Compare commits
2 Commits
master
...
from_float
Author | SHA1 | Date | |
---|---|---|---|
2045d8047a | |||
fa547050e2 |
@ -197,34 +197,6 @@ macro_rules! impl_into_float {
|
||||
impl_into_float!(f32,u32,8,24);
|
||||
impl_into_float!(f64,u64,11,53);
|
||||
|
||||
#[inline]
|
||||
fn integer_decode_f32(f: f32) -> (u64, i16, bool) {
|
||||
let bits: u32 = f.to_bits();
|
||||
let sign: bool = bits & (1<<31) != 0;
|
||||
let mut exponent: i16 = ((bits >> 23) & 0xff) as i16;
|
||||
let mantissa = if exponent == 0 {
|
||||
(bits & 0x7fffff) << 1
|
||||
} else {
|
||||
(bits & 0x7fffff) | 0x800000
|
||||
};
|
||||
// Exponent bias + mantissa shift
|
||||
exponent -= 127 + 23;
|
||||
(mantissa as u64, exponent, sign)
|
||||
}
|
||||
#[inline]
|
||||
fn integer_decode_f64(f: f64) -> (u64, i16, bool) {
|
||||
let bits: u64 = f.to_bits();
|
||||
let sign: bool = bits & (1u64<<63) != 0;
|
||||
let mut exponent: i16 = ((bits >> 52) & 0x7ff) as i16;
|
||||
let mantissa = if exponent == 0 {
|
||||
(bits & 0xfffffffffffff) << 1
|
||||
} else {
|
||||
(bits & 0xfffffffffffff) | 0x10000000000000
|
||||
};
|
||||
// Exponent bias + mantissa shift
|
||||
exponent -= 1023 + 52;
|
||||
(mantissa, exponent, sign)
|
||||
}
|
||||
#[derive(Debug,Eq,PartialEq)]
|
||||
pub enum FixedFromFloatError{
|
||||
Nan,
|
||||
@ -240,13 +212,19 @@ impl FixedFromFloatError{
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
struct FloatInfo{
|
||||
sign:bool,
|
||||
digit_index:usize,
|
||||
bits:[u64;2],
|
||||
}
|
||||
|
||||
macro_rules! impl_from_float {
|
||||
( $decode:ident, $input: ty, $mantissa_bits:expr ) => {
|
||||
( $input: ty, $unsigned: ty, $exponent_bits:expr, $mantissa_bits:expr, $exp_bias:expr ) => {
|
||||
impl<const N:usize,const F:usize> TryFrom<$input> for Fixed<N,F>{
|
||||
type Error=FixedFromFloatError;
|
||||
#[inline]
|
||||
fn try_from(value:$input)->Result<Self,Self::Error>{
|
||||
const DIGIT_SHIFT:u32=6;
|
||||
match value.classify(){
|
||||
std::num::FpCategory::Nan=>Err(FixedFromFloatError::Nan),
|
||||
std::num::FpCategory::Infinite=>Err(FixedFromFloatError::Infinite),
|
||||
@ -254,27 +232,54 @@ macro_rules! impl_from_float {
|
||||
std::num::FpCategory::Subnormal
|
||||
|std::num::FpCategory::Normal
|
||||
=>{
|
||||
let (m,e,s)=$decode(value);
|
||||
fn to_float_info<const F:usize>(f:$input)->Option<FloatInfo>{
|
||||
const DIGIT_SHIFT:u32=6;
|
||||
let bits=f.to_bits();
|
||||
//extract exponent, add fractional offset
|
||||
//usize is used to calculate digit_index. exp_cycle must be at least 8 bits so 32 bits is fine
|
||||
let exp=((bits>>($mantissa_bits-1)) as usize&((1<<$exponent_bits)-1))+F;
|
||||
//if it's less than zero, that's a conversion underflow.
|
||||
let exp_bias=exp.checked_sub($exp_bias)?;
|
||||
//cycle the exponent to keep the top bit of the mantissa within the hi digit
|
||||
let exp_cycle=exp_bias.rem_euclid(64).overflowing_add($exp_bias+64).0;
|
||||
let out_bits=
|
||||
bits
|
||||
//remove (mask) sign bit and exponent
|
||||
&((1 as $unsigned<<($mantissa_bits-1))-1)
|
||||
//write exponent
|
||||
|((exp_cycle as $unsigned)<<($mantissa_bits-1));
|
||||
//ready to convert
|
||||
let _128=<$input>::from_bits(out_bits) as u128;
|
||||
Some(FloatInfo{
|
||||
sign:f.is_sign_negative(),
|
||||
//digit_index is where the hi digit should end up in a fixed point number
|
||||
digit_index:exp_bias>>DIGIT_SHIFT,
|
||||
bits:[_128 as u64,(_128>>64) as u64],
|
||||
})
|
||||
}
|
||||
|
||||
let FloatInfo{
|
||||
sign,
|
||||
digit_index,
|
||||
bits:[lo,hi],
|
||||
}=to_float_info::<F>(value)
|
||||
.ok_or(FixedFromFloatError::Underflow)?;
|
||||
|
||||
let mut digits=[0u64;N];
|
||||
let most_significant_bit=e as i32+$mantissa_bits as i32+F as i32;
|
||||
if most_significant_bit<0{
|
||||
return Err(FixedFromFloatError::Underflow);
|
||||
}
|
||||
let digit_index=most_significant_bit>>DIGIT_SHIFT;
|
||||
let digit=digits.get_mut(digit_index as usize).ok_or(FixedFromFloatError::Overflow)?;
|
||||
let take_bits=most_significant_bit-(digit_index<<DIGIT_SHIFT);
|
||||
let rest_of_mantissa=-($mantissa_bits as i32-(take_bits as i32));
|
||||
*digit=signed_shift(m,rest_of_mantissa);
|
||||
if rest_of_mantissa<0&&digit_index!=0{
|
||||
//we don't care if some float bits are partially truncated
|
||||
if let Some(digit)=digits.get_mut((digit_index-1) as usize){
|
||||
let take_bits=most_significant_bit-((digit_index-1)<<DIGIT_SHIFT);
|
||||
let rest_of_mantissa=-($mantissa_bits as i32-(take_bits as i32));
|
||||
*digit=signed_shift(m,rest_of_mantissa);
|
||||
}
|
||||
let digit=digits.get_mut(digit_index)
|
||||
.ok_or(FixedFromFloatError::Overflow)?;
|
||||
*digit=hi;
|
||||
|
||||
if digit_index!=0{
|
||||
//if digit_index exists, so does digit_index-1
|
||||
digits[digit_index-1]=lo;
|
||||
}
|
||||
|
||||
let bits=BInt::from_bits(bnum::BUint::from_digits(digits));
|
||||
Ok(if s{
|
||||
if bits.is_negative()&&!(sign&&bits==BInt::MIN){
|
||||
return Err(FixedFromFloatError::Overflow);
|
||||
}
|
||||
Ok(if sign{
|
||||
Self::from_bits(bits.overflowing_neg().0)
|
||||
}else{
|
||||
Self::from_bits(bits)
|
||||
@ -285,8 +290,8 @@ macro_rules! impl_from_float {
|
||||
}
|
||||
}
|
||||
}
|
||||
impl_from_float!(integer_decode_f32,f32,24);
|
||||
impl_from_float!(integer_decode_f64,f64,53);
|
||||
impl_from_float!(f32,u32,8,24,127);
|
||||
impl_from_float!(f64,u64,11,53,1023);
|
||||
|
||||
impl<const N:usize,const F:usize> core::fmt::Display for Fixed<N,F>{
|
||||
#[inline]
|
||||
@ -412,7 +417,7 @@ macro_rules! impl_multiply_operator_not_const_generic {
|
||||
type Output=Self;
|
||||
#[inline]
|
||||
fn divide(self, other: i64)->Self::Output{
|
||||
Self::from_bits(self.bits.div_euclid(BInt::from(other)))
|
||||
Self::from_bits(self.bits/BInt::from(other))
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -422,11 +427,11 @@ macro_rules! impl_divide_operator_not_const_generic {
|
||||
impl<const F:usize> $struct<$width,F>{
|
||||
paste::item!{
|
||||
#[inline]
|
||||
pub fn [<fixed_ $method>](self,other:Self)->Self{
|
||||
pub fn [<fixed_ $method>](self, other: Self) -> Self {
|
||||
//this only needs to be $width+F as u32/64+1 but MUH CONST GENERICS!!!!!
|
||||
let lhs=self.bits.as_::<BInt::<{$width*2}>>().shl(F as u32);
|
||||
let rhs=other.bits.as_::<BInt::<{$width*2}>>();
|
||||
Self::from_bits(lhs.div_euclid(rhs).as_())
|
||||
Self::from_bits(lhs.div(rhs).as_())
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -446,28 +451,28 @@ macro_rules! impl_divide_operator_not_const_generic {
|
||||
}
|
||||
|
||||
macro_rules! impl_multiplicative_operator {
|
||||
( $struct: ident, $trait: ident, $method: ident, $inner_method: ident, $output: ty ) => {
|
||||
( $struct: ident, $trait: ident, $method: ident, $output: ty ) => {
|
||||
impl<const N:usize,const F:usize,U> core::ops::$trait<U> for $struct<N,F>
|
||||
where
|
||||
BInt::<N>:From<U>+core::ops::$trait,
|
||||
{
|
||||
type Output = $output;
|
||||
#[inline]
|
||||
fn $method(self,other:U)->Self::Output{
|
||||
Self::from_bits(self.bits.$inner_method(BInt::<N>::from(other)))
|
||||
fn $method(self, other: U) -> Self::Output {
|
||||
Self::from_bits(self.bits.$method(BInt::<N>::from(other)))
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
macro_rules! impl_multiplicative_assign_operator {
|
||||
( $struct: ident, $trait: ident, $method: ident, $not_assign_method: ident ) => {
|
||||
( $struct: ident, $trait: ident, $method: ident ) => {
|
||||
impl<const N:usize,const F:usize,U> core::ops::$trait<U> for $struct<N,F>
|
||||
where
|
||||
BInt::<N>:From<U>+core::ops::$trait,
|
||||
{
|
||||
#[inline]
|
||||
fn $method(&mut self,other:U){
|
||||
self.bits=self.bits.$not_assign_method(BInt::<N>::from(other));
|
||||
fn $method(&mut self, other: U) {
|
||||
self.bits.$method(BInt::<N>::from(other));
|
||||
}
|
||||
}
|
||||
};
|
||||
@ -495,10 +500,10 @@ macro_16!( impl_multiplicative_assign_operator_not_const_generic, (Fixed, MulAss
|
||||
macro_16!( impl_multiply_operator_not_const_generic, (Fixed, Mul, mul, Self) );
|
||||
macro_16!( impl_multiplicative_assign_operator_not_const_generic, (Fixed, DivAssign, div_assign, div) );
|
||||
macro_16!( impl_divide_operator_not_const_generic, (Fixed, Div, div, Self) );
|
||||
impl_multiplicative_assign_operator!( Fixed, MulAssign, mul_assign, mul );
|
||||
impl_multiplicative_operator!( Fixed, Mul, mul, mul, Self );
|
||||
impl_multiplicative_assign_operator!( Fixed, DivAssign, div_assign, div_euclid );
|
||||
impl_multiplicative_operator!( Fixed, Div, div, div_euclid, Self );
|
||||
impl_multiplicative_assign_operator!( Fixed, MulAssign, mul_assign );
|
||||
impl_multiplicative_operator!( Fixed, Mul, mul, Self );
|
||||
impl_multiplicative_assign_operator!( Fixed, DivAssign, div_assign );
|
||||
impl_multiplicative_operator!( Fixed, Div, div, Self );
|
||||
#[cfg(feature="deferred-division")]
|
||||
impl<const LHS_N:usize,const LHS_F:usize,const RHS_N:usize,const RHS_F:usize> core::ops::Div<Fixed<RHS_N,RHS_F>> for Fixed<LHS_N,LHS_F>{
|
||||
type Output=ratio_ops::ratio::Ratio<Fixed<LHS_N,LHS_F>,Fixed<RHS_N,RHS_F>>;
|
||||
|
@ -47,6 +47,8 @@ fn from_f32(){
|
||||
assert_eq!(b,Ok(a));
|
||||
let a=I256F256::from(0);
|
||||
let b:Result<I256F256,_>=0.try_into();
|
||||
//test float mantissa spread across digit boundary
|
||||
//16 is within the 24 bits of float precision
|
||||
assert_eq!(b,Ok(a));
|
||||
let a=I256F256::from(0b101011110101001010101010000000000000000000000000000i64)<<16;
|
||||
let b:Result<I256F256,_>=(0b101011110101001010101010000000000000000000000000000u64 as f32*2.0f32.powi(16)).try_into();
|
||||
@ -56,11 +58,11 @@ fn from_f32(){
|
||||
let b:Result<I32F32,_>=Into::<f32>::into(I32F32::MAX).try_into();
|
||||
assert_eq!(b,Ok(a));
|
||||
//I32F32::MIN hits a special case since it's not representable as a positive signed integer
|
||||
//TODO: don't return an overflow because this is technically possible
|
||||
let a=I32F32::MIN;
|
||||
let b:Result<I32F32,_>=Into::<f32>::into(I32F32::MIN).try_into();
|
||||
assert_eq!(b,Ok(a));
|
||||
let b:Result<I32F32,_>=Into::<f32>::into(I32F32::MIN.fix_2()+(I32F32::MIN>>1).fix_2()).try_into();
|
||||
assert_eq!(b,Err(crate::fixed::FixedFromFloatError::Overflow));
|
||||
//16 is within the 24 bits of float precision
|
||||
let b:Result<I32F32,_>=Into::<f32>::into(-I32F32::MIN.fix_2()).try_into();
|
||||
assert_eq!(b,Err(crate::fixed::FixedFromFloatError::Overflow));
|
||||
let b:Result<I32F32,_>=f32::MIN_POSITIVE.try_into();
|
||||
|
@ -251,35 +251,32 @@ impl_ratio_assign_operator!(RemAssign,rem_assign);
|
||||
// Only implement PartialEq<Self>
|
||||
// Rust's operators aren't actually that good
|
||||
|
||||
impl<LhsNum,LhsDen,RhsNum,RhsDen,T,U> PartialEq<Ratio<RhsNum,RhsDen>> for Ratio<LhsNum,LhsDen>
|
||||
impl<Num,Den,T> PartialEq for Ratio<Num,Den>
|
||||
where
|
||||
LhsNum:Copy,
|
||||
LhsDen:Copy,
|
||||
RhsNum:Copy,
|
||||
RhsDen:Copy,
|
||||
LhsNum:core::ops::Mul<RhsDen,Output=T>,
|
||||
RhsNum:core::ops::Mul<LhsDen,Output=U>,
|
||||
T:PartialEq<U>,
|
||||
Num:Copy,
|
||||
Den:Copy,
|
||||
Num:core::ops::Mul<Den,Output=T>,
|
||||
T:PartialEq,
|
||||
{
|
||||
#[inline]
|
||||
fn eq(&self,other:&Ratio<RhsNum,RhsDen>)->bool{
|
||||
fn eq(&self,&other:&Self)->bool{
|
||||
(self.num*other.den).eq(&(other.num*self.den))
|
||||
}
|
||||
}
|
||||
impl<Num,Den> Eq for Ratio<Num,Den> where Self:PartialEq{}
|
||||
|
||||
impl<LhsNum,LhsDen,RhsNum,RhsDen,T,U> PartialOrd<Ratio<RhsNum,RhsDen>> for Ratio<LhsNum,LhsDen>
|
||||
impl<Num,Den> Eq for Ratio<Num,Den>
|
||||
where
|
||||
LhsNum:Copy,
|
||||
LhsDen:Copy,
|
||||
RhsNum:Copy,
|
||||
RhsDen:Copy,
|
||||
LhsNum:core::ops::Mul<RhsDen,Output=T>,
|
||||
RhsNum:core::ops::Mul<LhsDen,Output=U>,
|
||||
T:PartialOrd<U>,
|
||||
Ratio<Num,Den>:PartialEq,
|
||||
{}
|
||||
|
||||
impl<Num,Den,T> PartialOrd for Ratio<Num,Den>
|
||||
where
|
||||
Num:Copy,
|
||||
Den:Copy,
|
||||
Num:core::ops::Mul<Den,Output=T>,
|
||||
T:PartialOrd,
|
||||
{
|
||||
#[inline]
|
||||
fn partial_cmp(&self,other:&Ratio<RhsNum,RhsDen>)->Option<core::cmp::Ordering>{
|
||||
fn partial_cmp(&self,&other:&Self)->Option<core::cmp::Ordering>{
|
||||
(self.num*other.den).partial_cmp(&(other.num*self.den))
|
||||
}
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user