option<ConvexMeshId<PhysicsModelId>>{
let (_time,convex_mesh_id)=self.bvh.sample_ray(&ray,Time::ZERO,Time::MAX/4,|&model,ray|{
let mesh=self.models.mesh(model);
// brute force trace every face
let faces=mesh.faces().filter_map(|face_id|{
let (n,d)=mesh.face_nd(face_id);
// trace ray onto face
// n.(o+d*t)==n.p
// n.o + n.d * t == n.p
// t == (n.p - n.o)/n.d
let nd=n.dot(ray.direction);
if nd.is_zero(){
return None;
}
let t=(d-n.dot(ray.origin))/nd;
Some((face_id,t,n))
});
let mut min=None;
for (face_id,t,n) in faces{
if let Some(min)=min&&min<t{
continue;
}
// check if point of intersection is behind face edges
// *2 because average of 2 vertices
let p=ray.extrapolate(t)*2;
let is_inside_face=mesh.face_edges(face_id).as_ref().iter().all(|&directed_edge_id|{
let edge_n=mesh.directed_edge_n(directed_edge_id);
let cross_n=edge_n.cross(n);
let &[vert0,vert1]=mesh.edge_verts(directed_edge_id.as_undirected()).as_ref();
cross_n.dot(p)<cross_n.dot(mesh.vert(vert0)+mesh.vert(vert1))
});
if is_inside_face{
min=Some(t);
}
}
min.map(Into::into)
})?;
Some(*convex_mesh_id)
}
pub fn closest_fev_not_inside(&self,convex_mesh_id:ConvexMeshId<PhysicsModelId>,point:Planar64Vec3)->Option<model_physics::FEV<TransformedMesh<'static>>>{
let model_mesh=self.models.mesh(convex_mesh_id);
let minkowski=model_physics::MinkowskiMesh::minkowski_sum(model_mesh,self.hitbox_mesh.transformed_mesh());
let fev=crate::minimum_difference::closest_fev_not_inside(&minkowski,point)?;
Some(match fev{
model_physics::FEV::Face(face)=>{
match face{
model_physics::MinkowskiFace::VertFace(submesh_vert_id,_)=>model_physics::FEV::Vert(submesh_vert_id),
model_physics::MinkowskiFace::EdgeEdge(submesh_edge_id,..)=>model_physics::FEV::Edge(submesh_edge_id),
model_physics::MinkowskiFace::FaceVert(submesh_face_id,_)=>model_physics::FEV::Face(submesh_face_id),
}
},
model_physics::FEV::Edge(edge)=>{
match edge{
model_physics::MinkowskiEdge::VertEdge(submesh_vert_id,_)=>model_physics::FEV::Vert(submesh_vert_id),
model_physics::MinkowskiEdge::EdgeVert(submesh_edge_id,_)=>model_physics::FEV::Edge(submesh_edge_id),
}
},
model_physics::FEV::Vert(vert)=>{
match vert{
model_physics::MinkowskiVert::VertVert(submesh_vert_id,_)=>model_physics::FEV::Vert(submesh_vert_id),
}
},
})
}
pub fn new(map:&map::CompleteMap)->Self{
let modes=map.modes.clone().denormalize();
let mut used_contact_attributes=Vec::new();
@@ -1343,7 +1277,7 @@ fn recalculate_touching(
//no checks are needed because of the time limits.
let model_mesh=models.mesh(convex_mesh_id);
let minkowski=model_physics::MinkowskiMesh::minkowski_sum(model_mesh,hitbox_mesh.transformed_mesh());
if minkowski.contains_point(body.position){
if minkowski.is_point_in_mesh(body.position){
match convex_mesh_id.model_id{
//being inside of contact objects is an invalid physics state
//but the physics isn't advanced enough to do anything about it yet

View File

@@ -52,7 +52,6 @@ pub enum SessionControlInstruction{
pub enum SessionPlaybackInstruction{
SkipForward,
SkipBack,
TogglePaused,
DecreaseTimescale,
IncreaseTimescale,
}
@@ -61,7 +60,6 @@ pub struct FrameState{
pub body:physics::Body,
pub camera:physics::PhysicsCamera,
pub time:PhysicsTime,
pub hit:Option<Hit>,
}
pub struct Simulation{
@@ -78,12 +76,11 @@ impl Simulation{
physics,
}
}
pub fn get_frame_state(&self,time:SessionTime,debug_model:Option<Hit>)->FrameState{
pub fn get_frame_state(&self,time:SessionTime)->FrameState{
FrameState{
body:self.physics.camera_body(),
camera:self.physics.camera(),
time:self.timer.time(time),
hit: debug_model,
}
}
}
@@ -151,12 +148,6 @@ enum ViewState{
Replay(BotId),
}
#[derive(Clone)]
pub struct Hit{
pub convex_mesh_id:physics::ConvexMeshId<physics::PhysicsModelId>,
pub closest_fev:Option<strafesnet_physics::model::FEV<strafesnet_physics::model::TransformedMesh<'static>>>
}
pub struct Session{
directories:Directories,
user_settings:UserSettings,
@@ -169,7 +160,6 @@ pub struct Session{
recording:Recording,
//players:HashMap<PlayerId,Simulation>,
replays:HashMap<BotId,Replay>,
last_ray_hit:Option<Hit>,
}
impl Session{
pub fn new(
@@ -186,7 +176,6 @@ impl Session{
view_state:ViewState::Play,
recording:Default::default(),
replays:HashMap::new(),
last_ray_hit:None,
}
}
fn clear_recording(&mut self){
@@ -198,30 +187,12 @@ impl Session{
}
pub fn get_frame_state(&self,time:SessionTime)->Option<FrameState>{
match &self.view_state{
ViewState::Play=>Some(self.simulation.get_frame_state(time,self.last_ray_hit.clone())),
ViewState::Play=>Some(self.simulation.get_frame_state(time)),
ViewState::Replay(bot_id)=>self.replays.get(bot_id).map(|replay|
replay.simulation.get_frame_state(time,None)
replay.simulation.get_frame_state(time)
),
}
}
pub fn debug_raycast_print_model_id_if_changed(&mut self,time:SessionTime){
if let Some(frame_state)=self.get_frame_state(time){
let ray=strafesnet_common::ray::Ray{
origin:frame_state.body.extrapolated_position(self.simulation.timer.time(time)),
direction:-frame_state.camera.rotation().z_axis,
};
match self.geometry_shared.trace_ray(ray){
Some(convex_mesh_id)=>{
let closest_fev=self.geometry_shared.closest_fev_not_inside(convex_mesh_id,self.simulation.physics.body().position);
self.last_ray_hit=Some(Hit{
convex_mesh_id,
closest_fev,
});
},
None=>self.last_ray_hit=None,
}
}
}
pub fn user_settings(&self)->&UserSettings{
&self.user_settings
}
@@ -281,7 +252,14 @@ impl InstructionConsumer<Instruction<'_>> for Session{
// don't flush the buffered instructions in the mouse interpolator
// until the mouse is confirmed to be not moving at a later time
// what if they pause for 5ms lmao
_=self.simulation.timer.set_paused(ins.time,paused);
match &self.view_state{
ViewState::Play=>{
_=self.simulation.timer.set_paused(ins.time,paused);
},
ViewState::Replay(bot_id)=>if let Some(replay)=self.replays.get_mut(bot_id){
_=replay.simulation.timer.set_paused(ins.time,paused);
},
}
},
Instruction::Control(SessionControlInstruction::CopyRecordingIntoReplayAndSpectate)=> if let ViewState::Play=self.view_state{
// Bind: B
@@ -402,14 +380,6 @@ impl InstructionConsumer<Instruction<'_>> for Session{
},
}
},
Instruction::Playback(SessionPlaybackInstruction::TogglePaused)=>{
match &self.view_state{
ViewState::Play=>(),
ViewState::Replay(bot_id)=>if let Some(replay)=self.replays.get_mut(bot_id){
_=replay.simulation.timer.set_paused(ins.time,!replay.simulation.timer.is_paused());
},
}
}
Instruction::ChangeMap(complete_map)=>{
self.clear_recording();
self.change_map(complete_map);

View File

@@ -12,7 +12,7 @@ authors = ["Rhys Lloyd <krakow20@gmail.com>"]
[dependencies]
bytemuck = "1.14.3"
glam = "0.30.0"
regex = { version = "1.11.3", default-features = false }
regex = { version = "1.11.3", default-features = false, features = ["unicode-perl"] }
rbx_mesh = "0.5.0"
rbxassetid = { version = "0.1.0", path = "../rbxassetid", registry = "strafesnet" }
roblox_emulator = { version = "0.5.1", path = "../roblox_emulator", default-features = false, registry = "strafesnet" }

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -1,62 +0,0 @@
# Blender MTL File: 'teslacyberv3.0.blend'
# Material Count: 6
newmtl Material
Ns 65.476285
Ka 1.000000 1.000000 1.000000
Kd 0.411568 0.411568 0.411568
Ks 0.614679 0.614679 0.614679
Ke 0.000000 0.000000 0.000000
Ni 36.750000
d 1.000000
illum 3
newmtl Материал
Ns 323.999994
Ka 1.000000 1.000000 1.000000
Kd 0.800000 0.800000 0.800000
Ks 0.500000 0.500000 0.500000
Ke 0.000000 0.000000 0.000000
Ni 1.000000
d 1.000000
illum 2
newmtl Материал.001
Ns 900.000000
Ka 1.000000 1.000000 1.000000
Kd 0.026240 0.026240 0.026240
Ks 0.000000 0.000000 0.000000
Ke 0.000000 0.000000 0.000000
Ni 1.450000
d 1.000000
illum 1
newmtl Материал.002
Ns 0.000000
Ka 1.000000 1.000000 1.000000
Kd 0.031837 0.032429 0.029425
Ks 0.169725 0.169725 0.169725
Ke 0.000000 0.000000 0.000000
Ni 0.000000
d 1.000000
illum 2
newmtl Материал.003
Ns 900.000000
Ka 1.000000 1.000000 1.000000
Kd 0.023585 0.083235 0.095923
Ks 1.000000 1.000000 1.000000
Ke 0.000000 0.000000 0.000000
Ni 45.049999
d 1.000000
illum 3
newmtl Материал.004
Ns 323.999994
Ka 1.000000 1.000000 1.000000
Kd 0.800000 0.800000 0.800000
Ks 0.500000 0.500000 0.500000
Ke 0.000000 0.000000 0.000000
Ni 1.000000
d 1.000000
illum 2

File diff suppressed because it is too large Load Diff

View File

@@ -77,8 +77,5 @@ pub fn new<'a>(
run_session_instruction!(ins.time,SessionInstruction::LoadReplay(bot));
}
}
//whatever just do it
session.debug_raycast_print_model_id_if_changed(ins.time);
})
}

View File

@@ -3,7 +3,7 @@ fn optional_features()->wgpu::Features{
|wgpu::Features::TEXTURE_COMPRESSION_ETC2
}
fn required_features()->wgpu::Features{
wgpu::Features::TEXTURE_COMPRESSION_BC|wgpu::Features::EXPERIMENTAL_MESH_SHADER
wgpu::Features::TEXTURE_COMPRESSION_BC
}
fn required_downlevel_capabilities()->wgpu::DownlevelCapabilities{
wgpu::DownlevelCapabilities{
@@ -125,7 +125,7 @@ impl<'a> SetupContextPartial3<'a>{
required_limits:needed_limits,
memory_hints:wgpu::MemoryHints::Performance,
trace:wgpu::Trace::Off,
experimental_features:unsafe{wgpu::ExperimentalFeatures::enabled()},
experimental_features:wgpu::ExperimentalFeatures::disabled(),
},
))
.expect("Unable to find a suitable GPU adapter!");

View File

@@ -1,5 +1,3 @@
enable wgpu_mesh_shader;
struct Camera {
// from camera to screen
proj: mat4x4<f32>,
@@ -88,166 +86,6 @@ fn vs_entity_texture(
return result;
}
@group(1)
@binding(0)
var<uniform> model_instance: ModelInstance;
@group(1)
@binding(1)
var<uniform> ve_verts: array<vec4<f32>, 2>;
struct DebugEntityOutput {
@builtin(position) position: vec4<f32>,
};
@vertex
fn vs_debug_face(
@location(0) pos: vec3<f32>,
) -> DebugEntityOutput {
var position: vec4<f32> = model_instance.transform * vec4<f32>(pos, 1.0);
var result: DebugEntityOutput;
result.position = camera.proj * camera.view * position;
return result;
}
struct TaskPayload {
four_bytes: u32,
}
var<task_payload> taskPayload: TaskPayload;
@task
@payload(taskPayload)
@workgroup_size(1)
fn ts_main() -> @builtin(mesh_task_size) vec3<u32> {
taskPayload.four_bytes = 0;
return vec3(1, 1, 1);
}
struct VertexOutput {
@builtin(position) position: vec4<f32>,
@location(0) color: vec4<f32>,
}
struct PrimitiveOutput {
@builtin(triangle_indices) indices: vec3<u32>,
}
struct CircleOutput {
@builtin(vertices) vertices: array<VertexOutput, 24>,
@builtin(primitives) primitives: array<PrimitiveOutput, 22>,
@builtin(vertex_count) vertex_count: u32,
@builtin(primitive_count) primitive_count: u32,
}
var<workgroup> mesh_output: CircleOutput;
const tau: f32 = 3.141592653589793 * 2.0;
fn modulo(value:u32,modulus:u32)->u32{
return value-value/modulus*modulus;
}
@mesh(mesh_output)
@payload(taskPayload)
@workgroup_size(1)
fn ms_debug_vert(){
// circle with 24 vertices.
const LAYERS:u32 = 3;
const N:u32 = 3*(1<<LAYERS);
mesh_output.vertex_count = N;
mesh_output.primitive_count = N-2;
var vertex_world_position: vec4<f32> = model_instance.transform * ve_verts[0];
var vertex_screen_position: vec4<f32> = camera.proj * camera.view * vertex_world_position;
for (var i:u32 = 0; i<N/4; i++){
// draw a 1 unit redius circle
var theta: f32 = f32(i) * tau / f32(N);
var cos_sin: vec2<f32> = vec2(cos(theta), sin(theta));
var offset: vec2<f32> = 0.5 * cos_sin;
mesh_output.vertices[i].position = vertex_screen_position + vec4<f32>(offset, 0.0, 0.0);
mesh_output.vertices[i+N/4].position = vertex_screen_position + vec4<f32>(-offset.y, offset.x, 0.0, 0.0);
mesh_output.vertices[i+N/4*2].position = vertex_screen_position + vec4<f32>(-offset, 0.0, 0.0);
mesh_output.vertices[i+N/4*3].position = vertex_screen_position + vec4<f32>(offset.y, -offset.x, 0.0, 0.0);
}
// max area triangle indices
// the big triangle
mesh_output.primitives[0].indices = vec3<u32>(0, N/3, N/3*2);
// 3 layers of infill triangles to approximate circle better than 1 triangle.
// we start on the outer layer because it's easier to construct this way
var count:u32=N;
var base:u32=1;
for (var layer:u32 = 0; layer<LAYERS; layer++){
count=count>>1;
var step:u32=N/count;
for (var i:u32 = 0; i<count; i++){
mesh_output.primitives[base+i].indices = vec3<u32>(i*step, i*step+(step>>1), modulo(i*step+step,N));
}
base+=count;
}
}
@mesh(mesh_output)
@payload(taskPayload)
@workgroup_size(1)
fn ms_debug_edge(){
// draw two circles for now.
const LAYERS:u32 = 3;
const N:u32 = 2*(1<<LAYERS);
mesh_output.vertex_count = 2*(3+2+4+8);
mesh_output.primitive_count = 2*(1+2+4+8)+2;
var v0_world_position: vec4<f32> = model_instance.transform * ve_verts[0];
var v1_world_position: vec4<f32> = model_instance.transform * ve_verts[1];
var v0_screen_position: vec4<f32> = camera.proj * camera.view * v0_world_position;
var v1_screen_position: vec4<f32> = camera.proj * camera.view * v1_world_position;
var edge_dir_world: vec4<f32> = normalize(v0_world_position - v1_world_position);
var edge_dir_screen: vec4<f32> = camera.proj * camera.view * edge_dir_world;
for (var i:u32 = 0; i<=N/2; i++){
// two half circles that make a whole
var theta: f32 = f32(i) * tau / f32(N);
var cos_sin: vec2<f32> = vec2(cos(theta), sin(theta));
// construct basis vectors
var y_axis: vec2<f32> = edge_dir_screen.xy;
var x_axis: vec2<f32> = y_axis.yx;
x_axis.x = -x_axis.x;
var offset: vec4<f32> = vec4<f32>(0.5 * (x_axis * cos_sin.x + y_axis * cos_sin.y), 0.0, 0.0);;
mesh_output.vertices[i].position = v0_screen_position + offset;
mesh_output.vertices[N/2+1+i].position = v1_screen_position - offset;
}
// max area triangle indices
// number of primitives per circle half
const P:u32 = N/2;
// the big triangles between the circles
mesh_output.primitives[0].indices = vec3<u32>(0, N/2+1, P);
mesh_output.primitives[P].indices = vec3<u32>(N/2+1, 0, P + N/2+1);
// 3 layers of infill triangles to approximate circle better than 1 triangle.
// we start on the outer layer because it's easier to construct this way
var count:u32=P;
var base:u32=1;
for (var layer:u32 = 0; layer<LAYERS; layer++){
count=count>>1;
var step:u32=P/count;
for (var i:u32 = 0; i<count; i++){
var indices = vec3<u32>(i*step, i*step+(step>>1), i*step+step);
mesh_output.primitives[base+i].indices = indices;
mesh_output.primitives[P+base+i].indices = indices + N/2+1;
}
base+=count;
}
}
//group 2 is the skybox texture
@group(1)
@binding(0)
@@ -272,8 +110,3 @@ fn fs_entity_texture(vertex: EntityOutputTexture) -> @location(0) vec4<f32> {
let reflected_color = textureSample(cube_texture, cube_sampler, reflected).rgb;
return mix(vec4<f32>(vec3<f32>(0.05) + 0.2 * reflected_color,1.0),mix(vertex.model_color,vec4<f32>(fragment_color.rgb,1.0),fragment_color.a),0.5+0.5*abs(d));
}
@fragment
fn fs_debug(vertex: DebugEntityOutput) -> @location(0) vec4<f32> {
return model_instance.color;
}

View File

@@ -15,6 +15,7 @@ pub enum Instruction{
struct WindowContext<'a>{
manual_mouse_lock:bool,
mouse_pos:glam::DVec2,
simulation_paused:bool,
screen_size:glam::UVec2,
window:&'a winit::window::Window,
physics_thread:crate::compat_worker::QNWorker<'a,TimedInstruction<PhysicsWorkerInstruction,SessionTime>>,
@@ -24,6 +25,35 @@ impl WindowContext<'_>{
fn get_middle_of_screen(&self)->winit::dpi::PhysicalPosition<u32>{
winit::dpi::PhysicalPosition::new(self.screen_size.x/2,self.screen_size.y/2)
}
fn free_mouse(&mut self){
self.manual_mouse_lock=false;
match self.window.set_cursor_position(self.get_middle_of_screen()){
Ok(())=>(),
Err(e)=>println!("Could not set cursor position: {:?}",e),
}
match self.window.set_cursor_grab(winit::window::CursorGrabMode::None){
Ok(())=>(),
Err(e)=>println!("Could not release cursor: {:?}",e),
}
self.window.set_cursor_visible(true);
}
fn lock_mouse(&mut self){
//if cursor is outside window don't lock but apparently there's no get pos function
//let pos=window.get_cursor_pos();
match self.window.set_cursor_grab(winit::window::CursorGrabMode::Locked){
Ok(())=>(),
Err(_)=>{
match self.window.set_cursor_grab(winit::window::CursorGrabMode::Confined){
Ok(())=>(),
Err(e)=>{
self.manual_mouse_lock=true;
println!("Could not confine cursor: {:?}",e)
},
}
}
}
self.window.set_cursor_visible(false);
}
fn window_event(&mut self,time:SessionTime,event:winit::event::WindowEvent){
match event{
winit::event::WindowEvent::DroppedFile(path)=>{
@@ -34,6 +64,10 @@ impl WindowContext<'_>{
}
},
winit::event::WindowEvent::Focused(state)=>{
// don't unpause if manually paused
if self.simulation_paused{
return;
}
//pause unpause
self.physics_thread.send(TimedInstruction{
time,
@@ -46,35 +80,8 @@ impl WindowContext<'_>{
..
}=>{
match (logical_key,state){
(winit::keyboard::Key::Named(winit::keyboard::NamedKey::Tab),winit::event::ElementState::Pressed)=>{
self.manual_mouse_lock=false;
match self.window.set_cursor_position(self.get_middle_of_screen()){
Ok(())=>(),
Err(e)=>println!("Could not set cursor position: {:?}",e),
}
match self.window.set_cursor_grab(winit::window::CursorGrabMode::None){
Ok(())=>(),
Err(e)=>println!("Could not release cursor: {:?}",e),
}
self.window.set_cursor_visible(state.is_pressed());
},
(winit::keyboard::Key::Named(winit::keyboard::NamedKey::Tab),winit::event::ElementState::Released)=>{
//if cursor is outside window don't lock but apparently there's no get pos function
//let pos=window.get_cursor_pos();
match self.window.set_cursor_grab(winit::window::CursorGrabMode::Locked){
Ok(())=>(),
Err(_)=>{
match self.window.set_cursor_grab(winit::window::CursorGrabMode::Confined){
Ok(())=>(),
Err(e)=>{
self.manual_mouse_lock=true;
println!("Could not confine cursor: {:?}",e)
},
}
}
}
self.window.set_cursor_visible(state.is_pressed());
},
(winit::keyboard::Key::Named(winit::keyboard::NamedKey::Tab),winit::event::ElementState::Pressed)=>self.free_mouse(),
(winit::keyboard::Key::Named(winit::keyboard::NamedKey::Tab),winit::event::ElementState::Released)=>self.lock_mouse(),
(winit::keyboard::Key::Named(winit::keyboard::NamedKey::F11),winit::event::ElementState::Pressed)=>{
if self.window.fullscreen().is_some(){
self.window.set_fullscreen(None);
@@ -90,7 +97,24 @@ impl WindowContext<'_>{
}
self.window.set_cursor_visible(true);
},
(winit::keyboard::Key::Named(winit::keyboard::NamedKey::Enter),winit::event::ElementState::Pressed)=>{
let paused=!self.simulation_paused;
self.simulation_paused=paused;
if paused{
self.free_mouse();
}else{
self.lock_mouse();
}
let instruction=PhysicsWorkerInstruction::SessionControl(SessionControlInstruction::SetPaused(paused));
self.physics_thread.send(TimedInstruction{
time,
instruction,
}).unwrap();
}
(keycode,state)=>{
if self.simulation_paused{
return;
}
let s=state.is_pressed();
// internal variants for this scope
@@ -132,7 +156,6 @@ impl WindowContext<'_>{
if let Some(session_instruction)=match keycode{
winit::keyboard::Key::Named(winit::keyboard::NamedKey::Space)=>input_ctrl!(SetJump,s),
// TODO: bind system so playback pausing can use spacebar
winit::keyboard::Key::Named(winit::keyboard::NamedKey::Enter)=>session_playback!(TogglePaused,s),
winit::keyboard::Key::Named(winit::keyboard::NamedKey::ArrowUp)=>session_playback!(IncreaseTimescale,s),
winit::keyboard::Key::Named(winit::keyboard::NamedKey::ArrowDown)=>session_playback!(DecreaseTimescale,s),
winit::keyboard::Key::Named(winit::keyboard::NamedKey::ArrowLeft)=>session_playback!(SkipBack,s),
@@ -191,7 +214,7 @@ impl WindowContext<'_>{
fn device_event(&mut self,time:SessionTime,event:winit::event::DeviceEvent){
match event{
winit::event::DeviceEvent::MouseMotion{
delta,
delta:(delta_x,delta_y),
}=>{
if self.manual_mouse_lock{
match self.window.set_cursor_position(self.get_middle_of_screen()){
@@ -199,7 +222,10 @@ impl WindowContext<'_>{
Err(e)=>println!("Could not set cursor position: {:?}",e),
}
}
self.mouse_pos+=glam::dvec2(delta.0,delta.1);
self.mouse_pos+=glam::dvec2(delta_x,delta_y);
if self.simulation_paused{
return;
}
self.physics_thread.send(TimedInstruction{
time,
instruction:PhysicsWorkerInstruction::SessionInput(SessionInputInstruction::Mouse(self.mouse_pos.as_ivec2())),
@@ -241,6 +267,7 @@ pub fn worker<'a>(
let mut window_context=WindowContext{
manual_mouse_lock:false,
mouse_pos:glam::DVec2::ZERO,
simulation_paused:false,
//make sure to update this!!!!!
screen_size,
window,