29 Commits

Author SHA1 Message Date
fcf320c3a8 Divide trait wip 2024-09-11 12:59:33 -07:00
44ac6fe4be fixed_wide: no default features 2024-09-11 12:59:22 -07:00
1a24de3cd9 deferred division for vector + matrix 2024-09-11 12:20:17 -07:00
9f77531995 implement Debug + Display 2024-09-11 12:06:58 -07:00
7b78338c76 fix tests :/ 2024-09-10 14:50:35 -07:00
021d7f9d1f implement mul + div only for scalars (otherwise conflicting implementations) 2024-09-10 14:20:07 -07:00
338669b60f implement shift operators 2024-09-10 13:45:12 -07:00
085d9185a9 ratio operators 2024-09-10 13:22:49 -07:00
1fd7a6eafd fixed: inline functions Q_Q 2024-09-10 13:05:10 -07:00
91b96e4b5d move ratio to own crate (again) 2024-09-10 12:09:58 -07:00
fc65d0f1f4 rename fixed_wide_vectors to linear_ops 2024-09-10 11:57:18 -07:00
4eaf8794f6 fix compile without named fields 2024-09-10 11:36:48 -07:00
fa8614891d zeroes function uses type transformation, drops direct ratio dep from zeroes 2024-09-10 11:36:48 -07:00
c20a0a4a89 compare with From types 2024-09-10 11:36:48 -07:00
e66a245c78 delete fixed-wide 2024-09-10 11:36:48 -07:00
eb7eb30814 impl det + adjugate with trait bounds 2024-09-09 19:54:00 -07:00
57c3f2dd9e write m*v test 2024-09-09 19:54:00 -07:00
b772647137 impl Mat*Vec 2024-09-09 19:54:00 -07:00
dd2140d1d2 forgotten inlines 2024-09-09 19:54:00 -07:00
6cbd3446e5 impl matrix multiplication with Mul 2024-09-09 19:54:00 -07:00
b6d260bf2c update tests to use new ideas 2024-09-09 19:54:00 -07:00
53bb1522eb impl dot + cross + length_squared with trait bounds 2024-09-09 19:54:00 -07:00
206e219467 wide-mul crate feature 2024-09-09 19:54:00 -07:00
8ee6204a42 invent wide_div + test 2024-09-09 15:24:49 -07:00
803f1bea9e extract trait impls into named functions + fix spelling 2024-09-09 15:24:49 -07:00
62419e94e1 consistency 2024-09-09 14:14:48 -07:00
d3c4d530b6 refactor macros, move things around 2024-09-09 14:14:48 -07:00
898407a0e9 matrix and vector extend functions 2024-09-06 13:24:03 -07:00
66186c7354 doc 2024-09-06 13:03:55 -07:00
34 changed files with 1190 additions and 742 deletions

5
fixed_wide/Cargo.lock generated

@ -21,6 +21,7 @@ dependencies = [
"arrayvec",
"bnum",
"paste",
"ratio_ops",
]
[[package]]
@ -28,3 +29,7 @@ name = "paste"
version = "1.0.15"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "57c0d7b74b563b49d38dae00a0c37d4d6de9b432382b2892f0574ddcae73fd0a"
[[package]]
name = "ratio_ops"
version = "0.1.0"

@ -4,11 +4,13 @@ version = "0.1.0"
edition = "2021"
[features]
default=["zeroes"]
ratio=[]
zeroes=["ratio","dep:arrayvec"]
default=[]
deferred-division=["dep:ratio_ops"]
wide-mul=[]
zeroes=["dep:arrayvec"]
[dependencies]
bnum = "0.11.0"
arrayvec = { version = "0.7.6", optional = true }
paste = "1.0.15"
ratio_ops = { path = "../ratio_ops", optional = true }

@ -1,6 +1,7 @@
use bnum::{BInt,cast::As};
#[derive(Clone,Copy,Debug,Hash)]
/// A Fixed point number for which multiply operations widen the bits in the output. (when the wide-mul feature is enabled)
/// N is the number of u64s to use
/// F is the number of fractional bits (always N*32 lol)
pub struct Fixed<const N:usize,const F:usize>{
@ -32,6 +33,17 @@ impl<const N:usize,const F:usize> Fixed<N,F>{
self.bits
}
#[inline]
pub const fn raw_digit(value:i64)->Self{
let mut digits=[0u64;N];
digits[0]=value.abs() as u64;
//sign bit
digits[N-1]|=(value&i64::MIN) as u64;
Self::from_bits(BInt::from_bits(bnum::BUint::from_digits(digits)))
}
}
impl<const F:usize> Fixed<1,F>{
/// My old code called this function everywhere so let's provide it
#[inline]
pub const fn raw(value:i64)->Self{
Self::from_bits(BInt::from_bits(bnum::BUint::from_digit(value as u64)))
}
@ -41,24 +53,48 @@ impl<const N:usize,const F:usize,T> From<T> for Fixed<N,F>
where
BInt<N>:From<T>
{
#[inline]
fn from(value:T)->Self{
Self::from_bits(BInt::<{N}>::from(value)<<F as u32)
}
}
impl<const N:usize,const F:usize> PartialEq for Fixed<N,F>{
#[inline]
fn eq(&self,other:&Self)->bool{
self.bits.eq(&other.bits)
}
}
impl<const N:usize,const F:usize,T> PartialEq<T> for Fixed<N,F>
where
T:Copy,
BInt::<N>:From<T>,
{
#[inline]
fn eq(&self,&other:&T)->bool{
self.bits.eq(&other.into())
}
}
impl<const N:usize,const F:usize> Eq for Fixed<N,F>{}
impl<const N:usize,const F:usize> PartialOrd for Fixed<N,F>{
#[inline]
fn partial_cmp(&self,other:&Self)->Option<std::cmp::Ordering>{
self.bits.partial_cmp(&other.bits)
}
}
impl<const N:usize,const F:usize,T> PartialOrd<T> for Fixed<N,F>
where
T:Copy,
BInt::<N>:From<T>,
{
#[inline]
fn partial_cmp(&self,&other:&T)->Option<std::cmp::Ordering>{
self.bits.partial_cmp(&other.into())
}
}
impl<const N:usize,const F:usize> Ord for Fixed<N,F>{
#[inline]
fn cmp(&self,other:&Self)->std::cmp::Ordering{
self.bits.cmp(&other.bits)
}
@ -66,18 +102,69 @@ impl<const N:usize,const F:usize> Ord for Fixed<N,F>{
impl<const N:usize,const F:usize> std::ops::Neg for Fixed<N,F>{
type Output=Self;
#[inline]
fn neg(self)->Self{
Self::from_bits(self.bits.neg())
}
}
impl<const N:usize,const F:usize> std::iter::Sum for Fixed<N,F>{
#[inline]
fn sum<I:Iterator<Item=Self>>(iter:I)->Self{
let mut sum=Self::ZERO;
for elem in iter{
sum+=elem;
}
sum
}
}
macro_rules! impl_into_float {
( $output: ty ) => {
impl<const N:usize,const F:usize> Into<$output> for Fixed<N,F>{
#[inline]
fn into(self)->$output{
let mut total=0.0;
let bits=self.bits.to_bits();
let digits=bits.digits();
for (i,digit) in digits[0..N-1].iter().enumerate(){
// (i*64-F) as i32 will interpret the highest order bit as a sign bit but whatever
total+=(*digit as $output)*(2.0 as $output).powi((i*64-F) as i32);
}
//most significant digit holds the sign bit
//assume we are using a number with at least 1 digit...
total+=((*digits.last().unwrap() as i64).abs() as $output)*(2.0 as $output).powi(((N-1)*64-F) as i32);
if self.bits.is_negative(){
total=-total;
}
total
}
}
}
}
impl_into_float!(f32);
impl_into_float!(f64);
impl<const N:usize,const F:usize> core::fmt::Display for Fixed<N,F>{
#[inline]
fn fmt(&self,f:&mut core::fmt::Formatter)->Result<(),core::fmt::Error>{
let float:f32=(*self).into();
core::write!(f,"{:.3}",float)
}
}
macro_rules! impl_additive_operator {
( $struct: ident, $trait: ident, $method: ident, $output: ty ) => {
impl<const N:usize,const F:usize> $struct<N,F>{
#[inline]
pub const fn $method(self, other: Self) -> Self {
Self::from_bits(self.bits.$method(other.bits))
}
}
impl<const N:usize,const F:usize> core::ops::$trait for $struct<N,F>{
type Output = $output;
#[inline]
fn $method(self, other: Self) -> Self::Output {
Self::from_bits(self.bits.$method(other.bits))
self.$method(other)
}
}
impl<const N:usize,const F:usize,U> core::ops::$trait<U> for $struct<N,F>
@ -85,7 +172,7 @@ macro_rules! impl_additive_operator {
BInt::<N>:From<U>,
{
type Output = $output;
#[inline]
fn $method(self, other: U) -> Self::Output {
Self::from_bits(self.bits.$method(BInt::<N>::from(other).shl(F as u32)))
}
@ -95,6 +182,7 @@ macro_rules! impl_additive_operator {
macro_rules! impl_additive_assign_operator {
( $struct: ident, $trait: ident, $method: ident ) => {
impl<const N:usize,const F:usize> core::ops::$trait for $struct<N,F>{
#[inline]
fn $method(&mut self, other: Self) {
self.bits.$method(other.bits);
}
@ -103,8 +191,9 @@ macro_rules! impl_additive_assign_operator {
where
BInt::<N>:From<U>,
{
#[inline]
fn $method(&mut self, other: U) {
self.bits.$method(BInt::<N>::from(other)<<F as u32);
self.bits.$method(BInt::<N>::from(other).shl(F as u32));
}
}
};
@ -126,146 +215,138 @@ impl_additive_operator!( Fixed, BitOr, bitor, Self );
impl_additive_assign_operator!( Fixed, BitXorAssign, bitxor_assign );
impl_additive_operator!( Fixed, BitXor, bitxor, Self );
macro_rules! impl_multiply_operator_const {
( $width:expr, $struct: ident, $trait: ident, $method: ident, $output: ty ) => {
// non-wide operators. The result is the same width as the inputs.
// This macro is not used in the default configuration.
#[allow(unused_macros)]
macro_rules! impl_multiplicative_operator_not_const_generic {
( ($struct: ident, $trait: ident, $method: ident, $output: ty ), $width:expr ) => {
impl<const F:usize> core::ops::$trait for $struct<$width,F>{
type Output = $output;
#[inline]
fn $method(self, other: Self) -> Self::Output {
//this can be done better but that is a job for later
paste::item!{
self.[<fixed_ $method>](other)
}
}
}
};
}
macro_rules! impl_multiplicative_assign_operator_not_const_generic {
( ($struct: ident, $trait: ident, $method: ident, $non_assign_method: ident ), $width:expr ) => {
impl<const F:usize> core::ops::$trait for $struct<$width,F>{
#[inline]
fn $method(&mut self, other: Self) {
paste::item!{
*self=self.[<fixed_ $non_assign_method>](other);
}
}
}
};
}
macro_rules! impl_multiply_operator_not_const_generic {
( ($struct: ident, $trait: ident, $method: ident, $output: ty ), $width:expr ) => {
impl<const F:usize> $struct<$width,F>{
paste::item!{
#[inline]
pub fn [<fixed_ $method>](self, other: Self) -> Self {
let lhs=self.bits.as_::<BInt::<{$width*2}>>();
let rhs=other.bits.as_::<BInt::<{$width*2}>>();
Self::from_bits(lhs.mul(rhs).shr(F as u32).as_())
}
}
};
}
macro_rules! impl_multiply_assign_operator_const {
( $width:expr, $struct: ident, $trait: ident, $method: ident ) => {
impl<const F:usize> core::ops::$trait for $struct<$width,F>{
fn $method(&mut self, other: Self) {
self.bits.$method(other.bits);
}
}
};
#[cfg(not(feature="wide-mul"))]
impl_multiplicative_operator_not_const_generic!(($struct, $trait, $method, $output ), $width);
}
}
macro_rules! impl_divide_operator_const {
( $width:expr, $struct: ident, $trait: ident, $method: ident, $output: ty ) => {
impl<const F:usize> core::ops::$trait for $struct<$width,F>{
type Output = $output;
fn $method(self, other: Self) -> Self::Output {
//this can be done better but that is a job for later
macro_rules! impl_divide_operator_not_const_generic {
( ($struct: ident, $trait: ident, $method: ident, $output: ty ), $width:expr ) => {
impl<const F:usize> $struct<$width,F>{
paste::item!{
#[inline]
pub fn [<fixed_ $method>](self, other: Self) -> Self {
//this only needs to be $width+F as u32/64+1 but MUH CONST GENERICS!!!!!
let lhs=self.bits.as_::<BInt::<{$width*2}>>().shl(F as u32);
let rhs=other.bits.as_::<BInt::<{$width*2}>>();
Self::from_bits(lhs.div(rhs).as_())
}
}
};
}
macro_rules! impl_divide_assign_operator_const {
( $width:expr, $struct: ident, $trait: ident, $method: ident ) => {
impl<const F:usize> core::ops::$trait for $struct<$width,F>{
fn $method(&mut self, other: Self) {
self.bits.$method(other.bits);
}
}
#[cfg(all(not(feature="wide-mul"),not(feature="deferred-division")))]
impl_multiplicative_operator_not_const_generic!(($struct, $trait, $method, $output ), $width);
};
}
macro_rules! impl_multiplicatave_operator {
macro_rules! impl_multiplicative_operator {
( $struct: ident, $trait: ident, $method: ident, $output: ty ) => {
impl<const N:usize,const F:usize,U> core::ops::$trait<U> for $struct<N,F>
where
BInt::<N>:From<U>+core::ops::$trait,
{
type Output = $output;
#[inline]
fn $method(self, other: U) -> Self::Output {
Self::from_bits(self.bits.$method(BInt::<N>::from(other)))
}
}
};
}
macro_rules! impl_multiplicatave_assign_operator {
macro_rules! impl_multiplicative_assign_operator {
( $struct: ident, $trait: ident, $method: ident ) => {
impl<const N:usize,const F:usize,U> core::ops::$trait<U> for $struct<N,F>
where
BInt::<N>:From<U>+core::ops::$trait,
{
#[inline]
fn $method(&mut self, other: U) {
self.bits.$method(BInt::<N>::from(other));
}
}
};
}
impl<const N:usize,const F:usize> std::iter::Sum for Fixed<N,F>{
fn sum<I:Iterator<Item=Self>>(iter:I)->Self{
let mut sum=Self::ZERO;
for elem in iter{
sum+=elem;
}
sum
macro_rules! macro_repeated{
(
$macro:ident,
$any:tt,
$($repeated:tt),*
)=>{
$(
$macro!($any, $repeated);
)*
};
}
macro_rules! macro_16 {
( $macro: ident, $any:tt ) => {
macro_repeated!($macro,$any,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16);
}
}
macro_rules! impl_operator_16 {
( $macro: ident, $struct: ident, $trait: ident, $method: ident, $output: ty ) => {
$macro!(1,$struct,$trait,$method,$output);
$macro!(2,$struct,$trait,$method,$output);
$macro!(3,$struct,$trait,$method,$output);
$macro!(4,$struct,$trait,$method,$output);
$macro!(5,$struct,$trait,$method,$output);
$macro!(6,$struct,$trait,$method,$output);
$macro!(7,$struct,$trait,$method,$output);
$macro!(8,$struct,$trait,$method,$output);
$macro!(9,$struct,$trait,$method,$output);
$macro!(10,$struct,$trait,$method,$output);
$macro!(11,$struct,$trait,$method,$output);
$macro!(12,$struct,$trait,$method,$output);
$macro!(13,$struct,$trait,$method,$output);
$macro!(14,$struct,$trait,$method,$output);
$macro!(15,$struct,$trait,$method,$output);
$macro!(16,$struct,$trait,$method,$output);
macro_16!( impl_multiplicative_assign_operator_not_const_generic, (Fixed, MulAssign, mul_assign, mul) );
macro_16!( impl_multiply_operator_not_const_generic, (Fixed, Mul, mul, Self) );
macro_16!( impl_multiplicative_assign_operator_not_const_generic, (Fixed, DivAssign, div_assign, div) );
macro_16!( impl_divide_operator_not_const_generic, (Fixed, Div, div, Self) );
impl_multiplicative_assign_operator!( Fixed, MulAssign, mul_assign );
impl_multiplicative_operator!( Fixed, Mul, mul, Self );
impl_multiplicative_assign_operator!( Fixed, DivAssign, div_assign );
impl_multiplicative_operator!( Fixed, Div, div, Self );
#[cfg(feature="deferred-division")]
impl<const LHS_N:usize,const LHS_F:usize,const RHS_N:usize,const RHS_F:usize> core::ops::Div<Fixed<RHS_N,RHS_F>> for Fixed<LHS_N,LHS_F>{
type Output=ratio_ops::ratio::Ratio<Fixed<LHS_N,LHS_F>,Fixed<RHS_N,RHS_F>>;
#[inline]
fn div(self, other: Fixed<RHS_N,RHS_F>)->Self::Output{
ratio_ops::ratio::Ratio::new(self,other)
}
}
macro_rules! impl_assign_operator_16 {
( $macro: ident, $struct: ident, $trait: ident, $method: ident ) => {
$macro!(1,$struct,$trait,$method);
$macro!(2,$struct,$trait,$method);
$macro!(3,$struct,$trait,$method);
$macro!(4,$struct,$trait,$method);
$macro!(5,$struct,$trait,$method);
$macro!(6,$struct,$trait,$method);
$macro!(7,$struct,$trait,$method);
$macro!(8,$struct,$trait,$method);
$macro!(9,$struct,$trait,$method);
$macro!(10,$struct,$trait,$method);
$macro!(11,$struct,$trait,$method);
$macro!(12,$struct,$trait,$method);
$macro!(13,$struct,$trait,$method);
$macro!(14,$struct,$trait,$method);
$macro!(15,$struct,$trait,$method);
$macro!(16,$struct,$trait,$method);
}
}
impl_assign_operator_16!( impl_multiply_assign_operator_const, Fixed, MulAssign, mul_assign );
impl_operator_16!( impl_multiply_operator_const, Fixed, Mul, mul, Self );
impl_assign_operator_16!( impl_divide_assign_operator_const, Fixed, DivAssign, div_assign );
impl_operator_16!( impl_divide_operator_const, Fixed, Div, div, Self );
impl_multiplicatave_assign_operator!( Fixed, MulAssign, mul_assign );
impl_multiplicatave_operator!( Fixed, Mul, mul, Self );
impl_multiplicatave_assign_operator!( Fixed, DivAssign, div_assign );
impl_multiplicatave_operator!( Fixed, Div, div, Self );
macro_rules! impl_shift_operator {
( $struct: ident, $trait: ident, $method: ident, $output: ty ) => {
impl<const N:usize,const F:usize> core::ops::$trait<u32> for $struct<N,F>{
type Output = $output;
#[inline]
fn $method(self, other: u32) -> Self::Output {
Self::from_bits(self.bits.$method(other))
}
@ -275,6 +356,7 @@ macro_rules! impl_shift_operator {
macro_rules! impl_shift_assign_operator {
( $struct: ident, $trait: ident, $method: ident ) => {
impl<const N:usize,const F:usize> core::ops::$trait<u32> for $struct<N,F>{
#[inline]
fn $method(&mut self, other: u32) {
self.bits.$method(other);
}
@ -286,56 +368,103 @@ impl_shift_operator!( Fixed, Shl, shl, Self );
impl_shift_assign_operator!( Fixed, ShrAssign, shr_assign );
impl_shift_operator!( Fixed, Shr, shr, Self );
// WIDE MUL: multiply into a wider type
// let a = I32F32::ONE;
// let b:I64F64 = a.wide_mul(a);
macro_rules! impl_wide_mul{
// wide operators. The result width is the sum of the input widths, i.e. none of the multiplication
macro_rules! impl_wide_operators{
($lhs:expr,$rhs:expr)=>{
impl Fixed<$lhs,{$lhs*32}>
{
paste::item!{
pub fn [<wide_mul_ $lhs _ $rhs>](self,rhs:Fixed<$rhs,{$rhs*32}>)->Fixed<{$lhs+$rhs},{($lhs+$rhs)*32}>{
Fixed::from_bits(self.bits.as_::<BInt<{$lhs+$rhs}>>()*rhs.bits.as_::<BInt<{$lhs+$rhs}>>())
impl core::ops::Mul<Fixed<$rhs,{$rhs*32}>> for Fixed<$lhs,{$lhs*32}>{
type Output=Fixed<{$lhs+$rhs},{($lhs+$rhs)*32}>;
#[inline]
fn mul(self, other: Fixed<$rhs,{$rhs*32}>)->Self::Output{
paste::item!{
self.[<wide_mul_ $lhs _ $rhs>](other)
}
}
}
};
#[cfg(not(feature="deferred-division"))]
impl core::ops::Div<Fixed<$rhs,{$rhs*32}>> for Fixed<$lhs,{$lhs*32}>{
type Output=Fixed<{$lhs+$rhs},{($lhs+$rhs)*32}>;
#[inline]
fn div(self, other: Fixed<$rhs,{$rhs*32}>)->Self::Output{
paste::item!{
self.[<wide_div_ $lhs _ $rhs>](other)
}
}
}
}
}
macro_rules! impl_wide_mul_all{
($(($x:expr, $y:expr)),*)=>{
$(
impl_wide_mul!($x, $y);
)*
// WIDE MUL: multiply into a wider type
// let a = I32F32::ONE;
// let b:I64F64 = a.wide_mul(a);
macro_rules! impl_wide_not_const_generic{
(
(),
($lhs:expr,$rhs:expr)
)=>{
impl Fixed<$lhs,{$lhs*32}>
{
paste::item!{
#[inline]
pub fn [<wide_mul_ $lhs _ $rhs>](self,rhs:Fixed<$rhs,{$rhs*32}>)->Fixed<{$lhs+$rhs},{($lhs+$rhs)*32}>{
let lhs=self.bits.as_::<BInt<{$lhs+$rhs}>>();
let rhs=rhs.bits.as_::<BInt<{$lhs+$rhs}>>();
Fixed::from_bits(lhs*rhs)
}
/// This operation cannot represent the fraction exactly,
/// but it shapes the output to have precision for the
/// largest and smallest possible fractions.
#[inline]
pub fn [<wide_div_ $lhs _ $rhs>](self,rhs:Fixed<$rhs,{$rhs*32}>)->Fixed<{$lhs+$rhs},{($lhs+$rhs)*32}>{
// (lhs/2^LHS_FRAC)/(rhs/2^RHS_FRAC)
let lhs=self.bits.as_::<BInt<{$lhs+$rhs}>>().shl($rhs*64);
let rhs=rhs.bits.as_::<BInt<{$lhs+$rhs}>>();
Fixed::from_bits(lhs/rhs)
}
}
}
#[cfg(feature="wide-mul")]
impl_wide_operators!($lhs,$rhs);
};
}
//const generics sidestepped wahoo
impl_wide_mul_all!(
(1,1),(2,1),(3,1),(4,1),(5,1),(6,1),(7,1),(8,1),
(1,2),(2,2),(3,2),(4,2),(5,2),(6,2),(7,2),(8,2),
(1,3),(2,3),(3,3),(4,3),(5,3),(6,3),(7,3),(8,3),
(1,4),(2,4),(3,4),(4,4),(5,4),(6,4),(7,4),(8,4),
(1,5),(2,5),(3,5),(4,5),(5,5),(6,5),(7,5),(8,5),
(1,6),(2,6),(3,6),(4,6),(5,6),(6,6),(7,6),(8,6),
(1,7),(2,7),(3,7),(4,7),(5,7),(6,7),(7,7),(8,7),
(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8),(8,8)
macro_repeated!(
impl_wide_not_const_generic,(),
(1,1),(2,1),(3,1),(4,1),(5,1),(6,1),(7,1),(8,1),(9,1),(10,1),(11,1),(12,1),(13,1),(14,1),(15,1),
(1,2),(2,2),(3,2),(4,2),(5,2),(6,2),(7,2),(8,2),(9,2),(10,2),(11,2),(12,2),(13,2),(14,2),
(1,3),(2,3),(3,3),(4,3),(5,3),(6,3),(7,3),(8,3),(9,3),(10,3),(11,3),(12,3),(13,3),
(1,4),(2,4),(3,4),(4,4),(5,4),(6,4),(7,4),(8,4),(9,4),(10,4),(11,4),(12,4),
(1,5),(2,5),(3,5),(4,5),(5,5),(6,5),(7,5),(8,5),(9,5),(10,5),(11,5),
(1,6),(2,6),(3,6),(4,6),(5,6),(6,6),(7,6),(8,6),(9,6),(10,6),
(1,7),(2,7),(3,7),(4,7),(5,7),(6,7),(7,7),(8,7),(9,7),
(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8),(8,8),
(1,9),(2,9),(3,9),(4,9),(5,9),(6,9),(7,9),
(1,10),(2,10),(3,10),(4,10),(5,10),(6,10),
(1,11),(2,11),(3,11),(4,11),(5,11),
(1,12),(2,12),(3,12),(4,12),
(1,13),(2,13),(3,13),
(1,14),(2,14),
(1,15)
);
impl<const SRC:usize,const F:usize> Fixed<SRC,F>{
#[inline]
pub fn resize_into<const DST:usize>(self)->Fixed<DST,F>{
Fixed::from_bits(self.bits.as_::<BInt<DST>>())
}
}
macro_rules! impl_const{
macro_rules! impl_not_const_generic{
($n:expr)=>{
impl Fixed<{$n*2},{$n*2*32}>{
#[inline]
pub fn halve_precision(self)->Fixed<$n,{$n*32}>{
Fixed::from_bits(bnum::cast::As::as_(self.bits.shr($n*32)))
}
}
impl Fixed<$n,{$n*32}>{
paste::item!{
#[inline]
pub fn sqrt_unchecked(self)->Self{
//1<<max_shift must be the minimum power of two which when squared is greater than self
//calculating max_shift:
@ -348,17 +477,19 @@ macro_rules! impl_const{
let mut result=Self::ZERO;
//multiply by one to make the types match (hack)
let wide_self=self.[<wide_mul_ $n _ $n>](Self::ONE);
//TODO: use resize method
let wide_self:<Self as core::ops::Mul>::Output=self*Self::ONE;
//descend down the bits and check if flipping each bit would push the square over the input value
for shift in (0..=max_shift).rev(){
let new_result=result|Self::from_bits(BInt::from_bits(bnum::BUint::power_of_two(shift)));
if new_result.[<wide_mul_ $n _ $n>](new_result)<=wide_self{
if new_result*new_result<=wide_self{
result=new_result;
}
}
result
}
}
#[inline]
pub fn sqrt(self)->Self{
if self<Self::ZERO{
panic!("Square root less than zero")
@ -366,6 +497,7 @@ macro_rules! impl_const{
self.sqrt_unchecked()
}
}
#[inline]
pub fn sqrt_checked(self)->Option<Self>{
if self<Self::ZERO{
None
@ -376,11 +508,11 @@ macro_rules! impl_const{
}
}
}
impl_const!(1);
impl_const!(2);
impl_const!(3);
impl_const!(4);
impl_const!(5);
impl_const!(6);
impl_const!(7);
impl_const!(8);
impl_not_const_generic!(1);
impl_not_const_generic!(2);
impl_not_const_generic!(3);
impl_not_const_generic!(4);
impl_not_const_generic!(5);
impl_not_const_generic!(6);
impl_not_const_generic!(7);
impl_not_const_generic!(8);

@ -3,8 +3,6 @@ pub mod types;
#[cfg(feature="zeroes")]
pub mod zeroes;
#[cfg(feature="ratio")]
pub mod ratio;
#[cfg(test)]
mod tests;

@ -1,10 +0,0 @@
#[derive(Clone,Copy,Debug,Hash)]
pub struct Ratio<Num,Den>{
pub(crate)num:Num,
pub(crate)den:Den,
}
impl<Num,Den> Ratio<Num,Den>{
pub const fn new(num:Num,den:Den)->Self{
Self{num,den}
}
}

@ -20,6 +20,20 @@ fn test_wide_mul(){
assert_eq!(aa,crate::types::I64F64::ONE);
}
#[test]
fn test_wide_div(){
let a=I32F32::ONE*4;
let b=I32F32::ONE*2;
let wide_a=a.wide_mul_1_1(I32F32::ONE);
let wide_b=b.wide_mul_1_1(I32F32::ONE);
let ab=a.wide_div_1_1(b);
assert_eq!(ab,crate::types::I64F64::ONE*2);
let wab=wide_a.wide_div_2_1(b);
assert_eq!(wab,crate::fixed::Fixed::<3,96>::ONE*2);
let awb=a.wide_div_1_2(wide_b);
assert_eq!(awb,crate::fixed::Fixed::<3,96>::ONE*2);
}
#[test]
fn test_wide_mul_repeated() {
let a=I32F32::from(2);
@ -51,7 +65,7 @@ fn test_sqrt_zero(){
#[test]
fn test_sqrt_low(){
let a=I32F32::HALF;
let b=a*a;
let b=a.fixed_mul(a);
assert_eq!(b.sqrt(),a);
}
fn find_equiv_sqrt_via_f64(n:I32F32)->I32F32{

@ -1,5 +1,4 @@
use crate::fixed::Fixed;
use crate::ratio::Ratio;
use arrayvec::ArrayVec;
use std::cmp::Ordering;
@ -7,36 +6,38 @@ macro_rules! impl_zeroes{
($n:expr)=>{
impl Fixed<$n,{$n*32}>{
#[inline]
pub fn zeroes2(a0:Self,a1:Self,a2:Self)->ArrayVec<Ratio<Self,Self>,2>{
pub fn zeroes2(a0:Self,a1:Self,a2:Self)->ArrayVec<<Self as core::ops::Div>::Output,2>{
let a2pos=match a2.cmp(&Self::ZERO){
Ordering::Greater=>true,
Ordering::Equal=>return ArrayVec::from_iter(Self::zeroes1(a0,a1).into_iter()),
Ordering::Less=>true,
};
paste::item!{
let radicand=a1.[<wide_mul_ $n _ $n>](a1)-a2.[<wide_mul_ $n _ $n>](a0)*4;
let radicand=a1*a1-a2*a0*4;
}
match radicand.cmp(&Fixed::<{$n*2},{$n*2*32}>::ZERO){
match radicand.cmp(&<Self as core::ops::Mul>::Output::ZERO){
Ordering::Greater=>{
let planar_radicand=radicand.sqrt().halve_precision();
//TODO: use resize method
let planar_radicand:Self=radicand.sqrt().halve_precision();
//sort roots ascending and avoid taking the difference of large numbers
match (a2pos,Self::ZERO<a1){
(true, true )=>[Ratio::new(-a1-planar_radicand,a2*2),Ratio::new(a0*2,-a1-planar_radicand)].into(),
(true, false)=>[Ratio::new(a0*2,-a1+planar_radicand),Ratio::new(-a1+planar_radicand,a2*2)].into(),
(false,true )=>[Ratio::new(a0*2,-a1-planar_radicand),Ratio::new(-a1-planar_radicand,a2*2)].into(),
(false,false)=>[Ratio::new(-a1+planar_radicand,a2*2),Ratio::new(a0*2,-a1+planar_radicand)].into(),
}
let zeroes=match (a2pos,Self::ZERO<a1){
(true, true )=>[(-a1-planar_radicand)/(a2*2),(a0*2)/(-a1-planar_radicand)],
(true, false)=>[(a0*2)/(-a1+planar_radicand),(-a1+planar_radicand)/(a2*2)],
(false,true )=>[(a0*2)/(-a1-planar_radicand),(-a1-planar_radicand)/(a2*2)],
(false,false)=>[(-a1+planar_radicand)/(a2*2),(a0*2)/(-a1+planar_radicand)],
};
ArrayVec::from_iter(zeroes)
},
Ordering::Equal=>ArrayVec::from_iter([Ratio::new(a1,a2*-2)]),
Ordering::Equal=>ArrayVec::from_iter([(a1)/(a2*-2)]),
Ordering::Less=>ArrayVec::new_const(),
}
}
#[inline]
pub fn zeroes1(a0:Self,a1:Self)->ArrayVec<Ratio<Self,Self>,1>{
pub fn zeroes1(a0:Self,a1:Self)->ArrayVec<<Self as core::ops::Div>::Output,1>{
if a1==Self::ZERO{
ArrayVec::new_const()
}else{
ArrayVec::from_iter([Ratio::new(-a0,a1)])
ArrayVec::from_iter([(-a0)/(a1)])
}
}
}

@ -1,13 +0,0 @@
[package]
name = "fixed_wide_vectors"
version = "0.1.0"
edition = "2021"
[features]
default=["fixed_wide","named-fields"]
named-fields=[]
fixed_wide=["dep:fixed_wide","dep:paste"]
[dependencies]
fixed_wide = { version = "0.1.0", path = "../fixed_wide", optional = true }
paste = { version = "1.0.15", optional = true }

@ -1,212 +0,0 @@
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_wide_vector_operations_2arg_not_const_generic {
(
(),
($lhs:expr, $rhs:expr)
) => {
impl<const N:usize> Vector<N,fixed_wide::fixed::Fixed<{$lhs},{$lhs*32}>>{
paste::item!{
#[inline]
pub fn [<wide_mul_ $lhs _ $rhs>](self,rhs:Vector<N,fixed_wide::fixed::Fixed<{$rhs},{$rhs*32}>>)->Vector<N,fixed_wide::fixed::Fixed<{$lhs+$rhs},{($lhs+$rhs)*32}>>{
self.map_zip(rhs,|(a,b)|a.[<wide_mul_ $lhs _ $rhs>](b))
}
#[inline]
pub fn [<wide_dot_ $lhs _ $rhs>](self,rhs:Vector<N,fixed_wide::fixed::Fixed<{$rhs},{$rhs*32}>>)->fixed_wide::fixed::Fixed<{$lhs+$rhs},{($lhs+$rhs)*32}>{
self.array.into_iter().zip(rhs.array).map(|(a,b)|a.[<wide_mul_ $lhs _ $rhs>](b)).sum()
}
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_wide_vector_operations_1arg_not_const_generic {
(
(),
$n:expr
) => {
impl<const N:usize> Vector<N,fixed_wide::fixed::Fixed<{$n},{$n*32}>>{
paste::item!{
#[inline]
pub fn wide_length_squared(&self)->fixed_wide::fixed::Fixed<{$n*2},{$n*2*32}>{
self.array.into_iter().map(|t|t.[<wide_mul_ $n _ $n>](t)).sum()
}
}
}
};
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! do_macro_8x8{
(
$macro:ident,
$any:tt
)=>{
$crate::macro_repeated!($macro, $any,
(1,1),(2,1),(3,1),(4,1),(5,1),(6,1),(7,1),(8,1),
(1,2),(2,2),(3,2),(4,2),(5,2),(6,2),(7,2),(8,2),
(1,3),(2,3),(3,3),(4,3),(5,3),(6,3),(7,3),(8,3),
(1,4),(2,4),(3,4),(4,4),(5,4),(6,4),(7,4),(8,4),
(1,5),(2,5),(3,5),(4,5),(5,5),(6,5),(7,5),(8,5),
(1,6),(2,6),(3,6),(4,6),(5,6),(6,6),(7,6),(8,6),
(1,7),(2,7),(3,7),(4,7),(5,7),(6,7),(7,7),(8,7),
(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8),(8,8)
);
};
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! do_macro_8{
(
$macro:ident,
$any:tt
)=>{
$crate::macro_repeated!($macro, $any, 1,2,3,4,5,6,7,8);
};
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_wide_vector_operations {
() => {
$crate::do_macro_8!(impl_wide_vector_operations_1arg_not_const_generic,());
$crate::do_macro_8x8!(impl_wide_vector_operations_2arg_not_const_generic,());
};
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_3_wide_cross {
(
(),
($lhs:expr, $rhs:expr)
)=>{
impl Vector<3,fixed_wide::fixed::Fixed<{$lhs},{$lhs*32}>>{
paste::item!{
#[inline]
pub fn [<wide_cross_ $lhs _ $rhs>](self,rhs:Vector<3,fixed_wide::fixed::Fixed<{$rhs},{$rhs*32}>>)->Vector<3,fixed_wide::fixed::Fixed<{$lhs+$rhs},{($lhs+$rhs)*32}>>{
Vector::new([
self.y.[<wide_mul_ $lhs _ $rhs>](rhs.z)-self.z.[<wide_mul_ $lhs _ $rhs>](rhs.y),
self.z.[<wide_mul_ $lhs _ $rhs>](rhs.x)-self.x.[<wide_mul_ $lhs _ $rhs>](rhs.z),
self.x.[<wide_mul_ $lhs _ $rhs>](rhs.y)-self.y.[<wide_mul_ $lhs _ $rhs>](rhs.x),
])
}
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_wide_3 {
()=>{
$crate::do_macro_8x8!(impl_vector_3_wide_cross,());
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! do_macro_4_dumb{
(
$macro:ident,
$any:tt
)=>{
$crate::macro_repeated!($macro, $any, (1,2),(2,4),(3,6),(4,8));
};
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix_wide_dot {
(
(),
($lhs: expr, $rhs: expr)
) => {
impl<const X:usize,const Y:usize> Matrix<X,Y,fixed_wide::fixed::Fixed<{$lhs},{$lhs*32}>>{
paste::item!{
#[inline]
pub fn [<wide_dot_ $lhs _ $rhs>]<const Z:usize>(self,rhs:Matrix<Z,X,fixed_wide::fixed::Fixed<{$rhs},{$rhs*32}>>)->Matrix<Z,Y,fixed_wide::fixed::Fixed<{$lhs+$rhs},{($lhs+$rhs)*32}>>{
let mut array_of_iterators=rhs.array.map(|axis|axis.into_iter().cycle());
Matrix::new(
self.array.map(|axis|
core::array::from_fn(|_|
// axis dot product with transposed rhs array
axis.iter().zip(
array_of_iterators.iter_mut()
).map(|(&lhs_value,rhs_iter)|
lhs_value.[<wide_mul_ $lhs _ $rhs>](rhs_iter.next().unwrap())
).sum()
)
)
)
}
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix_wide_dot_8x8 {
() => {
$crate::do_macro_8x8!(impl_matrix_wide_dot,());
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix_wide_3x3_det_not_const_generic {
(
$n: expr,
$_2n: expr
)=>{
impl Matrix<3,3,fixed_wide::fixed::Fixed<$n,{$n*32}>>{
paste::item!{
pub fn [<wide_det_3x3_ $n>](self)->fixed_wide::fixed::Fixed<{$n*3},{$n*3*32}>{
//[<wide_dot_ $n _ $n*2>] will not compile, so the doubles are hardcoded above
self.x_axis.[<wide_dot_ $n _ $_2n>](self.y_axis.[<wide_cross_ $n _ $n>](self.z_axis))
}
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix_wide_3x3_det_not_const_generic_shim {
(
(),($n: expr,$_2n: expr)
)=>{
$crate::impl_matrix_wide_3x3_det_not_const_generic!($n,$_2n);
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix_wide_3x3_adjugate_not_const_generic {
(
(),
$n: expr
)=>{
impl Matrix<3,3,fixed_wide::fixed::Fixed<$n,{$n*32}>>{
paste::item!{
pub fn [<wide_adjugate_3x3_ $n>](self)->Matrix<3,3,fixed_wide::fixed::Fixed<{$n*2},{$n*2*32}>>{
Matrix::new([
[self.y_axis.y.[<wide_mul_ $n _ $n>](self.z_axis.z)-self.y_axis.z.[<wide_mul_ $n _ $n>](self.z_axis.y),self.x_axis.z.[<wide_mul_ $n _ $n>](self.z_axis.y)-self.x_axis.y.[<wide_mul_ $n _ $n>](self.z_axis.z),self.x_axis.y.[<wide_mul_ $n _ $n>](self.y_axis.z)-self.x_axis.z.[<wide_mul_ $n _ $n>](self.y_axis.y)],
[self.y_axis.z.[<wide_mul_ $n _ $n>](self.z_axis.x)-self.y_axis.x.[<wide_mul_ $n _ $n>](self.z_axis.z),self.x_axis.x.[<wide_mul_ $n _ $n>](self.z_axis.z)-self.x_axis.z.[<wide_mul_ $n _ $n>](self.z_axis.x),self.x_axis.z.[<wide_mul_ $n _ $n>](self.y_axis.x)-self.x_axis.x.[<wide_mul_ $n _ $n>](self.y_axis.z)],
[self.y_axis.x.[<wide_mul_ $n _ $n>](self.z_axis.y)-self.y_axis.y.[<wide_mul_ $n _ $n>](self.z_axis.x),self.x_axis.y.[<wide_mul_ $n _ $n>](self.z_axis.x)-self.x_axis.x.[<wide_mul_ $n _ $n>](self.z_axis.y),self.x_axis.x.[<wide_mul_ $n _ $n>](self.y_axis.y)-self.x_axis.y.[<wide_mul_ $n _ $n>](self.y_axis.x)],
])
}
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix_wide_3x3 {
()=>{
$crate::do_macro_4_dumb!(impl_matrix_wide_3x3_det_not_const_generic_shim,());
$crate::do_macro_8!(impl_matrix_wide_3x3_adjugate_not_const_generic,());
}
}

@ -1,129 +0,0 @@
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix {
() => {
impl<const X:usize,const Y:usize,T> Matrix<X,Y,T>{
#[inline(always)]
pub const fn new(array:[[T;X];Y])->Self{
Self{array}
}
#[inline(always)]
pub fn to_array(self)->[[T;X];Y]{
self.array
}
#[inline]
pub fn map<F,U>(self,f:F)->Matrix<X,Y,U>
where
F:Fn(T)->U
{
Matrix::new(
self.array.map(|inner|inner.map(&f)),
)
}
#[inline]
pub fn transpose(self)->Matrix<Y,X,T>{
//how did I think of this
let mut array_of_iterators=self.array.map(|axis|axis.into_iter());
Matrix::new(
core::array::from_fn(|_|
array_of_iterators.each_mut().map(|iter|
iter.next().unwrap()
)
)
)
}
#[inline]
// MatY<VecX>.MatX<VecZ> = MatY<VecZ>
pub fn dot<const Z:usize,U,V>(self,rhs:Matrix<Z,X,U>)->Matrix<Z,Y,V>
where
T:core::ops::Mul<U,Output=V>+Copy,
V:core::iter::Sum,
U:Copy,
{
let mut array_of_iterators=rhs.array.map(|axis|axis.into_iter().cycle());
Matrix::new(
self.array.map(|axis|
core::array::from_fn(|_|
// axis dot product with transposed rhs array
axis.iter().zip(
array_of_iterators.iter_mut()
).map(|(&lhs_value,rhs_iter)|
lhs_value*rhs_iter.next().unwrap()
).sum()
)
)
)
}
}
impl<const X:usize,const Y:usize,T> Matrix<X,Y,T>
where
T:Copy
{
pub const fn from_value(value:T)->Self{
Self::new([[value;X];Y])
}
}
impl<const X:usize,const Y:usize,T:Default> Default for Matrix<X,Y,T>{
fn default()->Self{
Self::new(
core::array::from_fn(|_|core::array::from_fn(|_|Default::default()))
)
}
}
#[cfg(feature="fixed_wide")]
$crate::impl_matrix_wide_dot_8x8!();
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix_named_fields_shape {
(
($struct_outer:ident, $size_outer: expr),
($size_inner: expr)
) => {
impl<T> core::ops::Deref for Matrix<$size_outer,$size_inner,T>{
type Target=$struct_outer<Vector<$size_inner,T>>;
fn deref(&self)->&Self::Target{
unsafe{core::mem::transmute(&self.array)}
}
}
impl<T> core::ops::DerefMut for Matrix<$size_outer,$size_inner,T>{
fn deref_mut(&mut self)->&mut Self::Target{
unsafe{core::mem::transmute(&mut self.array)}
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix_named_fields_shape_shim {
(
($($vector_info:tt),+),
$matrix_info:tt
) => {
$crate::macro_repeated!(impl_matrix_named_fields_shape,$matrix_info,$($vector_info),+);
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix_named_fields {
(
($($matrix_info:tt),+),
$vector_infos:tt
) => {
$crate::macro_repeated!(impl_matrix_named_fields_shape_shim,$vector_infos,$($matrix_info),+);
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix_3x3 {
()=>{
#[cfg(feature="fixed_wide")]
$crate::impl_matrix_wide_3x3!();
}
}

@ -1,187 +0,0 @@
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector {
() => {
impl<const N:usize,T> Vector<N,T>{
#[inline(always)]
pub const fn new(array:[T;N])->Self{
Self{array}
}
#[inline(always)]
pub fn to_array(self)->[T;N]{
self.array
}
#[inline]
pub fn map<F,U>(self,f:F)->Vector<N,U>
where
F:Fn(T)->U
{
Vector::new(
self.array.map(f)
)
}
#[inline]
pub fn map_zip<F,U,V>(self,other:Vector<N,U>,f:F)->Vector<N,V>
where
F:Fn((T,U))->V,
{
let mut iter=self.array.into_iter().zip(other.array);
Vector::new(
core::array::from_fn(|_|f(iter.next().unwrap())),
)
}
}
impl<const N:usize,T:Copy> Vector<N,T>{
#[inline(always)]
pub const fn from_value(value:T)->Self{
Self::new([value;N])
}
}
impl<const N:usize,T:Default> Default for Vector<N,T>{
fn default()->Self{
Self::new(
core::array::from_fn(|_|Default::default())
)
}
}
impl<const N:usize,T:Ord> Vector<N,T>{
#[inline]
pub fn min(self,rhs:Self)->Self{
self.map_zip(rhs,|(a,b)|a.min(b))
}
#[inline]
pub fn max(self,rhs:Self)->Self{
self.map_zip(rhs,|(a,b)|a.max(b))
}
#[inline]
pub fn cmp(self,rhs:Self)->Vector<N,core::cmp::Ordering>{
self.map_zip(rhs,|(a,b)|a.cmp(&b))
}
#[inline]
pub fn lt(self,rhs:Self)->Vector<N,bool>{
self.map_zip(rhs,|(a,b)|a.lt(&b))
}
#[inline]
pub fn gt(self,rhs:Self)->Vector<N,bool>{
self.map_zip(rhs,|(a,b)|a.gt(&b))
}
#[inline]
pub fn ge(self,rhs:Self)->Vector<N,bool>{
self.map_zip(rhs,|(a,b)|a.ge(&b))
}
#[inline]
pub fn le(self,rhs:Self)->Vector<N,bool>{
self.map_zip(rhs,|(a,b)|a.le(&b))
}
}
impl<const N:usize> Vector<N,bool>{
#[inline]
pub fn all(&self)->bool{
self.array==[true;N]
}
#[inline]
pub fn any(&self)->bool{
self.array!=[false;N]
}
}
impl<const N:usize,T:core::ops::Neg<Output=V>,V> core::ops::Neg for Vector<N,T>{
type Output=Vector<N,V>;
fn neg(self)->Self::Output{
Vector::new(
self.array.map(|t|-t)
)
}
}
// Impl arithmetic operators
$crate::impl_vector_assign_operator!(AddAssign, add_assign );
$crate::impl_vector_operator!(Add, add );
$crate::impl_vector_assign_operator!(SubAssign, sub_assign );
$crate::impl_vector_operator!(Sub, sub );
$crate::impl_vector_assign_operator!(MulAssign, mul_assign );
$crate::impl_vector_operator!(Mul, mul );
$crate::impl_vector_assign_operator!(DivAssign, div_assign );
$crate::impl_vector_operator!(Div, div );
$crate::impl_vector_assign_operator!(RemAssign, rem_assign );
$crate::impl_vector_operator!(Rem, rem );
// Impl bitwise operators
$crate::impl_vector_assign_operator!(BitAndAssign, bitand_assign );
$crate::impl_vector_operator!(BitAnd, bitand );
$crate::impl_vector_assign_operator!(BitOrAssign, bitor_assign );
$crate::impl_vector_operator!(BitOr, bitor );
$crate::impl_vector_assign_operator!(BitXorAssign, bitxor_assign );
$crate::impl_vector_operator!(BitXor, bitxor );
// Impl floating-point based methods
#[cfg(feature="fixed_wide")]
$crate::impl_wide_vector_operations!();
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_operator {
($trait: ident, $method: ident ) => {
impl<const N:usize,T:core::ops::$trait<U,Output=V>,U,V> core::ops::$trait<Vector<N,U>> for Vector<N,T>{
type Output=Vector<N,V>;
fn $method(self,rhs:Vector<N,U>)->Self::Output{
self.map_zip(rhs,|(a,b)|a.$method(b))
}
}
impl<const N:usize,T:core::ops::$trait<i64,Output=T>> core::ops::$trait<i64> for Vector<N,T>{
type Output=Self;
fn $method(self,rhs:i64)->Self::Output{
self.map(|t|t.$method(rhs))
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_assign_operator {
($trait: ident, $method: ident ) => {
impl<const N:usize,T:core::ops::$trait<U>,U> core::ops::$trait<Vector<N,U>> for Vector<N,T>{
fn $method(&mut self,rhs:Vector<N,U>){
self.array.iter_mut().zip(rhs.array)
.for_each(|(a,b)|a.$method(b))
}
}
impl<const N:usize,T:core::ops::$trait<i64>> core::ops::$trait<i64> for Vector<N,T>{
fn $method(&mut self,rhs:i64){
self.array.iter_mut()
.for_each(|t|t.$method(rhs))
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_named_fields {
( $struct:ident, $size: expr ) => {
impl<T> core::ops::Deref for Vector<$size,T>{
type Target=$struct<T>;
fn deref(&self)->&Self::Target{
unsafe{core::mem::transmute(&self.array)}
}
}
impl<T> core::ops::DerefMut for Vector<$size,T>{
fn deref_mut(&mut self)->&mut Self::Target{
unsafe{core::mem::transmute(&mut self.array)}
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_3 {
()=>{
#[cfg(feature="fixed_wide")]
$crate::impl_vector_wide_3!();
}
}

@ -1,9 +0,0 @@
#[derive(Clone,Copy,Hash,Eq,PartialEq)]
pub struct Matrix<const X:usize,const Y:usize,T>{
pub(crate) array:[[T;X];Y],
}
crate::impl_matrix!();
//Special case 3x3 matrix operations because I cba to write macros for the arbitrary cases
crate::impl_matrix_3x3!();

@ -1,9 +0,0 @@
#[derive(Clone,Copy,Hash,Eq,PartialEq)]
pub struct Vector<const N:usize,T>{
pub(crate) array:[T;N],
}
crate::impl_vector!();
//cross product
crate::impl_vector_3!();

@ -2,12 +2,6 @@
# It is not intended for manual editing.
version = 3
[[package]]
name = "arrayvec"
version = "0.7.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7c02d123df017efcdfbd739ef81735b36c5ba83ec3c59c80a9d7ecc718f92e50"
[[package]]
name = "bnum"
version = "0.11.0"
@ -18,17 +12,16 @@ checksum = "3e31ea183f6ee62ac8b8a8cf7feddd766317adfb13ff469de57ce033efd6a790"
name = "fixed_wide"
version = "0.1.0"
dependencies = [
"arrayvec",
"bnum",
"paste",
]
[[package]]
name = "fixed_wide_vectors"
name = "linear_ops"
version = "0.1.0"
dependencies = [
"fixed_wide",
"paste",
"ratio_ops",
]
[[package]]
@ -36,3 +29,7 @@ name = "paste"
version = "1.0.15"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "57c0d7b74b563b49d38dae00a0c37d4d6de9b432382b2892f0574ddcae73fd0a"
[[package]]
name = "ratio_ops"
version = "0.1.0"

15
linear_ops/Cargo.toml Normal file

@ -0,0 +1,15 @@
[package]
name = "linear_ops"
version = "0.1.0"
edition = "2021"
[features]
default=["named-fields"]
named-fields=[]
deferred-division=["dep:ratio_ops"]
[dependencies]
ratio_ops = { path = "../ratio_ops", optional = true }
[dev-dependencies]
fixed_wide = { version = "0.1.0", path = "../fixed_wide", features = ["wide-mul"] }

@ -0,0 +1,258 @@
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix {
() => {
impl<const X:usize,const Y:usize,T> Matrix<X,Y,T>{
#[inline(always)]
pub const fn new(array:[[T;X];Y])->Self{
Self{array}
}
#[inline(always)]
pub fn to_array(self)->[[T;X];Y]{
self.array
}
#[inline]
pub fn map<F,U>(self,f:F)->Matrix<X,Y,U>
where
F:Fn(T)->U
{
Matrix::new(
self.array.map(|inner|inner.map(&f)),
)
}
#[inline]
pub fn transpose(self)->Matrix<Y,X,T>{
//how did I think of this
let mut array_of_iterators=self.array.map(|axis|axis.into_iter());
Matrix::new(
core::array::from_fn(|_|
array_of_iterators.each_mut().map(|iter|
iter.next().unwrap()
)
)
)
}
#[inline]
// MatY<VecX>.MatX<VecZ> = MatY<VecZ>
pub fn dot<const Z:usize,U,V>(self,rhs:Matrix<Z,X,U>)->Matrix<Z,Y,V>
where
T:core::ops::Mul<U,Output=V>+Copy,
V:core::iter::Sum,
U:Copy,
{
let mut array_of_iterators=rhs.array.map(|axis|axis.into_iter().cycle());
Matrix::new(
self.array.map(|axis|
core::array::from_fn(|_|
// axis dot product with transposed rhs array
axis.iter().zip(
array_of_iterators.iter_mut()
).map(|(&lhs_value,rhs_iter)|
lhs_value*rhs_iter.next().unwrap()
).sum()
)
)
)
}
#[inline]
// MatY<VecX>.VecX = VecY
pub fn transform_vector<U,V>(self,rhs:Vector<X,U>)->Vector<Y,V>
where
T:core::ops::Mul<U,Output=V>,
V:core::iter::Sum,
U:Copy,
{
Vector::new(
self.array.map(|axis|
Vector::new(axis).dot(rhs)
)
)
}
}
impl<const X:usize,const Y:usize,T> Matrix<X,Y,T>
where
T:Copy
{
#[inline(always)]
pub const fn from_value(value:T)->Self{
Self::new([[value;X];Y])
}
}
impl<const X:usize,const Y:usize,T:Default> Default for Matrix<X,Y,T>{
#[inline]
fn default()->Self{
Self::new(
core::array::from_fn(|_|core::array::from_fn(|_|Default::default()))
)
}
}
impl<const X:usize,const Y:usize,T:core::fmt::Display> core::fmt::Display for Matrix<X,Y,T>{
#[inline]
fn fmt(&self,f:&mut core::fmt::Formatter)->Result<(),core::fmt::Error>{
for row in &self.array[0..Y]{
core::write!(f,"\n")?;
for elem in &row[0..X-1]{
core::write!(f,"{}, ",elem)?;
}
// assume we will be using matrices of size 1x1 or greater
core::write!(f,"{}",row.last().unwrap())?;
}
Ok(())
}
}
impl<const X:usize,const Y:usize,const Z:usize,T,U,V> core::ops::Mul<Matrix<Z,X,U>> for Matrix<X,Y,T>
where
T:core::ops::Mul<U,Output=V>+Copy,
V:core::iter::Sum,
U:Copy,
{
type Output=Matrix<Z,Y,V>;
#[inline]
fn mul(self,rhs:Matrix<Z,X,U>)->Self::Output{
self.dot(rhs)
}
}
impl<const X:usize,const Y:usize,T,U,V> core::ops::Mul<Vector<X,U>> for Matrix<X,Y,T>
where
T:core::ops::Mul<U,Output=V>,
V:core::iter::Sum,
U:Copy,
{
type Output=Vector<Y,V>;
#[inline]
fn mul(self,rhs:Vector<X,U>)->Self::Output{
self.transform_vector(rhs)
}
}
#[cfg(feature="deferred-division")]
$crate::impl_matrix_deferred_division!();
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix_deferred_division {
() => {
impl<const X:usize,const Y:usize,T:ratio_ops::ratio::Divide<U,Output=V>,U:Copy,V> ratio_ops::ratio::Divide<U> for Matrix<X,Y,T>{
type Output=Matrix<X,Y,V>;
#[inline]
fn divide(self,rhs:U)->Self::Output{
self.map(|t|t.divide(rhs))
}
}
impl<const X:usize,const Y:usize,T,U> core::ops::Div<U> for Matrix<X,Y,T>{
type Output=ratio_ops::ratio::Ratio<Matrix<X,Y,T>,U>;
#[inline]
fn div(self,rhs:U)->Self::Output{
ratio_ops::ratio::Ratio::new(self,rhs)
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix_extend {
( $x: expr, $y: expr ) => {
impl<T> Matrix<$x,$y,T>{
#[inline]
pub fn extend_row(self,value:Vector<$x,T>)->Matrix<$x,{$y+1},T>{
let mut iter=self.array.into_iter().chain(core::iter::once(value.array));
Matrix::new(
core::array::from_fn(|_|iter.next().unwrap()),
)
}
#[inline]
pub fn extend_column(self,value:Vector<$y,T>)->Matrix<{$x+1},$y,T>{
let mut iter_rows=value.array.into_iter();
Matrix::new(
self.array.map(|axis|{
let mut elements_iter=axis.into_iter().chain(core::iter::once(iter_rows.next().unwrap()));
core::array::from_fn(|_|elements_iter.next().unwrap())
})
)
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix_named_fields_shape {
(
($struct_outer:ident, $size_outer: expr),
($size_inner: expr)
) => {
impl<T> core::ops::Deref for Matrix<$size_outer,$size_inner,T>{
type Target=$struct_outer<Vector<$size_inner,T>>;
#[inline]
fn deref(&self)->&Self::Target{
unsafe{core::mem::transmute(&self.array)}
}
}
impl<T> core::ops::DerefMut for Matrix<$size_outer,$size_inner,T>{
#[inline]
fn deref_mut(&mut self)->&mut Self::Target{
unsafe{core::mem::transmute(&mut self.array)}
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix_named_fields_shape_shim {
(
($($vector_info:tt),+),
$matrix_info:tt
) => {
$crate::macro_repeated!(impl_matrix_named_fields_shape,$matrix_info,$($vector_info),+);
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix_named_fields {
(
($($matrix_info:tt),+),
$vector_infos:tt
) => {
$crate::macro_repeated!(impl_matrix_named_fields_shape_shim,$vector_infos,$($matrix_info),+);
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix_3x3 {
()=>{
impl<T,T2,T3> Matrix<3,3,T>
where
//cross
T:core::ops::Mul<T,Output=T2>+Copy,
T2:core::ops::Sub,
//dot
T:core::ops::Mul<<T2 as core::ops::Sub>::Output,Output=T3>,
T3:core::iter::Sum,
{
pub fn det(self)->T3{
self.x_axis.dot(self.y_axis.cross(self.z_axis))
}
}
impl<T,T2> Matrix<3,3,T>
where
T:core::ops::Mul<T,Output=T2>+Copy,
T2:core::ops::Sub,
{
pub fn adjugate(self)->Matrix<3,3,<T2 as core::ops::Sub>::Output>{
Matrix::new([
[self.y_axis.y*self.z_axis.z-self.y_axis.z*self.z_axis.y,self.x_axis.z*self.z_axis.y-self.x_axis.y*self.z_axis.z,self.x_axis.y*self.y_axis.z-self.x_axis.z*self.y_axis.y],
[self.y_axis.z*self.z_axis.x-self.y_axis.x*self.z_axis.z,self.x_axis.x*self.z_axis.z-self.x_axis.z*self.z_axis.x,self.x_axis.z*self.y_axis.x-self.x_axis.x*self.y_axis.z],
[self.y_axis.x*self.z_axis.y-self.y_axis.y*self.z_axis.x,self.x_axis.y*self.z_axis.x-self.x_axis.x*self.z_axis.y,self.x_axis.x*self.y_axis.y-self.x_axis.y*self.y_axis.x],
])
}
}
}
}

@ -1,6 +1,3 @@
#[cfg(feature="fixed_wide")]
pub mod fixed_wide;
pub mod common;
pub mod vector;
pub mod matrix;

@ -0,0 +1,353 @@
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector {
() => {
impl<const N:usize,T> Vector<N,T>{
#[inline(always)]
pub const fn new(array:[T;N])->Self{
Self{array}
}
#[inline(always)]
pub fn to_array(self)->[T;N]{
self.array
}
#[inline]
pub fn map<F,U>(self,f:F)->Vector<N,U>
where
F:Fn(T)->U
{
Vector::new(
self.array.map(f)
)
}
#[inline]
pub fn map_zip<F,U,V>(self,other:Vector<N,U>,f:F)->Vector<N,V>
where
F:Fn((T,U))->V,
{
let mut iter=self.array.into_iter().zip(other.array);
Vector::new(
core::array::from_fn(|_|f(iter.next().unwrap())),
)
}
}
impl<const N:usize,T:Copy> Vector<N,T>{
#[inline(always)]
pub const fn from_value(value:T)->Self{
Self::new([value;N])
}
}
impl<const N:usize,T:Default> Default for Vector<N,T>{
#[inline]
fn default()->Self{
Self::new(
core::array::from_fn(|_|Default::default())
)
}
}
impl<const N:usize,T:core::fmt::Display> core::fmt::Display for Vector<N,T>{
#[inline]
fn fmt(&self,f:&mut core::fmt::Formatter)->Result<(),core::fmt::Error>{
for elem in &self.array[0..N-1]{
core::write!(f,"{}, ",elem)?;
}
// assume we will be using vectors of length 1 or greater
core::write!(f,"{}",self.array.last().unwrap())
}
}
impl<const N:usize,T:Ord> Vector<N,T>{
#[inline]
pub fn min(self,rhs:Self)->Self{
self.map_zip(rhs,|(a,b)|a.min(b))
}
#[inline]
pub fn max(self,rhs:Self)->Self{
self.map_zip(rhs,|(a,b)|a.max(b))
}
#[inline]
pub fn cmp(self,rhs:Self)->Vector<N,core::cmp::Ordering>{
self.map_zip(rhs,|(a,b)|a.cmp(&b))
}
#[inline]
pub fn lt(self,rhs:Self)->Vector<N,bool>{
self.map_zip(rhs,|(a,b)|a.lt(&b))
}
#[inline]
pub fn gt(self,rhs:Self)->Vector<N,bool>{
self.map_zip(rhs,|(a,b)|a.gt(&b))
}
#[inline]
pub fn ge(self,rhs:Self)->Vector<N,bool>{
self.map_zip(rhs,|(a,b)|a.ge(&b))
}
#[inline]
pub fn le(self,rhs:Self)->Vector<N,bool>{
self.map_zip(rhs,|(a,b)|a.le(&b))
}
}
impl<const N:usize> Vector<N,bool>{
#[inline]
pub fn all(&self)->bool{
self.array==[true;N]
}
#[inline]
pub fn any(&self)->bool{
self.array!=[false;N]
}
}
impl<const N:usize,T:core::ops::Neg<Output=V>,V> core::ops::Neg for Vector<N,T>{
type Output=Vector<N,V>;
#[inline]
fn neg(self)->Self::Output{
Vector::new(
self.array.map(|t|-t)
)
}
}
impl<const N:usize,T> Vector<N,T>
{
#[inline]
pub fn dot<U,V>(self,rhs:Vector<N,U>)->V
where
T:core::ops::Mul<U,Output=V>,
V:core::iter::Sum,
{
self.array.into_iter().zip(rhs.array).map(|(a,b)|a*b).sum()
}
}
impl<const N:usize,T,V> Vector<N,T>
where
T:core::ops::Mul<Output=V>+Copy,
V:core::iter::Sum,
{
#[inline]
pub fn length_squared(self)->V{
self.array.into_iter().map(|t|t*t).sum()
}
}
// Impl arithmetic operators
$crate::impl_vector_assign_operator!(AddAssign, add_assign );
$crate::impl_vector_operator!(Add, add );
$crate::impl_vector_assign_operator!(SubAssign, sub_assign );
$crate::impl_vector_operator!(Sub, sub );
$crate::impl_vector_assign_operator!(RemAssign, rem_assign );
$crate::impl_vector_operator!(Rem, rem );
// mul and div are special, usually you multiply by a scalar
// and implementing both vec*vec and vec*scalar is conflicting implementations Q_Q
$crate::impl_vector_assign_operator_scalar!(MulAssign, mul_assign );
$crate::impl_vector_operator_scalar!(Mul, mul );
$crate::impl_vector_assign_operator_scalar!(DivAssign, div_assign );
#[cfg(not(feature="deferred-division"))]
$crate::impl_vector_operator_scalar!(Div, div );
#[cfg(feature="deferred-division")]
$crate::impl_vector_deferred_division!();
// Impl bitwise operators
$crate::impl_vector_assign_operator!(BitAndAssign, bitand_assign );
$crate::impl_vector_operator!(BitAnd, bitand );
$crate::impl_vector_assign_operator!(BitOrAssign, bitor_assign );
$crate::impl_vector_operator!(BitOr, bitor );
$crate::impl_vector_assign_operator!(BitXorAssign, bitxor_assign );
$crate::impl_vector_operator!(BitXor, bitxor );
// Impl shift operators
$crate::impl_vector_shift_assign_operator!(ShlAssign, shl_assign);
$crate::impl_vector_shift_operator!(Shl, shl);
$crate::impl_vector_shift_assign_operator!(ShrAssign, shr_assign);
$crate::impl_vector_shift_operator!(Shr, shr);
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_deferred_division {
() => {
impl<const N:usize,T:ratio_ops::ratio::Divide<U,Output=V>,U:Copy,V> ratio_ops::ratio::Divide<U> for Vector<N,T>{
type Output=Vector<N,V>;
#[inline]
fn divide(self,rhs:U)->Self::Output{
self.map(|t|t.divide(rhs))
}
}
impl<const N:usize,T,U> core::ops::Div<U> for Vector<N,T>{
type Output=ratio_ops::ratio::Ratio<Vector<N,T>,U>;
#[inline]
fn div(self,rhs:U)->Self::Output{
ratio_ops::ratio::Ratio::new(self,rhs)
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_operator_scalar {
($trait: ident, $method: ident ) => {
impl<const N:usize,T:core::ops::$trait<U,Output=V>,U:Copy,V> core::ops::$trait<U> for Vector<N,T>{
type Output=Vector<N,V>;
#[inline]
fn $method(self,rhs:U)->Self::Output{
self.map(|t|t.$method(rhs))
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_operator {
($trait: ident, $method: ident ) => {
impl<const N:usize,T:core::ops::$trait<U,Output=V>,U,V> core::ops::$trait<Vector<N,U>> for Vector<N,T>{
type Output=Vector<N,V>;
#[inline]
fn $method(self,rhs:Vector<N,U>)->Self::Output{
self.map_zip(rhs,|(a,b)|a.$method(b))
}
}
impl<const N:usize,T:core::ops::$trait<i64,Output=T>> core::ops::$trait<i64> for Vector<N,T>{
type Output=Self;
#[inline]
fn $method(self,rhs:i64)->Self::Output{
self.map(|t|t.$method(rhs))
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_assign_operator_scalar {
($trait: ident, $method: ident ) => {
impl<const N:usize,T:core::ops::$trait<U>,U:Copy> core::ops::$trait<U> for Vector<N,T>{
#[inline]
fn $method(&mut self,rhs:U){
self.array.iter_mut()
.for_each(|t|t.$method(rhs))
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_assign_operator {
($trait: ident, $method: ident ) => {
impl<const N:usize,T:core::ops::$trait<U>,U> core::ops::$trait<Vector<N,U>> for Vector<N,T>{
#[inline]
fn $method(&mut self,rhs:Vector<N,U>){
self.array.iter_mut().zip(rhs.array)
.for_each(|(a,b)|a.$method(b))
}
}
impl<const N:usize,T:core::ops::$trait<i64>> core::ops::$trait<i64> for Vector<N,T>{
#[inline]
fn $method(&mut self,rhs:i64){
self.array.iter_mut()
.for_each(|t|t.$method(rhs))
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_shift_operator {
($trait: ident, $method: ident ) => {
impl<const N:usize,T:core::ops::$trait<U,Output=V>,U,V> core::ops::$trait<Vector<N,U>> for Vector<N,T>{
type Output=Vector<N,V>;
#[inline]
fn $method(self,rhs:Vector<N,U>)->Self::Output{
self.map_zip(rhs,|(a,b)|a.$method(b))
}
}
impl<const N:usize,T:core::ops::$trait<u32,Output=V>,V> core::ops::$trait<u32> for Vector<N,T>{
type Output=Vector<N,V>;
#[inline]
fn $method(self,rhs:u32)->Self::Output{
self.map(|t|t.$method(rhs))
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_shift_assign_operator {
($trait: ident, $method: ident ) => {
impl<const N:usize,T:core::ops::$trait<U>,U> core::ops::$trait<Vector<N,U>> for Vector<N,T>{
#[inline]
fn $method(&mut self,rhs:Vector<N,U>){
self.array.iter_mut().zip(rhs.array)
.for_each(|(a,b)|a.$method(b))
}
}
impl<const N:usize,T:core::ops::$trait<u32>> core::ops::$trait<u32> for Vector<N,T>{
#[inline]
fn $method(&mut self,rhs:u32){
self.array.iter_mut()
.for_each(|t|t.$method(rhs))
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_extend {
( $size: expr ) => {
impl<T> Vector<$size,T>{
#[inline]
pub fn extend(self,value:T)->Vector<{$size+1},T>{
let mut iter=self.array.into_iter().chain(core::iter::once(value));
Vector::new(
core::array::from_fn(|_|iter.next().unwrap()),
)
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_named_fields {
( $struct:ident, $size: expr ) => {
impl<T> core::ops::Deref for Vector<$size,T>{
type Target=$struct<T>;
#[inline]
fn deref(&self)->&Self::Target{
unsafe{core::mem::transmute(&self.array)}
}
}
impl<T> core::ops::DerefMut for Vector<$size,T>{
#[inline]
fn deref_mut(&mut self)->&mut Self::Target{
unsafe{core::mem::transmute(&mut self.array)}
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_3 {
()=>{
impl<T> Vector<3,T>
{
#[inline]
pub fn cross<U,V>(self,rhs:Vector<3,U>)->Vector<3,<V as core::ops::Sub>::Output>
where
T:core::ops::Mul<U,Output=V>+Copy,
U:Copy,
V:core::ops::Sub,
{
Vector::new([
self.y*rhs.z-self.z*rhs.y,
self.z*rhs.x-self.x*rhs.z,
self.x*rhs.y-self.y*rhs.x,
])
}
}
}
}

17
linear_ops/src/matrix.rs Normal file

@ -0,0 +1,17 @@
use crate::vector::Vector;
#[derive(Clone,Copy,Debug,Hash,Eq,PartialEq)]
pub struct Matrix<const X:usize,const Y:usize,T>{
pub(crate) array:[[T;X];Y],
}
crate::impl_matrix!();
crate::impl_matrix_extend!(2,2);
crate::impl_matrix_extend!(2,3);
crate::impl_matrix_extend!(3,2);
crate::impl_matrix_extend!(3,3);
//Special case 3x3 matrix operations because I cba to write macros for the arbitrary cases
#[cfg(feature="named-fields")]
crate::impl_matrix_3x3!();

@ -8,9 +8,9 @@ type Planar64Wide3=fixed_wide::types::I256F256;
#[test]
fn wide_vec3(){
let v=Vector3::from_value(Planar64::from(3));
let v1=v.wide_mul_1_1(v);
let v2=v1.wide_mul_2_2(v1);
let v3=v2.wide_mul_4_4(v2);
let v1=v*v.x;
let v2=v1*v1.y;
let v3=v2*v2.z;
assert_eq!(v3.array,Vector3::from_value(Planar64Wide3::from(3i128.pow(8))).array);
}
@ -18,9 +18,9 @@ fn wide_vec3(){
#[test]
fn wide_vec3_dot(){
let v=Vector3::from_value(Planar64::from(3));
let v1=v.wide_mul_1_1(v);
let v2=v1.wide_mul_2_2(v1);
let v3=v2.wide_dot_4_4(v2);
let v1=v*v.x;
let v2=v1*v1.y;
let v3=v2.dot(v2);
assert_eq!(v3,Planar64Wide3::from(3i128.pow(8)*3));
}
@ -28,9 +28,9 @@ fn wide_vec3_dot(){
#[test]
fn wide_vec3_length_squared(){
let v=Vector3::from_value(Planar64::from(3));
let v1=v.wide_mul_1_1(v);
let v2=v1.wide_mul_2_2(v1);
let v3=v2.wide_length_squared();
let v1=v*v.x;
let v2=v1*v1.y;
let v3=v2.length_squared();
assert_eq!(v3,Planar64Wide3::from(3i128.pow(8)*3));
}
@ -49,7 +49,7 @@ fn wide_matrix_dot(){
[Planar64::from(7),Planar64::from(8)],
]);
// Mat3<Vec4>.dot(Mat4<Vec2>) -> Mat3<Vec2>
let m_dot=lhs.wide_dot_1_1(rhs);
let m_dot=lhs*rhs;
//In[1]:= {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}} . {{1, 2}, {3, 4}, {5, 6}, {7, 8}}
//Out[1]= {{50, 60}, {114, 140}, {178, 220}}
assert_eq!(
@ -63,6 +63,7 @@ fn wide_matrix_dot(){
}
#[test]
#[cfg(feature="named-fields")]
fn wide_matrix_det(){
let m=Matrix3::new([
[Planar64::from(1),Planar64::from(2),Planar64::from(3)],
@ -71,10 +72,11 @@ fn wide_matrix_det(){
]);
// In[2]:= Det[{{1, 2, 3}, {4, 5, 7}, {6, 8, 9}}]
// Out[2]= 7
assert_eq!(m.wide_det_3x3_1(),fixed_wide::fixed::Fixed::<3,96>::from(7));
assert_eq!(m.det(),fixed_wide::fixed::Fixed::<3,96>::from(7));
}
#[test]
#[cfg(feature="named-fields")]
fn wide_matrix_adjugate(){
let m=Matrix3::new([
[Planar64::from(1),Planar64::from(2),Planar64::from(3)],
@ -84,7 +86,7 @@ fn wide_matrix_adjugate(){
// In[6]:= Adjugate[{{1, 2, 3}, {4, 5, 7}, {6, 8, 9}}]
// Out[6]= {{-11, 6, -1}, {6, -9, 5}, {2, 4, -3}}
assert_eq!(
m.wide_adjugate_3x3_1().array,
m.adjugate().array,
Matrix3::new([
[Planar64Wide1::from(-11),Planar64Wide1::from(6),Planar64Wide1::from(-1)],
[Planar64Wide1::from(6),Planar64Wide1::from(-9),Planar64Wide1::from(5)],

@ -3,5 +3,4 @@ mod tests;
#[cfg(feature="named-fields")]
mod named;
#[cfg(feature="fixed_wide")]
mod fixed_wide;

@ -1,4 +1,4 @@
use crate::types::{Vector3,Matrix4x3,Matrix2x4,Matrix2x3};
use crate::types::{Vector2,Vector3,Matrix4x3,Matrix2x4,Matrix2x3,Matrix3x2};
#[test]
fn test_bool(){
@ -8,12 +8,28 @@ fn test_bool(){
assert_eq!(Vector3::new([true,true,true]).all(),true);
}
#[test]
fn test_length_squared(){
assert_eq!(Vector3::new([1,2,3]).length_squared(),14);
}
#[test]
fn test_arithmetic(){
let a=Vector3::new([1,2,3]);
assert_eq!((a+a*2).array,Vector3::new([1*3,2*3,3*3]).array);
}
#[test]
fn matrix_transform_vector(){
let m=Matrix3x2::new([
[1,2,3],
[4,5,6],
]);
let v=Vector3::new([1,2,3]);
let transformed=m*v;
assert_eq!(transformed.array,Vector2::new([14,32]).array);
}
#[test]
fn matrix_dot(){
@ -29,7 +45,7 @@ fn matrix_dot(){
[9.0,10.0,11.0,12.0],// [178.0,220.0],
]);
// Mat3<Vec4>.dot(Mat4<Vec2>) -> Mat3<Vec2>
let m_dot=lhs.dot(rhs);
let m_dot=lhs*rhs;
//In[1]:= {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}} . {{1, 2}, {3, 4}, {5, 6}, {7, 8}}
//Out[1]= {{50, 60}, {114, 140}, {178, 220}}
assert_eq!(

19
linear_ops/src/vector.rs Normal file

@ -0,0 +1,19 @@
/// An array-backed vector type. Named fields are made accessible via the Deref/DerefMut traits which are implmented for 2-4 dimensions.
/// let mut v = Vector::new([1.0,2.0,3.0]);
/// v.x += v.z;
/// println!("v.x={}",v.x);
#[derive(Clone,Copy,Debug,Hash,Eq,PartialEq)]
pub struct Vector<const N:usize,T>{
pub(crate) array:[T;N],
}
crate::impl_vector!();
// Needs const generics for generic case
crate::impl_vector_extend!(2);
crate::impl_vector_extend!(3);
//cross product
#[cfg(feature="named-fields")]
crate::impl_vector_3!();

1
ratio_ops/.gitignore vendored Normal file

@ -0,0 +1 @@
/target

7
ratio_ops/Cargo.lock generated Normal file

@ -0,0 +1,7 @@
# This file is automatically @generated by Cargo.
# It is not intended for manual editing.
version = 3
[[package]]
name = "ratio_ops"
version = "0.1.0"

6
ratio_ops/Cargo.toml Normal file

@ -0,0 +1,6 @@
[package]
name = "ratio_ops"
version = "0.1.0"
edition = "2021"
[dependencies]

1
ratio_ops/src/lib.rs Normal file

@ -0,0 +1 @@
pub mod ratio;

177
ratio_ops/src/ratio.rs Normal file

@ -0,0 +1,177 @@
#[derive(Clone,Copy,Debug,Hash)]
pub struct Ratio<Num,Den>{
pub num:Num,
pub den:Den,
}
impl<Num,Den> Ratio<Num,Den>{
#[inline(always)]
pub const fn new(num:Num,den:Den)->Self{
Self{num,den}
}
}
/// The actual divide implementation, Div is replaced with a Ratio constructor
pub trait Divide<Rhs=Self>{
type Output;
fn divide(self,rhs:Rhs)->Self::Output;
}
impl<Num,Den> Ratio<Num,Den>
where
Num:Divide<Den>,
{
#[inline]
pub fn divide(self)-><Num as Divide<Den>>::Output{
self.num.divide(self.den)
}
}
//take care to use the ratio methods to avoid nested ratios
impl<LhsNum,LhsDen> Ratio<LhsNum,LhsDen>{
#[inline]
pub fn mul_ratio<RhsNum,RhsDen>(self,rhs:Ratio<RhsNum,RhsDen>)->Ratio<<LhsNum as core::ops::Mul<RhsNum>>::Output,<LhsDen as core::ops::Mul<RhsDen>>::Output>
where
LhsNum:core::ops::Mul<RhsNum>,
LhsDen:core::ops::Mul<RhsDen>,
{
Ratio::new(self.num*rhs.num,self.den*rhs.den)
}
#[inline]
pub fn div_ratio<RhsNum,RhsDen>(self,rhs:Ratio<RhsNum,RhsDen>)->Ratio<<LhsNum as core::ops::Mul<RhsDen>>::Output,<LhsDen as core::ops::Mul<RhsNum>>::Output>
where
LhsNum:core::ops::Mul<RhsDen>,
LhsDen:core::ops::Mul<RhsNum>,
{
Ratio::new(self.num*rhs.den,self.den*rhs.num)
}
}
macro_rules! impl_ratio_method {
($trait:ident, $method:ident, $ratio_method:ident) => {
impl<LhsNum,LhsDen> Ratio<LhsNum,LhsDen>{
#[inline]
pub fn $ratio_method<RhsNum,RhsDen,LhsCrossMul,RhsCrossMul>(self,rhs:Ratio<RhsNum,RhsDen>)->Ratio<<LhsCrossMul as core::ops::$trait<RhsCrossMul>>::Output,<LhsDen as core::ops::Mul<RhsDen>>::Output>
where
LhsNum:core::ops::Mul<RhsDen,Output=LhsCrossMul>,
LhsDen:core::ops::Mul<RhsNum,Output=RhsCrossMul>,
LhsDen:core::ops::Mul<RhsDen>,
LhsDen:Copy,
RhsDen:Copy,
LhsCrossMul:core::ops::$trait<RhsCrossMul>,
{
Ratio::new((self.num*rhs.den).$method(self.den*rhs.num),self.den*rhs.den)
}
}
};
}
impl_ratio_method!(Add,add,add_ratio);
impl_ratio_method!(Sub,sub,sub_ratio);
impl_ratio_method!(Rem,rem,rem_ratio);
/* generic rhs mul is not possible!
impl<Lhs,RhsNum,RhsDen> core::ops::Mul<Ratio<RhsNum,RhsDen>> for Lhs
where
Lhs:core::ops::Mul<RhsNum>,
{
type Output=Ratio<<Lhs as core::ops::Mul<RhsNum>>::Output,RhsDen>;
#[inline]
fn mul(self,rhs:Ratio<RhsNum,RhsDen>)->Self::Output{
Ratio::new(self*rhs.num,rhs.den)
}
}
*/
//operators
impl<LhsNum,LhsDen> core::ops::Neg for Ratio<LhsNum,LhsDen>
where
LhsNum:core::ops::Neg,
{
type Output=Ratio<<LhsNum as core::ops::Neg>::Output,LhsDen>;
#[inline]
fn neg(self)->Self::Output{
Ratio::new(-self.num,self.den)
}
}
impl<LhsNum,LhsDen,Rhs> core::ops::Mul<Rhs> for Ratio<LhsNum,LhsDen>
where
LhsNum:core::ops::Mul<Rhs>,
{
type Output=Ratio<<LhsNum as core::ops::Mul<Rhs>>::Output,LhsDen>;
#[inline]
fn mul(self,rhs:Rhs)->Self::Output{
Ratio::new(self.num*rhs,self.den)
}
}
impl<LhsNum,LhsDen,Rhs> core::ops::Div<Rhs> for Ratio<LhsNum,LhsDen>
where
LhsDen:core::ops::Mul<Rhs>,
{
type Output=Ratio<LhsNum,<LhsDen as core::ops::Mul<Rhs>>::Output>;
#[inline]
fn div(self,rhs:Rhs)->Self::Output{
Ratio::new(self.num,self.den*rhs)
}
}
macro_rules! impl_ratio_operator {
($trait:ident, $method:ident) => {
impl<LhsNum,LhsDen,Rhs,Intermediate> core::ops::$trait<Rhs> for Ratio<LhsNum,LhsDen>
where
LhsNum:core::ops::$trait<Intermediate>,
LhsDen:Copy,
Rhs:core::ops::Mul<LhsDen,Output=Intermediate>,
{
type Output=Ratio<<LhsNum as core::ops::$trait<Intermediate>>::Output,LhsDen>;
#[inline]
fn $method(self,rhs:Rhs)->Self::Output{
Ratio::new(self.num.$method(rhs*self.den),self.den)
}
}
};
}
impl_ratio_operator!(Add,add);
impl_ratio_operator!(Sub,sub);
impl_ratio_operator!(Rem,rem);
//assign operators
impl<LhsNum,LhsDen,Rhs> core::ops::MulAssign<Rhs> for Ratio<LhsNum,LhsDen>
where
LhsNum:core::ops::MulAssign<Rhs>,
{
#[inline]
fn mul_assign(&mut self,rhs:Rhs){
self.num*=rhs;
}
}
impl<LhsNum,LhsDen,Rhs> core::ops::DivAssign<Rhs> for Ratio<LhsNum,LhsDen>
where
LhsDen:core::ops::MulAssign<Rhs>,
{
#[inline]
fn div_assign(&mut self,rhs:Rhs){
self.den*=rhs;
}
}
macro_rules! impl_ratio_assign_operator {
($trait:ident, $method:ident) => {
impl<LhsNum,LhsDen,Rhs> core::ops::$trait<Rhs> for Ratio<LhsNum,LhsDen>
where
LhsNum:core::ops::$trait,
LhsDen:Copy,
Rhs:core::ops::Mul<LhsDen,Output=LhsNum>,
{
#[inline]
fn $method(&mut self,rhs:Rhs){
self.num.$method(rhs*self.den)
}
}
};
}
impl_ratio_assign_operator!(AddAssign,add_assign);
impl_ratio_assign_operator!(SubAssign,sub_assign);
impl_ratio_assign_operator!(RemAssign,rem_assign);