Compare commits

..

35 Commits

Author SHA1 Message Date
07e85776bb explore worker pool ideas 2023-10-20 18:59:15 -07:00
2356286dc2 move some stuff 2023-10-20 18:08:50 -07:00
8cc86d88fc note about adapter 2023-10-20 17:54:01 -07:00
c1bc67fd3a write some guesses 2023-10-20 17:51:52 -07:00
d2c896031c graphics resize 2023-10-20 17:51:52 -07:00
d27187aa53 fix many red underline 2023-10-20 17:51:52 -07:00
2e13d9b74e idk about this 2023-10-20 16:51:09 -07:00
431611b62a move window stuff to window 2023-10-20 16:01:17 -07:00
b55a35c488 pull apart framework completely 2023-10-20 16:01:17 -07:00
cb6102b9dc move out of main fixings 2023-10-20 15:56:03 -07:00
6eaec7d6a6 Input::Mailbox 2023-10-19 22:56:28 -07:00
407b322664 note about using functions for input and output 2023-10-19 22:56:28 -07:00
d4c4d9e7d6 Input::Query 2023-10-19 22:56:28 -07:00
ff8c61ee32 comment on issue 2023-10-19 22:56:20 -07:00
00eb1ce19c drop dead code 2023-10-19 22:56:20 -07:00
168091408e shrink pollster onto the only future in the code 2023-10-19 22:56:20 -07:00
ad0130db74 drop async_executor dep 2023-10-19 22:56:20 -07:00
ee8f9ba9e4 drop env_logger & log deps 2023-10-19 22:56:20 -07:00
1af8468e5b drop wasm32 code 2023-10-19 22:56:20 -07:00
f8320c9df5 why did they do it like that 2023-10-19 22:56:20 -07:00
eb376c1e68 put window stuff in here 2023-10-19 22:56:20 -07:00
0bf253aa11 remove graphics stuff from main 2023-10-19 22:32:01 -07:00
85b70331fd thread load file 2023-10-19 22:32:01 -07:00
7fd592329e split load file 2023-10-19 22:32:01 -07:00
5260c2b40d try unpub 2023-10-19 22:32:01 -07:00
b5febfad14 introduce render_thread to manage physics and graphics 2023-10-19 22:32:01 -07:00
d1b491b6e7 wip: implement INWorker 2023-10-19 22:32:01 -07:00
8043862c99 delete compat worker 2023-10-19 22:32:01 -07:00
b760a4bc65 idle does not advance body 2023-10-19 22:32:01 -07:00
124139274f real threads + GraphicsInstruction + thread accessible mouse 2023-10-19 22:32:01 -07:00
7130eafc06 implement QNWorker 2023-10-19 22:24:20 -07:00
ab276b517b rename workers 2023-10-19 22:24:20 -07:00
3721995791 WorkerDescription brainstorming (make invalid states unrepresentable) 2023-10-19 22:24:20 -07:00
72258d3549 self.graphics->self 2023-10-18 18:30:44 -07:00
02170bd91a move graphics code 2023-10-18 18:30:40 -07:00
38 changed files with 4225 additions and 5108 deletions

1613
Cargo.lock generated

File diff suppressed because it is too large Load Diff

View File

@ -1,6 +1,6 @@
[package]
name = "strafe-client"
version = "0.9.0"
version = "0.8.0"
edition = "2021"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
@ -9,7 +9,7 @@ edition = "2021"
bytemuck = { version = "1.13.1", features = ["derive"] }
configparser = "3.0.2"
ddsfile = "0.5.1"
glam = "0.25.0"
glam = "0.24.1"
lazy-regex = "3.0.2"
obj = "0.10.2"
parking_lot = "0.12.1"
@ -18,11 +18,8 @@ rbx_binary = "0.7.1"
rbx_dom_weak = "2.5.0"
rbx_reflection_database = "0.2.7"
rbx_xml = "0.13.1"
strafesnet_common = { git = "https://git.itzana.me/StrafesNET/common", rev = "434ca29aef7e3015c9ca1ed45de8fef42e33fdfb" }
vbsp = "0.5.0"
vmdl = "0.1.1"
wgpu = "0.19.0"
winit = "0.29.2"
wgpu = "0.17.0"
winit = "0.28.6"
#[profile.release]
#lto = true

View File

@ -1,5 +1,5 @@
/*******************************************************
* Copyright (C) 2023-2024 Rhys Lloyd <krakow20@gmail.com>
* Copyright (C) 2023 Rhys Lloyd <krakow20@gmail.com>
*
* This file is part of the StrafesNET bhop/surf client.
*

89
src/aabb.rs Normal file
View File

@ -0,0 +1,89 @@
use crate::integer::Planar64Vec3;
#[derive(Debug,Clone,Copy,Hash,Eq,PartialEq)]
pub enum AabbFace{
Right,//+X
Top,
Back,
Left,
Bottom,
Front,
}
#[derive(Clone)]
pub struct Aabb{
pub min:Planar64Vec3,
pub max:Planar64Vec3,
}
impl Default for Aabb {
fn default()->Self {
Self{min:Planar64Vec3::MAX,max:Planar64Vec3::MIN}
}
}
impl Aabb{
const VERTEX_DATA:[Planar64Vec3;8]=[
Planar64Vec3::int( 1,-1,-1),
Planar64Vec3::int( 1, 1,-1),
Planar64Vec3::int( 1, 1, 1),
Planar64Vec3::int( 1,-1, 1),
Planar64Vec3::int(-1,-1, 1),
Planar64Vec3::int(-1, 1, 1),
Planar64Vec3::int(-1, 1,-1),
Planar64Vec3::int(-1,-1,-1),
];
pub fn grow(&mut self,point:Planar64Vec3){
self.min=self.min.min(point);
self.max=self.max.max(point);
}
pub fn join(&mut self,aabb:&Aabb){
self.min=self.min.min(aabb.min);
self.max=self.max.max(aabb.max);
}
pub fn inflate(&mut self,hs:Planar64Vec3){
self.min-=hs;
self.max+=hs;
}
pub fn intersects(&self,aabb:&Aabb)->bool{
(self.min.cmplt(aabb.max)&aabb.min.cmplt(self.max)).all()
}
pub fn normal(face:AabbFace)->Planar64Vec3{
match face {
AabbFace::Right=>Planar64Vec3::int(1,0,0),
AabbFace::Top=>Planar64Vec3::int(0,1,0),
AabbFace::Back=>Planar64Vec3::int(0,0,1),
AabbFace::Left=>Planar64Vec3::int(-1,0,0),
AabbFace::Bottom=>Planar64Vec3::int(0,-1,0),
AabbFace::Front=>Planar64Vec3::int(0,0,-1),
}
}
pub fn unit_vertices()->[Planar64Vec3;8] {
return Self::VERTEX_DATA;
}
// pub fn face(&self,face:AabbFace)->Aabb {
// let mut aabb=self.clone();
// //in this implementation face = worldspace aabb face
// match face {
// AabbFace::Right => aabb.min.x=aabb.max.x,
// AabbFace::Top => aabb.min.y=aabb.max.y,
// AabbFace::Back => aabb.min.z=aabb.max.z,
// AabbFace::Left => aabb.max.x=aabb.min.x,
// AabbFace::Bottom => aabb.max.y=aabb.min.y,
// AabbFace::Front => aabb.max.z=aabb.min.z,
// }
// return aabb;
// }
pub fn center(&self)->Planar64Vec3{
return self.min.midpoint(self.max)
}
//probably use floats for area & volume because we don't care about precision
// pub fn area_weight(&self)->f32{
// let d=self.max-self.min;
// d.x*d.y+d.y*d.z+d.z*d.x
// }
// pub fn volume(&self)->f32{
// let d=self.max-self.min;
// d.x*d.y*d.z
// }
}

107
src/bvh.rs Normal file
View File

@ -0,0 +1,107 @@
use crate::aabb::Aabb;
//da algaritum
//lista boxens
//sort by {minx,maxx,miny,maxy,minz,maxz} (6 lists)
//find the sets that minimizes the sum of surface areas
//splitting is done when the minimum split sum of surface areas is larger than the node's own surface area
//start with bisection into octrees because a bad bvh is still 1000x better than no bvh
//sort the centerpoints on each axis (3 lists)
//bv is put into octant based on whether it is upper or lower in each list
#[derive(Default)]
pub struct BvhNode{
children:Vec<Self>,
models:Vec<usize>,
aabb:Aabb,
}
impl BvhNode{
pub fn the_tester<F:FnMut(usize)>(&self,aabb:&Aabb,f:&mut F){
for &model in &self.models{
f(model);
}
for child in &self.children{
if aabb.intersects(&child.aabb){
child.the_tester(aabb,f);
}
}
}
}
pub fn generate_bvh(boxen:Vec<Aabb>)->BvhNode{
generate_bvh_node(boxen.into_iter().enumerate().collect())
}
fn generate_bvh_node(boxen:Vec<(usize,Aabb)>)->BvhNode{
let n=boxen.len();
if n<20{
let mut aabb=Aabb::default();
let models=boxen.into_iter().map(|b|{aabb.join(&b.1);b.0}).collect();
BvhNode{
children:Vec::new(),
models,
aabb,
}
}else{
let mut octant=std::collections::HashMap::with_capacity(n);//this ids which octant the boxen is put in
let mut sort_x=Vec::with_capacity(n);
let mut sort_y=Vec::with_capacity(n);
let mut sort_z=Vec::with_capacity(n);
for (i,aabb) in boxen.iter(){
let center=aabb.center();
octant.insert(*i,0);
sort_x.push((*i,center.x()));
sort_y.push((*i,center.y()));
sort_z.push((*i,center.z()));
}
sort_x.sort_by(|tup0,tup1|tup0.1.partial_cmp(&tup1.1).unwrap());
sort_y.sort_by(|tup0,tup1|tup0.1.partial_cmp(&tup1.1).unwrap());
sort_z.sort_by(|tup0,tup1|tup0.1.partial_cmp(&tup1.1).unwrap());
let h=n/2;
let median_x=sort_x[h].1;
let median_y=sort_y[h].1;
let median_z=sort_z[h].1;
for (i,c) in sort_x{
if median_x<c{
octant.insert(i,octant[&i]+1<<0);
}
}
for (i,c) in sort_y{
if median_y<c{
octant.insert(i,octant[&i]+1<<1);
}
}
for (i,c) in sort_z{
if median_z<c{
octant.insert(i,octant[&i]+1<<2);
}
}
//generate lists for unique octant values
let mut list_list=Vec::with_capacity(8);
let mut octant_list=Vec::with_capacity(8);
for (i,aabb) in boxen.into_iter(){
let octant_id=octant[&i];
let list_id=if let Some(list_id)=octant_list.iter().position(|&id|id==octant_id){
list_id
}else{
let list_id=list_list.len();
octant_list.push(octant_id);
list_list.push(Vec::new());
list_id
};
list_list[list_id].push((i,aabb));
}
let mut aabb=Aabb::default();
let children=list_list.into_iter().map(|b|{
let node=generate_bvh_node(b);
aabb.join(&node.aabb);
node
}).collect();
BvhNode{
children,
models:Vec::new(),
aabb,
}
}
}

View File

@ -1,21 +0,0 @@
pub type QNWorker<'a,Task>=CompatNWorker<'a,Task>;
pub type INWorker<'a,Task>=CompatNWorker<'a,Task>;
pub struct CompatNWorker<'a,Task>{
data:std::marker::PhantomData<Task>,
f:Box<dyn FnMut(Task)+Send+'a>,
}
impl<'a,Task> CompatNWorker<'a,Task>{
pub fn new(f:impl FnMut(Task)+Send+'a)->CompatNWorker<'a,Task>{
Self{
data:std::marker::PhantomData,
f:Box::new(f),
}
}
pub fn send(&mut self,task:Task)->Result<(),()>{
(self.f)(task);
Ok(())
}
}

View File

@ -1,119 +0,0 @@
use crate::physics::Body;
use crate::model_physics::{FEV,MeshQuery,DirectedEdge};
use strafesnet_common::integer::{Time,Planar64};
use strafesnet_common::zeroes::zeroes2;
enum Transition<F,E:DirectedEdge,V>{
Miss,
Next(FEV<F,E,V>,Time),
Hit(F,Time),
}
fn next_transition<F:Copy,E:Copy+DirectedEdge,V:Copy>(fev:&FEV<F,E,V>,time:Time,mesh:&impl MeshQuery<F,E,V>,body:&Body,time_limit:Time)->Transition<F,E,V>{
//conflicting derivative means it crosses in the wrong direction.
//if the transition time is equal to an already tested transition, do not replace the current best.
let mut best_time=time_limit;
let mut best_transtition=Transition::Miss;
match fev{
&FEV::<F,E,V>::Face(face_id)=>{
//test own face collision time, ignoring roots with zero or conflicting derivative
//n=face.normal d=face.dot
//n.a t^2+n.v t+n.p-d==0
let (n,d)=mesh.face_nd(face_id);
//TODO: use higher precision d value?
//use the mesh transform translation instead of baking it into the d value.
for t in zeroes2((n.dot(body.position)-d)*2,n.dot(body.velocity)*2,n.dot(body.acceleration)){
let t=body.time+Time::from(t);
if time<=t&&t<best_time&&n.dot(body.extrapolated_velocity(t))<Planar64::ZERO{
best_time=t;
best_transtition=Transition::Hit(face_id,t);
break;
}
}
//test each edge collision time, ignoring roots with zero or conflicting derivative
for &directed_edge_id in mesh.face_edges(face_id).iter(){
let edge_n=mesh.directed_edge_n(directed_edge_id);
let n=n.cross(edge_n);
let verts=mesh.edge_verts(directed_edge_id.as_undirected());
//WARNING: d is moved out of the *2 block because of adding two vertices!
for t in zeroes2(n.dot(body.position*2-(mesh.vert(verts[0])+mesh.vert(verts[1]))),n.dot(body.velocity)*2,n.dot(body.acceleration)){
let t=body.time+Time::from(t);
if time<=t&&t<best_time&&n.dot(body.extrapolated_velocity(t))<Planar64::ZERO{
best_time=t;
best_transtition=Transition::Next(FEV::<F,E,V>::Edge(directed_edge_id.as_undirected()),t);
break;
}
}
}
//if none:
},
&FEV::<F,E,V>::Edge(edge_id)=>{
//test each face collision time, ignoring roots with zero or conflicting derivative
let edge_n=mesh.edge_n(edge_id);
let edge_verts=mesh.edge_verts(edge_id);
let delta_pos=body.position*2-(mesh.vert(edge_verts[0])+mesh.vert(edge_verts[1]));
for (i,&edge_face_id) in mesh.edge_faces(edge_id).iter().enumerate(){
let face_n=mesh.face_nd(edge_face_id).0;
//edge_n gets parity from the order of edge_faces
let n=face_n.cross(edge_n)*((i as i64)*2-1);
//WARNING yada yada d *2
for t in zeroes2(n.dot(delta_pos),n.dot(body.velocity)*2,n.dot(body.acceleration)){
let t=body.time+Time::from(t);
if time<=t&&t<best_time&&n.dot(body.extrapolated_velocity(t))<Planar64::ZERO{
best_time=t;
best_transtition=Transition::Next(FEV::<F,E,V>::Face(edge_face_id),t);
break;
}
}
}
//test each vertex collision time, ignoring roots with zero or conflicting derivative
for (i,&vert_id) in edge_verts.iter().enumerate(){
//vertex normal gets parity from vert index
let n=edge_n*(1-2*(i as i64));
for t in zeroes2((n.dot(body.position-mesh.vert(vert_id)))*2,n.dot(body.velocity)*2,n.dot(body.acceleration)){
let t=body.time+Time::from(t);
if time<=t&&t<best_time&&n.dot(body.extrapolated_velocity(t))<Planar64::ZERO{
best_time=t;
best_transtition=Transition::Next(FEV::<F,E,V>::Vert(vert_id),t);
break;
}
}
}
//if none:
},
&FEV::<F,E,V>::Vert(vert_id)=>{
//test each edge collision time, ignoring roots with zero or conflicting derivative
for &directed_edge_id in mesh.vert_edges(vert_id).iter(){
//edge is directed away from vertex, but we want the dot product to turn out negative
let n=-mesh.directed_edge_n(directed_edge_id);
for t in zeroes2((n.dot(body.position-mesh.vert(vert_id)))*2,n.dot(body.velocity)*2,n.dot(body.acceleration)){
let t=body.time+Time::from(t);
if time<=t&&t<best_time&&n.dot(body.extrapolated_velocity(t))<Planar64::ZERO{
best_time=t;
best_transtition=Transition::Next(FEV::<F,E,V>::Edge(directed_edge_id.as_undirected()),t);
break;
}
}
}
//if none:
},
}
best_transtition
}
pub enum CrawlResult<F,E:DirectedEdge,V>{
Miss(FEV<F,E,V>),
Hit(F,Time),
}
pub fn crawl_fev<F:Copy,E:Copy+DirectedEdge,V:Copy>(mut fev:FEV<F,E,V>,mesh:&impl MeshQuery<F,E,V>,relative_body:&Body,start_time:Time,time_limit:Time)->CrawlResult<F,E,V>{
let mut time=start_time;
for _ in 0..20{
match next_transition(&fev,time,mesh,relative_body,time_limit){
Transition::Miss=>return CrawlResult::Miss(fev),
Transition::Next(next_fev,next_time)=>(fev,time)=(next_fev,next_time),
Transition::Hit(face,time)=>return CrawlResult::Hit(face,time),
}
}
//TODO: fix all bugs
println!("Too many iterations! Using default behaviour instead of crashing...");
CrawlResult::Miss(fev)
}

View File

@ -1,39 +1,30 @@
use std::borrow::Cow;
use strafesnet_common::integer;
use wgpu::{util::DeviceExt,AstcBlock,AstcChannel};
use crate::model_graphics::{GraphicsVertex,GraphicsModelColor4,GraphicsModelInstance,GraphicsModelSingleTexture,IndexedGraphicsModelSingleTexture,IndexedGroupFixedTexture};
use crate::model_graphics::{GraphicsVertex,ModelGraphicsColor4,ModelGraphicsInstance,ModelGraphicsSingleTexture,IndexedModelGraphicsSingleTexture,IndexedGroupFixedTexture};
#[derive(Clone)]
pub struct GraphicsModelUpdate{
pub struct ModelUpdate{
transform:Option<glam::Mat4>,
color:Option<glam::Vec4>,
}
struct Entity{
index_count:u32,
index_buf:wgpu::Buffer,
}
fn create_entities<T:bytemuck::Pod>(device:&wgpu::Device,entities:&Vec<Vec<T>>)->Vec<Entity>{
entities.iter().map(|indices|{
let index_buf=device.create_buffer_init(&wgpu::util::BufferInitDescriptor{
label:Some("Index"),
contents:bytemuck::cast_slice(indices),
usage:wgpu::BufferUsages::INDEX,
});
Entity{
index_buf,
index_count:indices.len() as u32,
}
}).collect()
#[derive(Clone)]
pub enum GraphicsInstruction{
UpdateModel(ModelUpdate),
Render,
}
struct GraphicsModel{
entities:Vec<Entity>,
model_buf:wgpu::Buffer,
vertex_buf:wgpu::Buffer,
bind_group:wgpu::BindGroup,
index_format:wgpu::IndexFormat,
instances:Vec<GraphicsModelInstance>,
struct Entity {
index_count: u32,
index_buf: wgpu::Buffer,
}
struct ModelGraphics {
instances: Vec<ModelGraphicsInstance>,
vertex_buf: wgpu::Buffer,
entities: Vec<Entity>,
bind_group: wgpu::BindGroup,
model_buf: wgpu::Buffer,
}
pub struct GraphicsSamplers{
@ -72,6 +63,12 @@ fn perspective_rh(fov_x_slope: f32, fov_y_slope: f32, z_near: f32, z_far: f32) -
)
}
impl GraphicsCamera{
pub fn new(screen_size:glam::UVec2,fov:glam::Vec2)->Self{
Self{
screen_size,
fov,
}
}
pub fn proj(&self)->glam::Mat4{
perspective_rh(self.fov.x, self.fov.y, 0.5, 2000.0)
}
@ -94,14 +91,6 @@ impl GraphicsCamera{
raw
}
}
impl std::default::Default for GraphicsCamera{
fn default()->Self{
Self{
screen_size:glam::UVec2::ONE,
fov:glam::Vec2::ONE,
}
}
}
pub struct GraphicsState{
pipelines: GraphicsPipelines,
@ -111,7 +100,7 @@ pub struct GraphicsState{
camera:GraphicsCamera,
camera_buf: wgpu::Buffer,
temp_squid_texture_view: wgpu::TextureView,
models: Vec<GraphicsModel>,
models: Vec<ModelGraphics>,
depth_view: wgpu::TextureView,
staging_belt: wgpu::util::StagingBelt,
}
@ -145,7 +134,7 @@ impl GraphicsState{
pub fn load_user_settings(&mut self,user_settings:&crate::settings::UserSettings){
self.camera.fov=user_settings.calculate_fov(1.0,&self.camera.screen_size).as_vec2();
}
pub fn generate_models(&mut self,device:&wgpu::Device,queue:&wgpu::Queue,indexed_models:crate::model::IndexedModelInstances){
fn generate_model_graphics(&mut self,device:&wgpu::Device,queue:&wgpu::Queue,indexed_models:crate::model::IndexedModelInstances){
//generate texture view per texture
//idk how to do this gooder lol
@ -153,14 +142,11 @@ impl GraphicsState{
let mut texture_loading_threads=Vec::new();
let num_textures=indexed_models.textures.len();
for (i,texture_id) in indexed_models.textures.into_iter().enumerate(){
let path=std::path::PathBuf::from(format!("textures/{}.dds",texture_id));
if let Ok(mut file) = std::fs::File::open(path.clone()){
if let Ok(mut file) = std::fs::File::open(std::path::Path::new(&format!("textures/{}.dds",texture_id))){
double_map.insert(i as u32, texture_loading_threads.len() as u32);
texture_loading_threads.push((texture_id,std::thread::spawn(move ||{
ddsfile::Dds::read(&mut file).unwrap()
})));
}else{
//println!("missing texture path={:?}",path);
}
}
@ -204,7 +190,6 @@ impl GraphicsState{
label: Some(format!("Texture{}",texture_id).as_str()),
view_formats: &[],
},
wgpu::util::TextureDataOrder::LayerMajor,
&image.data,
);
texture.create_view(&wgpu::TextureViewDescriptor {
@ -219,15 +204,15 @@ impl GraphicsState{
let indexed_models_len=indexed_models.models.len();
let mut unique_texture_models=Vec::with_capacity(indexed_models_len);
for model in indexed_models.models.into_iter(){
//convert ModelInstance into GraphicsModelInstance
let instances:Vec<GraphicsModelInstance>=model.instances.into_iter().filter_map(|instance|{
if instance.color.w==0.0&&!model.groups.iter().any(|g|g.texture.is_some()){
//convert ModelInstance into ModelGraphicsInstance
let instances:Vec<ModelGraphicsInstance>=model.instances.into_iter().filter_map(|instance|{
if instance.color.w==0.0{
None
}else{
Some(GraphicsModelInstance{
Some(ModelGraphicsInstance{
transform: instance.transform.into(),
normal_transform: Into::<glam::Mat3>::into(instance.transform.matrix3).inverse().transpose(),
color:GraphicsModelColor4::from(instance.color),
color:ModelGraphicsColor4::from(instance.color),
})
}
}).collect();
@ -246,7 +231,7 @@ impl GraphicsState{
//create new texture_index
let texture_index=unique_textures.len();
unique_textures.push(group.texture);
unique_texture_models.push(IndexedGraphicsModelSingleTexture{
unique_texture_models.push(IndexedModelGraphicsSingleTexture{
unique_pos:model.unique_pos.iter().map(|&v|*Into::<glam::Vec3>::into(v).as_ref()).collect(),
unique_tex:model.unique_tex.iter().map(|v|*v.as_ref()).collect(),
unique_normal:model.unique_normal.iter().map(|&v|*Into::<glam::Vec3>::into(v).as_ref()).collect(),
@ -380,10 +365,10 @@ impl GraphicsState{
//creating the vertex map is slightly different because the vertices are directly hashable
let map_vertex_id:Vec<u32>=model.unique_vertices.iter().map(|unmapped_vertex|{
let vertex=crate::model::IndexedVertex{
pos:map_pos_id[unmapped_vertex.pos as usize],
tex:map_tex_id[unmapped_vertex.tex as usize],
normal:map_normal_id[unmapped_vertex.normal as usize],
color:map_color_id[unmapped_vertex.color as usize],
pos:map_pos_id[unmapped_vertex.pos as usize] as u32,
tex:map_tex_id[unmapped_vertex.tex as usize] as u32,
normal:map_normal_id[unmapped_vertex.normal as usize] as u32,
color:map_color_id[unmapped_vertex.color as usize] as u32,
};
(if let Some(&vertex_id)=vertex_id_from.get(&vertex){
vertex_id
@ -401,7 +386,7 @@ impl GraphicsState{
}
}
//push model into dedup
deduplicated_models.push(IndexedGraphicsModelSingleTexture{
deduplicated_models.push(IndexedModelGraphicsSingleTexture{
unique_pos,
unique_tex,
unique_normal,
@ -411,7 +396,7 @@ impl GraphicsState{
groups:vec![IndexedGroupFixedTexture{
polys
}],
instances:vec![GraphicsModelInstance{
instances:vec![ModelGraphicsInstance{
transform:glam::Mat4::IDENTITY,
normal_transform:glam::Mat3::IDENTITY,
color
@ -429,9 +414,10 @@ impl GraphicsState{
//de-index models
let deduplicated_models_len=deduplicated_models.len();
let models:Vec<GraphicsModelSingleTexture>=deduplicated_models.into_iter().map(|model|{
let models:Vec<ModelGraphicsSingleTexture>=deduplicated_models.into_iter().map(|model|{
let mut vertices = Vec::new();
let mut index_from_vertex = std::collections::HashMap::new();//::<IndexedVertex,usize>
let mut entities = Vec::new();
//this mut be combined in a more complex way if the models use different render patterns per group
let mut indices = Vec::new();
for group in model.groups {
@ -442,7 +428,7 @@ impl GraphicsState{
if let Some(&i)=index_from_vertex.get(&vertex_index){
indices.push(i);
}else{
let i=vertices.len();
let i=vertices.len() as u16;
let vertex=&model.unique_vertices[vertex_index as usize];
vertices.push(GraphicsVertex{
pos: model.unique_pos[vertex.pos as usize],
@ -457,23 +443,18 @@ impl GraphicsState{
}
}
}
GraphicsModelSingleTexture{
entities.push(indices);
ModelGraphicsSingleTexture{
instances:model.instances,
entities:if (u32::MAX as usize)<vertices.len(){
panic!("Model has too many vertices!")
}else if (u16::MAX as usize)<vertices.len(){
crate::model_graphics::Entities::U32(vec![indices.into_iter().map(|vertex_id|vertex_id as u32).collect()])
}else{
crate::model_graphics::Entities::U16(vec![indices.into_iter().map(|vertex_id|vertex_id as u16).collect()])
},
vertices,
entities,
texture:model.texture,
}
}).collect();
//.into_iter() the modeldata vec so entities can be /moved/ to models.entities
let mut model_count=0;
let mut instance_count=0;
let uniform_buffer_binding_size=crate::setup::required_limits().max_uniform_buffer_binding_size as usize;
let uniform_buffer_binding_size=crate::graphics_context::required_limits().max_uniform_buffer_binding_size as usize;
let chunk_size=uniform_buffer_binding_size/MODEL_BUFFER_SIZE_BYTES;
self.models.reserve(models.len());
for model in models.into_iter() {
@ -519,17 +500,20 @@ impl GraphicsState{
usage: wgpu::BufferUsages::VERTEX,
});
//all of these are being moved here
self.models.push(GraphicsModel{
self.models.push(ModelGraphics{
instances:instances_chunk.to_vec(),
vertex_buf,
index_format:match &model.entities{
crate::model_graphics::Entities::U32(_)=>wgpu::IndexFormat::Uint32,
crate::model_graphics::Entities::U16(_)=>wgpu::IndexFormat::Uint16,
},
entities:match &model.entities{
crate::model_graphics::Entities::U32(entities)=>create_entities(device,entities),
crate::model_graphics::Entities::U16(entities)=>create_entities(device,entities),
},
entities: model.entities.iter().map(|indices|{
let index_buf = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Index"),
contents: bytemuck::cast_slice(&indices),
usage: wgpu::BufferUsages::INDEX,
});
Entity {
index_buf,
index_count: indices.len() as u32,
}
}).collect(),
bind_group: model_bind_group,
model_buf,
});
@ -544,9 +528,10 @@ impl GraphicsState{
}
pub fn new(
device:&wgpu::Device,
queue:&wgpu::Queue,
config:&wgpu::SurfaceConfiguration,
config: &wgpu::SurfaceConfiguration,
_adapter: &wgpu::Adapter,
device: &wgpu::Device,
queue: &wgpu::Queue,
)->Self{
let camera_bind_group_layout = device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
label: None,
@ -634,7 +619,6 @@ impl GraphicsState{
mag_filter: wgpu::FilterMode::Linear,
min_filter: wgpu::FilterMode::Linear,
mipmap_filter: wgpu::FilterMode::Linear,
anisotropy_clamp:16,
..Default::default()
});
@ -702,7 +686,6 @@ impl GraphicsState{
label: Some("Skybox Texture"),
view_formats: &[],
},
wgpu::util::TextureDataOrder::LayerMajor,
&skybox_image.data,
);
@ -743,7 +726,6 @@ impl GraphicsState{
label: Some("Squid Texture"),
view_formats: &[],
},
wgpu::util::TextureDataOrder::LayerMajor,
&image.data,
);
@ -819,7 +801,6 @@ impl GraphicsState{
}),
primitive: wgpu::PrimitiveState {
front_face: wgpu::FrontFace::Cw,
cull_mode:Some(wgpu::Face::Front),
..Default::default()
},
depth_stencil: Some(wgpu::DepthStencilState {
@ -833,8 +814,14 @@ impl GraphicsState{
multiview: None,
});
let camera=GraphicsCamera::default();
let camera_uniforms = camera.to_uniform_data(crate::physics::PhysicsOutputState::default().extrapolate(glam::IVec2::ZERO,integer::Time::ZERO));
let mut physics = crate::physics::PhysicsState::default();
physics.load_user_settings(&user_settings);
let screen_size=glam::uvec2(config.width,config.height);
let camera=GraphicsCamera::new(screen_size,user_settings.calculate_fov(1.0,&screen_size).as_vec2());
let camera_uniforms = camera.to_uniform_data(physics.output().adjust_mouse(&crate::physics::MouseState::default()));
let camera_buf = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Camera"),
contents: bytemuck::cast_slice(&camera_uniforms),
@ -889,30 +876,32 @@ impl GraphicsState{
}
pub fn resize(
&mut self,
device:&wgpu::Device,
config:&wgpu::SurfaceConfiguration,
user_settings:&crate::settings::UserSettings,
context:&crate::graphics_context::GraphicsContext,
) {
self.depth_view=Self::create_depth_texture(config,device);
self.camera.screen_size=glam::uvec2(config.width,config.height);
self.load_user_settings(user_settings);
self.depth_view = Self::create_depth_texture(&context.config,&context.device);
self.camera.screen_size=glam::uvec2(context.config.width, context.config.height);
self.load_user_settings(&self.user_settings);
}
pub fn render(
&mut self,
view:&wgpu::TextureView,
device:&wgpu::Device,
queue:&wgpu::Queue,
physics_output:crate::physics::PhysicsOutputState,
predicted_time:integer::Time,
mouse_pos:glam::IVec2,
view: &wgpu::TextureView,
device: &wgpu::Device,
queue: &wgpu::Queue,
) {
//TODO: use scheduled frame times to create beautiful smoothing simulation physics extrapolation assuming no input
//ideally this would be scheduled to execute and finish right before the render.
let time=crate::integer::Time::from_nanos(self.start_time.elapsed().as_nanos() as i64);
self.physics_thread.send(crate::instruction::TimedInstruction{
time,
instruction:crate::render_thread::InputInstruction::Idle,
}).unwrap();
//update time lol
self.mouse.time=time;
let mut encoder =
device.create_command_encoder(&wgpu::CommandEncoderDescriptor { label: None });
// update rotation
let camera_uniforms = self.camera.to_uniform_data(physics_output.extrapolate(mouse_pos,predicted_time));
let camera_uniforms = self.camera.to_uniform_data(self.physics_thread.grab_clone().adjust_mouse(&self.mouse));
self.staging_belt
.write_buffer(
&mut encoder,
@ -952,19 +941,17 @@ impl GraphicsState{
b: 0.3,
a: 1.0,
}),
store:wgpu::StoreOp::Store,
store: true,
},
})],
depth_stencil_attachment: Some(wgpu::RenderPassDepthStencilAttachment {
view: &self.depth_view,
depth_ops: Some(wgpu::Operations {
load: wgpu::LoadOp::Clear(1.0),
store:wgpu::StoreOp::Discard,
store: false,
}),
stencil_ops: None,
}),
timestamp_writes:Default::default(),
occlusion_query_set:Default::default(),
});
rpass.set_bind_group(0, &self.bind_groups.camera, &[]);
@ -975,9 +962,9 @@ impl GraphicsState{
rpass.set_bind_group(2, &model.bind_group, &[]);
rpass.set_vertex_buffer(0, model.vertex_buf.slice(..));
for entity in model.entities.iter(){
rpass.set_index_buffer(entity.index_buf.slice(..),model.index_format);
rpass.draw_indexed(0..entity.index_count,0,0..model.instances.len() as u32);
for entity in model.entities.iter() {
rpass.set_index_buffer(entity.index_buf.slice(..), wgpu::IndexFormat::Uint16);
rpass.draw_indexed(0..entity.index_count, 0, 0..model.instances.len() as u32);
}
}
@ -992,22 +979,22 @@ impl GraphicsState{
}
const MODEL_BUFFER_SIZE:usize=4*4 + 12 + 4;//let size=std::mem::size_of::<ModelInstance>();
const MODEL_BUFFER_SIZE_BYTES:usize=MODEL_BUFFER_SIZE*4;
fn get_instances_buffer_data(instances:&[GraphicsModelInstance]) -> Vec<f32> {
fn get_instances_buffer_data(instances:&[ModelGraphicsInstance]) -> Vec<f32> {
let mut raw = Vec::with_capacity(MODEL_BUFFER_SIZE*instances.len());
for (i,mi) in instances.iter().enumerate(){
let mut v = raw.split_off(MODEL_BUFFER_SIZE*i);
//model transform
raw.extend_from_slice(&AsRef::<[f32; 4*4]>::as_ref(&mi.transform)[..]);
//normal transform
raw.extend_from_slice(AsRef::<[f32; 3]>::as_ref(&mi.normal_transform.x_axis));
raw.extend_from_slice(&[0.0]);
raw.extend_from_slice(AsRef::<[f32; 3]>::as_ref(&mi.normal_transform.y_axis));
raw.extend_from_slice(&[0.0]);
raw.extend_from_slice(AsRef::<[f32; 3]>::as_ref(&mi.normal_transform.z_axis));
raw.extend_from_slice(&[0.0]);
//color
raw.extend_from_slice(AsRef::<[f32; 4]>::as_ref(&mi.color.get()));
raw.append(&mut v);
let mut v = raw.split_off(MODEL_BUFFER_SIZE*i);
//model transform
raw.extend_from_slice(&AsRef::<[f32; 4*4]>::as_ref(&mi.transform)[..]);
//normal transform
raw.extend_from_slice(AsRef::<[f32; 3]>::as_ref(&mi.normal_transform.x_axis));
raw.extend_from_slice(&[0.0]);
raw.extend_from_slice(AsRef::<[f32; 3]>::as_ref(&mi.normal_transform.y_axis));
raw.extend_from_slice(&[0.0]);
raw.extend_from_slice(AsRef::<[f32; 3]>::as_ref(&mi.normal_transform.z_axis));
raw.extend_from_slice(&[0.0]);
//color
raw.extend_from_slice(AsRef::<[f32; 4]>::as_ref(&mi.color.get()));
raw.append(&mut v);
}
raw
}
}

315
src/graphics_context.rs Normal file
View File

@ -0,0 +1,315 @@
fn optional_features() -> wgpu::Features {
wgpu::Features::empty()
}
fn required_features() -> wgpu::Features {
wgpu::Features::empty()
}
fn required_downlevel_capabilities() -> wgpu::DownlevelCapabilities {
wgpu::DownlevelCapabilities {
flags: wgpu::DownlevelFlags::empty(),
shader_model: wgpu::ShaderModel::Sm5,
..wgpu::DownlevelCapabilities::default()
}
}
pub fn required_limits() -> wgpu::Limits {
wgpu::Limits::downlevel_webgl2_defaults() // These downlevel limits will allow the code to run on all possible hardware
}
struct GraphicsContextPartial1{
backends:wgpu::Backends,
instance:wgpu::Instance,
}
fn create_instance()->GraphicsContextPartial1{
let backends=wgpu::util::backend_bits_from_env().unwrap_or_else(wgpu::Backends::all);
let dx12_shader_compiler=wgpu::util::dx12_shader_compiler_from_env().unwrap_or_default();
GraphicsContextPartial1{
backends,
instance:wgpu::Instance::new(wgpu::InstanceDescriptor{
backends,
dx12_shader_compiler,
}),
}
}
impl GraphicsContextPartial1{
fn create_surface(self,window:&winit::window::Window)->Result<GraphicsContextPartial2,wgpu::CreateSurfaceError>{
Ok(GraphicsContextPartial2{
backends:self.backends,
instance:self.instance,
surface:unsafe{self.instance.create_surface(window)}?
})
}
}
struct GraphicsContextPartial2{
backends:wgpu::Backends,
instance:wgpu::Instance,
surface:wgpu::Surface,
}
impl GraphicsContextPartial2{
fn pick_adapter(self)->GraphicsContextPartial3{
let adapter;
let optional_features=optional_features();
let required_features=required_features();
//no helper function smh gotta write it myself
let adapters=self.instance.enumerate_adapters(self.backends);
let mut chosen_adapter=None;
let mut chosen_adapter_score=0;
for adapter in adapters {
if !adapter.is_surface_supported(&self.surface) {
continue;
}
let score=match adapter.get_info().device_type{
wgpu::DeviceType::IntegratedGpu=>3,
wgpu::DeviceType::DiscreteGpu=>4,
wgpu::DeviceType::VirtualGpu=>2,
wgpu::DeviceType::Other|wgpu::DeviceType::Cpu=>1,
};
let adapter_features=adapter.features();
if chosen_adapter_score<score&&adapter_features.contains(required_features) {
chosen_adapter_score=score;
chosen_adapter=Some(adapter);
}
}
if let Some(maybe_chosen_adapter)=chosen_adapter{
adapter=maybe_chosen_adapter;
}else{
panic!("No suitable GPU adapters found on the system!");
}
let adapter_info=adapter.get_info();
println!("Using {} ({:?})", adapter_info.name, adapter_info.backend);
let required_downlevel_capabilities=required_downlevel_capabilities();
let downlevel_capabilities=adapter.get_downlevel_capabilities();
assert!(
downlevel_capabilities.shader_model >= required_downlevel_capabilities.shader_model,
"Adapter does not support the minimum shader model required to run this example: {:?}",
required_downlevel_capabilities.shader_model
);
assert!(
downlevel_capabilities
.flags
.contains(required_downlevel_capabilities.flags),
"Adapter does not support the downlevel capabilities required to run this example: {:?}",
required_downlevel_capabilities.flags - downlevel_capabilities.flags
);
GraphicsContextPartial3{
instance:self.instance,
surface:self.surface,
adapter,
}
}
}
struct GraphicsContextPartial3{
instance:wgpu::Instance,
surface:wgpu::Surface,
adapter:wgpu::Adapter,
}
impl GraphicsContextPartial3{
fn request_device(self)->GraphicsContextPartial4{
let optional_features=optional_features();
let required_features=required_features();
// Make sure we use the texture resolution limits from the adapter, so we can support images the size of the surface.
let needed_limits=required_limits().using_resolution(self.adapter.limits());
let trace_dir=std::env::var("WGPU_TRACE");
let (device, queue)=pollster::block_on(self.adapter
.request_device(
&wgpu::DeviceDescriptor {
label: None,
features: (optional_features & self.adapter.features()) | required_features,
limits: needed_limits,
},
trace_dir.ok().as_ref().map(std::path::Path::new),
))
.expect("Unable to find a suitable GPU adapter!");
GraphicsContextPartial4{
instance:self.instance,
surface:self.surface,
adapter:self.adapter,
device,
queue,
}
}
}
struct GraphicsContextPartial4{
instance:wgpu::Instance,
surface:wgpu::Surface,
adapter:wgpu::Adapter,
device:wgpu::Device,
queue:wgpu::Queue,
}
impl GraphicsContextPartial4{
fn configure_surface(self,size:&winit::dpi::PhysicalSize<u32>)->GraphicsContext{
let mut config=self.surface
.get_default_config(&self.adapter, size.width, size.height)
.expect("Surface isn't supported by the adapter.");
let surface_view_format=config.format.add_srgb_suffix();
config.view_formats.push(surface_view_format);
self.surface.configure(&self.device, &config);
GraphicsContext{
instance:self.instance,
surface:self.surface,
adapter:self.adapter,
device:self.device,
queue:self.queue,
config,
}
}
}
pub struct GraphicsContext{
pub instance:wgpu::Instance,
pub surface:wgpu::Surface,
pub adapter:wgpu::Adapter,
pub device:wgpu::Device,
pub queue:wgpu::Queue,
pub config:wgpu::SurfaceConfiguration,
}
pub fn setup(title:&str)->GraphicsContextSetup{
let event_loop=winit::event_loop::EventLoop::new();
let window=crate::window::WindowState::create_window(title,&event_loop).unwrap();
println!("Initializing the surface...");
let partial_1=create_instance();
let partial_2=partial_1.create_surface(&window).unwrap();
let partial_3=partial_2.pick_adapter();
let partial_4=partial_3.request_device();
GraphicsContextSetup{
window,
event_loop,
partial_graphics_context:partial_4,
}
}
struct GraphicsContextSetup{
window:winit::window::Window,
event_loop:winit::event_loop::EventLoop<()>,
partial_graphics_context:GraphicsContextPartial4,
}
impl GraphicsContextSetup{
fn into_split(self)->(winit::window::Window,winit::event_loop::EventLoop<()>,GraphicsContext){
let size=self.window.inner_size();
//Steal values and drop self
(
self.window,
self.event_loop,
self.partial_graphics_context.configure_surface(&size),
)
}
pub fn start(self,mut global_state:crate::GlobalState){
let (window,event_loop,graphics_context)=self.into_split();
println!("Entering render loop...");
event_loop.run(move |event,_,control_flow|{
*control_flow=if cfg!(feature="metal-auto-capture"){
winit::event_loop::ControlFlow::Exit
}else{
winit::event_loop::ControlFlow::Poll
};
match event{
winit::event::Event::RedrawEventsCleared=>{
window.request_redraw();
}
winit::event::Event::WindowEvent {
event:
winit::event::WindowEvent::Resized(size)
| winit::event::WindowEvent::ScaleFactorChanged {
new_inner_size:&mut size,
..
},
..
} => {
// Once winit is fixed, the detection conditions here can be removed.
// https://github.com/rust-windowing/winit/issues/2876
// this has been fixed if I update winit (remove the if statement and only use the else case)
//drop adapter when you delete this
let max_dimension=graphics_context.adapter.limits().max_texture_dimension_2d;
if max_dimension<size.width||max_dimension<size.height{
println!(
"The resizing size {:?} exceeds the limit of {}.",
size,
max_dimension
);
}else{
println!("Resizing to {:?}",size);
graphics_context.config.width=size.width.max(1);
graphics_context.config.height=size.height.max(1);
window.resize(&graphics_context);
graphics_context.surface.configure(&graphics_context.device,&graphics_context.config);
}
}
winit::event::Event::WindowEvent{event,..}=>match event{
winit::event::WindowEvent::KeyboardInput{
input:
winit::event::KeyboardInput{
virtual_keycode:Some(winit::event::VirtualKeyCode::Escape),
state: winit::event::ElementState::Pressed,
..
},
..
}
|winit::event::WindowEvent::CloseRequested=>{
*control_flow=winit::event_loop::ControlFlow::Exit;
}
winit::event::WindowEvent::KeyboardInput{
input:
winit::event::KeyboardInput{
virtual_keycode:Some(winit::event::VirtualKeyCode::Scroll),
state: winit::event::ElementState::Pressed,
..
},
..
}=>{
println!("{:#?}",graphics_context.instance.generate_report());
}
_=>{
global_state.update(event);
}
},
winit::event::Event::DeviceEvent{
event,
..
} => {
global_state.device_event(event);
},
winit::event::Event::RedrawRequested(_)=>{
let frame=match graphics_context.surface.get_current_texture(){
Ok(frame)=>frame,
Err(_)=>{
graphics_context.surface.configure(&graphics_context.device,&graphics_context.config);
graphics_context.surface
.get_current_texture()
.expect("Failed to acquire next surface texture!")
}
};
let view=frame.texture.create_view(&wgpu::TextureViewDescriptor{
format:Some(graphics_context.config.view_formats[0]),
..wgpu::TextureViewDescriptor::default()
});
graphics.render(&view,&graphics_context.device,&graphics_context.queue);
frame.present();
}
_=>{}
}
});
}
}

View File

@ -1,72 +0,0 @@
use strafesnet_common::integer;
pub enum Instruction{
Render(crate::physics::PhysicsOutputState,integer::Time,glam::IVec2),
//UpdateModel(crate::graphics::GraphicsModelUpdate),
Resize(winit::dpi::PhysicalSize<u32>,crate::settings::UserSettings),
GenerateModels(crate::model::IndexedModelInstances),
ClearModels,
}
//Ideally the graphics thread worker description is:
/*
WorkerDescription{
input:Immediate,
output:Realtime(PoolOrdering::Ordered(3)),
}
*/
//up to three frames in flight, dropping new frame requests when all three are busy, and dropping output frames when one renders out of order
pub fn new<'a>(
mut graphics:crate::graphics::GraphicsState,
mut config:wgpu::SurfaceConfiguration,
surface:wgpu::Surface<'a>,
device:wgpu::Device,
queue:wgpu::Queue,
)->crate::compat_worker::INWorker<'a,Instruction>{
let mut resize=None;
crate::compat_worker::INWorker::new(move |ins:Instruction|{
match ins{
Instruction::GenerateModels(indexed_model_instances)=>{
graphics.generate_models(&device,&queue,indexed_model_instances);
},
Instruction::ClearModels=>{
graphics.clear();
},
Instruction::Resize(size,user_settings)=>{
resize=Some((size,user_settings));
}
Instruction::Render(physics_output,predicted_time,mouse_pos)=>{
if let Some((size,user_settings))=&resize{
println!("Resizing to {:?}",size);
let t0=std::time::Instant::now();
config.width=size.width.max(1);
config.height=size.height.max(1);
surface.configure(&device,&config);
graphics.resize(&device,&config,user_settings);
println!("Resize took {:?}",t0.elapsed());
}
//clear every time w/e
resize=None;
//this has to go deeper somehow
let frame=match surface.get_current_texture(){
Ok(frame)=>frame,
Err(_)=>{
surface.configure(&device,&config);
surface
.get_current_texture()
.expect("Failed to acquire next surface texture!")
}
};
let view=frame.texture.create_view(&wgpu::TextureViewDescriptor{
format:Some(config.view_formats[0]),
..wgpu::TextureViewDescriptor::default()
});
graphics.render(&view,&device,&queue,physics_output,predicted_time,mouse_pos);
frame.present();
}
}
})
}

50
src/instruction.rs Normal file
View File

@ -0,0 +1,50 @@
use crate::integer::Time;
#[derive(Debug)]
pub struct TimedInstruction<I>{
pub time:Time,
pub instruction:I,
}
pub trait InstructionEmitter<I>{
fn next_instruction(&self,time_limit:Time)->Option<TimedInstruction<I>>;
}
pub trait InstructionConsumer<I>{
fn process_instruction(&mut self, instruction:TimedInstruction<I>);
}
//PROPER PRIVATE FIELDS!!!
pub struct InstructionCollector<I>{
time:Time,
instruction:Option<I>,
}
impl<I> InstructionCollector<I>{
pub fn new(time:Time)->Self{
Self{
time,
instruction:None
}
}
pub fn collect(&mut self,instruction:Option<TimedInstruction<I>>){
match instruction{
Some(unwrap_instruction)=>{
if unwrap_instruction.time<self.time {
self.time=unwrap_instruction.time;
self.instruction=Some(unwrap_instruction.instruction);
}
},
None=>(),
}
}
pub fn instruction(self)->Option<TimedInstruction<I>>{
//STEAL INSTRUCTION AND DESTROY INSTRUCTIONCOLLECTOR
match self.instruction{
Some(instruction)=>Some(TimedInstruction{
time:self.time,
instruction
}),
None=>None,
}
}
}

953
src/integer.rs Normal file
View File

@ -0,0 +1,953 @@
//integer units
#[derive(Clone,Copy,Hash,PartialEq,PartialOrd,Debug)]
pub struct Time(i64);
impl Time{
pub const ZERO:Self=Self(0);
pub const ONE_SECOND:Self=Self(1_000_000_000);
pub const ONE_MILLISECOND:Self=Self(1_000_000);
pub const ONE_MICROSECOND:Self=Self(1_000);
pub const ONE_NANOSECOND:Self=Self(1);
#[inline]
pub fn from_secs(num:i64)->Self{
Self(Self::ONE_SECOND.0*num)
}
#[inline]
pub fn from_millis(num:i64)->Self{
Self(Self::ONE_MILLISECOND.0*num)
}
#[inline]
pub fn from_micros(num:i64)->Self{
Self(Self::ONE_MICROSECOND.0*num)
}
#[inline]
pub fn from_nanos(num:i64)->Self{
Self(Self::ONE_NANOSECOND.0*num)
}
//should I have checked subtraction? force all time variables to be positive?
#[inline]
pub fn nanos(&self)->i64{
self.0
}
}
impl From<Planar64> for Time{
#[inline]
fn from(value:Planar64)->Self{
Time((((value.0 as i128)*1_000_000_000)>>32) as i64)
}
}
impl std::fmt::Display for Time{
#[inline]
fn fmt(&self,f:&mut std::fmt::Formatter<'_>)->std::fmt::Result{
write!(f,"{}s+{:09}ns",self.0/Self::ONE_SECOND.0,self.0%Self::ONE_SECOND.0)
}
}
impl std::ops::Neg for Time{
type Output=Time;
#[inline]
fn neg(self)->Self::Output {
Time(-self.0)
}
}
impl std::ops::Add<Time> for Time{
type Output=Time;
#[inline]
fn add(self,rhs:Self)->Self::Output {
Time(self.0+rhs.0)
}
}
impl std::ops::Sub<Time> for Time{
type Output=Time;
#[inline]
fn sub(self,rhs:Self)->Self::Output {
Time(self.0-rhs.0)
}
}
impl std::ops::Mul<Time> for Time{
type Output=Time;
#[inline]
fn mul(self,rhs:Time)->Self::Output{
Self((((self.0 as i128)*(rhs.0 as i128))/1_000_000_000) as i64)
}
}
impl std::ops::Div<i64> for Time{
type Output=Time;
#[inline]
fn div(self,rhs:i64)->Self::Output {
Time(self.0/rhs)
}
}
#[inline]
const fn gcd(mut a:u64,mut b:u64)->u64{
while b!=0{
(a,b)=(b,a.rem_euclid(b));
};
a
}
#[derive(Clone,Hash)]
pub struct Ratio64{
num:i64,
den:u64,
}
impl Ratio64{
pub const ZERO:Self=Ratio64{num:0,den:1};
pub const ONE:Self=Ratio64{num:1,den:1};
#[inline]
pub const fn new(num:i64,den:u64)->Option<Ratio64>{
if den==0{
None
}else{
let d=gcd(num.unsigned_abs(),den);
Some(Self{num:num/d as i64,den:den/d})
}
}
#[inline]
pub fn mul_int(&self,rhs:i64)->i64{
rhs*self.num/self.den as i64
}
#[inline]
pub fn rhs_div_int(&self,rhs:i64)->i64{
rhs*self.den as i64/self.num
}
#[inline]
pub fn mul_ref(&self,rhs:&Ratio64)->Ratio64{
let (num,den)=(self.num*rhs.num,self.den*rhs.den);
let d=gcd(num.unsigned_abs(),den);
Self{
num:num/d as i64,
den:den/d,
}
}
}
//from num_traits crate
#[inline]
fn integer_decode_f32(f: f32) -> (u64, i16, i8) {
let bits: u32 = f.to_bits();
let sign: i8 = if bits >> 31 == 0 { 1 } else { -1 };
let mut exponent: i16 = ((bits >> 23) & 0xff) as i16;
let mantissa = if exponent == 0 {
(bits & 0x7fffff) << 1
} else {
(bits & 0x7fffff) | 0x800000
};
// Exponent bias + mantissa shift
exponent -= 127 + 23;
(mantissa as u64, exponent, sign)
}
#[inline]
fn integer_decode_f64(f: f64) -> (u64, i16, i8) {
let bits: u64 = f.to_bits();
let sign: i8 = if bits >> 63 == 0 { 1 } else { -1 };
let mut exponent: i16 = ((bits >> 52) & 0x7ff) as i16;
let mantissa = if exponent == 0 {
(bits & 0xfffffffffffff) << 1
} else {
(bits & 0xfffffffffffff) | 0x10000000000000
};
// Exponent bias + mantissa shift
exponent -= 1023 + 52;
(mantissa, exponent, sign)
}
#[derive(Debug)]
pub enum Ratio64TryFromFloatError{
Nan,
Infinite,
Subnormal,
HighlyNegativeExponent(i16),
HighlyPositiveExponent(i16),
}
const MAX_DENOMINATOR:u128=u64::MAX as u128;
#[inline]
fn ratio64_from_mes((m,e,s):(u64,i16,i8))->Result<Ratio64,Ratio64TryFromFloatError>{
if e< -127{
//this can also just be zero
Err(Ratio64TryFromFloatError::HighlyNegativeExponent(e))
}else if e< -63{
//approximate input ratio within denominator limit
let mut target_num=m as u128;
let mut target_den=1u128<<-e;
let mut num=1;
let mut den=0;
let mut prev_num=0;
let mut prev_den=1;
while target_den!=0{
let whole=target_num/target_den;
(target_num,target_den)=(target_den,target_num-whole*target_den);
let new_num=whole*num+prev_num;
let new_den=whole*den+prev_den;
if MAX_DENOMINATOR<new_den{
break;
}else{
(prev_num,prev_den)=(num,den);
(num,den)=(new_num,new_den);
}
}
Ok(Ratio64::new(num as i64,den as u64).unwrap())
}else if e<0{
Ok(Ratio64::new((m as i64)*(s as i64),1<<-e).unwrap())
}else if (64-m.leading_zeros() as i16)+e<64{
Ok(Ratio64::new((m as i64)*(s as i64)*(1<<e),1).unwrap())
}else{
Err(Ratio64TryFromFloatError::HighlyPositiveExponent(e))
}
}
impl TryFrom<f32> for Ratio64{
type Error=Ratio64TryFromFloatError;
#[inline]
fn try_from(value:f32)->Result<Self,Self::Error>{
match value.classify(){
std::num::FpCategory::Nan=>Err(Self::Error::Nan),
std::num::FpCategory::Infinite=>Err(Self::Error::Infinite),
std::num::FpCategory::Zero=>Ok(Self::ZERO),
std::num::FpCategory::Subnormal=>Err(Self::Error::Subnormal),
std::num::FpCategory::Normal=>ratio64_from_mes(integer_decode_f32(value)),
}
}
}
impl TryFrom<f64> for Ratio64{
type Error=Ratio64TryFromFloatError;
#[inline]
fn try_from(value:f64)->Result<Self,Self::Error>{
match value.classify(){
std::num::FpCategory::Nan=>Err(Self::Error::Nan),
std::num::FpCategory::Infinite=>Err(Self::Error::Infinite),
std::num::FpCategory::Zero=>Ok(Self::ZERO),
std::num::FpCategory::Subnormal=>Err(Self::Error::Subnormal),
std::num::FpCategory::Normal=>ratio64_from_mes(integer_decode_f64(value)),
}
}
}
impl std::ops::Mul<Ratio64> for Ratio64{
type Output=Ratio64;
#[inline]
fn mul(self,rhs:Ratio64)->Self::Output{
let (num,den)=(self.num*rhs.num,self.den*rhs.den);
let d=gcd(num.unsigned_abs(),den);
Self{
num:num/d as i64,
den:den/d,
}
}
}
impl std::ops::Mul<i64> for Ratio64{
type Output=Ratio64;
#[inline]
fn mul(self,rhs:i64)->Self::Output {
Self{
num:self.num*rhs,
den:self.den,
}
}
}
impl std::ops::Div<u64> for Ratio64{
type Output=Ratio64;
#[inline]
fn div(self,rhs:u64)->Self::Output {
Self{
num:self.num,
den:self.den*rhs,
}
}
}
#[derive(Clone,Hash)]
pub struct Ratio64Vec2{
pub x:Ratio64,
pub y:Ratio64,
}
impl Ratio64Vec2{
pub const ONE:Self=Self{x:Ratio64::ONE,y:Ratio64::ONE};
#[inline]
pub fn new(x:Ratio64,y:Ratio64)->Self{
Self{x,y}
}
#[inline]
pub fn mul_int(&self,rhs:glam::I64Vec2)->glam::I64Vec2{
glam::i64vec2(
self.x.mul_int(rhs.x),
self.y.mul_int(rhs.y),
)
}
}
impl std::ops::Mul<i64> for Ratio64Vec2{
type Output=Ratio64Vec2;
#[inline]
fn mul(self,rhs:i64)->Self::Output {
Self{
x:self.x*rhs,
y:self.y*rhs,
}
}
}
///[-pi,pi) = [-2^31,2^31-1]
#[derive(Clone,Copy,Hash)]
pub struct Angle32(i32);
impl Angle32{
pub const FRAC_PI_2:Self=Self(1<<30);
pub const PI:Self=Self(-1<<31);
#[inline]
pub fn wrap_from_i64(theta:i64)->Self{
//take lower bits
//note: this was checked on compiler explorer and compiles to 1 instruction!
Self(i32::from_ne_bytes(((theta&((1<<32)-1)) as u32).to_ne_bytes()))
}
#[inline]
pub fn clamp_from_i64(theta:i64)->Self{
//the assembly is a bit confusing for this, I thought it was checking the same thing twice
//but it's just checking and then overwriting the value for both upper and lower bounds.
Self(theta.clamp(i32::MIN as i64,i32::MAX as i64) as i32)
}
#[inline]
pub fn get(&self)->i32{
self.0
}
/// Clamps the value towards the midpoint of the range.
/// Note that theta_min can be larger than theta_max and it will wrap clamp the other way around
#[inline]
pub fn clamp(&self,theta_min:Self,theta_max:Self)->Self{
//((max-min as u32)/2 as i32)+min
let midpoint=((
u32::from_ne_bytes(theta_max.0.to_ne_bytes())
.wrapping_sub(u32::from_ne_bytes(theta_min.0.to_ne_bytes()))
/2
) as i32)//(u32::MAX/2) as i32 ALWAYS works
.wrapping_add(theta_min.0);
//(theta-mid).clamp(max-mid,min-mid)+mid
Self(
self.0.wrapping_sub(midpoint)
.max(theta_min.0.wrapping_sub(midpoint))
.min(theta_max.0.wrapping_sub(midpoint))
.wrapping_add(midpoint)
)
}
/*
#[inline]
pub fn cos(&self)->Unit32{
//TODO: fix this rounding towards 0
Unit32(unsafe{((self.0 as f64*ANGLE32_TO_FLOAT64_RADIANS).cos()*UNIT32_ONE_FLOAT64).to_int_unchecked()})
}
#[inline]
pub fn sin(&self)->Unit32{
//TODO: fix this rounding towards 0
Unit32(unsafe{((self.0 as f64*ANGLE32_TO_FLOAT64_RADIANS).sin()*UNIT32_ONE_FLOAT64).to_int_unchecked()})
}
*/
}
const ANGLE32_TO_FLOAT64_RADIANS:f64=std::f64::consts::PI/((1i64<<31) as f64);
impl Into<f32> for Angle32{
#[inline]
fn into(self)->f32{
(self.0 as f64*ANGLE32_TO_FLOAT64_RADIANS) as f32
}
}
impl std::ops::Neg for Angle32{
type Output=Angle32;
#[inline]
fn neg(self)->Self::Output{
Angle32(self.0.wrapping_neg())
}
}
impl std::ops::Add<Angle32> for Angle32{
type Output=Angle32;
#[inline]
fn add(self,rhs:Self)->Self::Output {
Angle32(self.0.wrapping_add(rhs.0))
}
}
impl std::ops::Sub<Angle32> for Angle32{
type Output=Angle32;
#[inline]
fn sub(self,rhs:Self)->Self::Output {
Angle32(self.0.wrapping_sub(rhs.0))
}
}
impl std::ops::Mul<i32> for Angle32{
type Output=Angle32;
#[inline]
fn mul(self,rhs:i32)->Self::Output {
Angle32(self.0.wrapping_mul(rhs))
}
}
impl std::ops::Mul<Angle32> for Angle32{
type Output=Angle32;
#[inline]
fn mul(self,rhs:Self)->Self::Output {
Angle32(self.0.wrapping_mul(rhs.0))
}
}
/* Unit type unused for now, may revive it for map files
///[-1.0,1.0] = [-2^30,2^30]
pub struct Unit32(i32);
impl Unit32{
#[inline]
pub fn as_planar64(&self) -> Planar64{
Planar64(4*(self.0 as i64))
}
}
const UNIT32_ONE_FLOAT64=((1<<30) as f64);
///[-1.0,1.0] = [-2^30,2^30]
pub struct Unit32Vec3(glam::IVec3);
impl TryFrom<[f32;3]> for Unit32Vec3{
type Error=Unit32TryFromFloatError;
fn try_from(value:[f32;3])->Result<Self,Self::Error>{
Ok(Self(glam::ivec3(
Unit32::try_from(Planar64::try_from(value[0])?)?.0,
Unit32::try_from(Planar64::try_from(value[1])?)?.0,
Unit32::try_from(Planar64::try_from(value[2])?)?.0,
)))
}
}
*/
///[-1.0,1.0] = [-2^32,2^32]
#[derive(Clone,Copy,Hash,Eq,Ord,PartialEq,PartialOrd)]
pub struct Planar64(i64);
impl Planar64{
pub const ZERO:Self=Self(0);
pub const ONE:Self=Self(1<<32);
#[inline]
pub const fn int(num:i32)->Self{
Self(Self::ONE.0*num as i64)
}
#[inline]
pub const fn raw(num:i64)->Self{
Self(num)
}
#[inline]
pub const fn get(&self)->i64{
self.0
}
pub fn sqrt(&self)->Self{
Planar64(unsafe{(((self.0 as i128)<<32) as f64).sqrt().to_int_unchecked()})
}
}
const PLANAR64_ONE_FLOAT32:f32=(1u64<<32) as f32;
const PLANAR64_CONVERT_TO_FLOAT32:f32=1.0/PLANAR64_ONE_FLOAT32;
const PLANAR64_ONE_FLOAT64:f64=(1u64<<32) as f64;
impl Into<f32> for Planar64{
#[inline]
fn into(self)->f32{
self.0 as f32*PLANAR64_CONVERT_TO_FLOAT32
}
}
impl From<Ratio64> for Planar64{
#[inline]
fn from(ratio:Ratio64)->Self{
Self((((ratio.num as i128)<<32)/ratio.den as i128) as i64)
}
}
#[derive(Debug)]
pub enum Planar64TryFromFloatError{
Nan,
Infinite,
Subnormal,
HighlyNegativeExponent(i16),
HighlyPositiveExponent(i16),
}
#[inline]
fn planar64_from_mes((m,e,s):(u64,i16,i8))->Result<Planar64,Planar64TryFromFloatError>{
let e32=e+32;
if e32<0&&(m>>-e32)==0{//shifting m will underflow to 0
Ok(Planar64::ZERO)
// println!("m{} e{} s{}",m,e,s);
// println!("f={}",(m as f64)*(2.0f64.powf(e as f64))*(s as f64));
// Err(Planar64TryFromFloatError::HighlyNegativeExponent(e))
}else if (64-m.leading_zeros() as i16)+e32<64{//shifting m will not overflow
if e32<0{
Ok(Planar64((m as i64)*(s as i64)>>-e32))
}else{
Ok(Planar64((m as i64)*(s as i64)<<e32))
}
}else{//if shifting m will overflow (prev check failed)
Err(Planar64TryFromFloatError::HighlyPositiveExponent(e))
}
}
impl TryFrom<f32> for Planar64{
type Error=Planar64TryFromFloatError;
#[inline]
fn try_from(value:f32)->Result<Self,Self::Error>{
match value.classify(){
std::num::FpCategory::Nan=>Err(Self::Error::Nan),
std::num::FpCategory::Infinite=>Err(Self::Error::Infinite),
std::num::FpCategory::Zero=>Ok(Self::ZERO),
std::num::FpCategory::Subnormal=>Err(Self::Error::Subnormal),
std::num::FpCategory::Normal=>planar64_from_mes(integer_decode_f32(value)),
}
}
}
impl TryFrom<f64> for Planar64{
type Error=Planar64TryFromFloatError;
#[inline]
fn try_from(value:f64)->Result<Self,Self::Error>{
match value.classify(){
std::num::FpCategory::Nan=>Err(Self::Error::Nan),
std::num::FpCategory::Infinite=>Err(Self::Error::Infinite),
std::num::FpCategory::Zero=>Ok(Self::ZERO),
std::num::FpCategory::Subnormal=>Err(Self::Error::Subnormal),
std::num::FpCategory::Normal=>planar64_from_mes(integer_decode_f64(value)),
}
}
}
impl std::fmt::Display for Planar64{
fn fmt(&self,f:&mut std::fmt::Formatter<'_>)->std::fmt::Result{
write!(f,"{:.3}",
Into::<f32>::into(*self),
)
}
}
impl std::ops::Neg for Planar64{
type Output=Planar64;
#[inline]
fn neg(self)->Self::Output{
Planar64(-self.0)
}
}
impl std::ops::Add<Planar64> for Planar64{
type Output=Planar64;
#[inline]
fn add(self, rhs: Self) -> Self::Output {
Planar64(self.0+rhs.0)
}
}
impl std::ops::Sub<Planar64> for Planar64{
type Output=Planar64;
#[inline]
fn sub(self, rhs: Self) -> Self::Output {
Planar64(self.0-rhs.0)
}
}
impl std::ops::Mul<i64> for Planar64{
type Output=Planar64;
#[inline]
fn mul(self, rhs: i64) -> Self::Output {
Planar64(self.0*rhs)
}
}
impl std::ops::Mul<Planar64> for Planar64{
type Output=Planar64;
#[inline]
fn mul(self, rhs: Self) -> Self::Output {
Planar64(((self.0 as i128*rhs.0 as i128)>>32) as i64)
}
}
impl std::ops::Mul<Time> for Planar64{
type Output=Planar64;
#[inline]
fn mul(self,rhs:Time)->Self::Output{
Planar64(((self.0 as i128*rhs.0 as i128)/1_000_000_000) as i64)
}
}
impl std::ops::Div<i64> for Planar64{
type Output=Planar64;
#[inline]
fn div(self, rhs: i64) -> Self::Output {
Planar64(self.0/rhs)
}
}
impl std::ops::Div<Planar64> for Planar64{
type Output=Planar64;
#[inline]
fn div(self, rhs: Planar64) -> Self::Output {
Planar64((((self.0 as i128)<<32)/rhs.0 as i128) as i64)
}
}
// impl PartialOrd<i64> for Planar64{
// fn partial_cmp(&self, other: &i64) -> Option<std::cmp::Ordering> {
// self.0.partial_cmp(other)
// }
// }
///[-1.0,1.0] = [-2^32,2^32]
#[derive(Clone,Copy,Default,Hash,Eq,PartialEq)]
pub struct Planar64Vec3(glam::I64Vec3);
impl Planar64Vec3{
pub const ZERO:Self=Planar64Vec3(glam::I64Vec3::ZERO);
pub const ONE:Self=Self::int(1,1,1);
pub const X:Self=Self::int(1,0,0);
pub const Y:Self=Self::int(0,1,0);
pub const Z:Self=Self::int(0,0,1);
pub const NEG_X:Self=Self::int(-1,0,0);
pub const NEG_Y:Self=Self::int(0,-1,0);
pub const NEG_Z:Self=Self::int(0,0,-1);
pub const MIN:Self=Planar64Vec3(glam::I64Vec3::MIN);
pub const MAX:Self=Planar64Vec3(glam::I64Vec3::MAX);
#[inline]
pub const fn int(x:i32,y:i32,z:i32)->Self{
Self(glam::i64vec3((x as i64)<<32,(y as i64)<<32,(z as i64)<<32))
}
#[inline]
pub const fn raw(x:i64,y:i64,z:i64)->Self{
Self(glam::i64vec3(x,y,z))
}
#[inline]
pub fn x(&self)->Planar64{
Planar64(self.0.x)
}
#[inline]
pub fn y(&self)->Planar64{
Planar64(self.0.y)
}
#[inline]
pub fn z(&self)->Planar64{
Planar64(self.0.z)
}
#[inline]
pub fn min(&self,rhs:Self)->Self{
Self(glam::i64vec3(
self.0.x.min(rhs.0.x),
self.0.y.min(rhs.0.y),
self.0.z.min(rhs.0.z),
))
}
#[inline]
pub fn max(&self,rhs:Self)->Self{
Self(glam::i64vec3(
self.0.x.max(rhs.0.x),
self.0.y.max(rhs.0.y),
self.0.z.max(rhs.0.z),
))
}
#[inline]
pub fn midpoint(&self,rhs:Self)->Self{
Self((self.0+rhs.0)/2)
}
#[inline]
pub fn cmplt(&self,rhs:Self)->glam::BVec3{
self.0.cmplt(rhs.0)
}
#[inline]
pub fn dot(&self,rhs:Self)->Planar64{
Planar64(((
(self.0.x as i128)*(rhs.0.x as i128)+
(self.0.y as i128)*(rhs.0.y as i128)+
(self.0.z as i128)*(rhs.0.z as i128)
)>>32) as i64)
}
#[inline]
pub fn length(&self)->Planar64{
let radicand=(self.0.x as i128)*(self.0.x as i128)+(self.0.y as i128)*(self.0.y as i128)+(self.0.z as i128)*(self.0.z as i128);
Planar64(unsafe{(radicand as f64).sqrt().to_int_unchecked()})
}
#[inline]
pub fn with_length(&self,length:Planar64)->Self{
let radicand=(self.0.x as i128)*(self.0.x as i128)+(self.0.y as i128)*(self.0.y as i128)+(self.0.z as i128)*(self.0.z as i128);
let self_length:i128=unsafe{(radicand as f64).sqrt().to_int_unchecked()};
//self.0*length/self_length
Planar64Vec3(
glam::i64vec3(
((self.0.x as i128)*(length.0 as i128)/self_length) as i64,
((self.0.y as i128)*(length.0 as i128)/self_length) as i64,
((self.0.z as i128)*(length.0 as i128)/self_length) as i64,
)
)
}
}
impl Into<glam::Vec3> for Planar64Vec3{
#[inline]
fn into(self)->glam::Vec3{
glam::vec3(
self.0.x as f32,
self.0.y as f32,
self.0.z as f32,
)*PLANAR64_CONVERT_TO_FLOAT32
}
}
impl TryFrom<[f32;3]> for Planar64Vec3{
type Error=Planar64TryFromFloatError;
#[inline]
fn try_from(value:[f32;3])->Result<Self,Self::Error>{
Ok(Self(glam::i64vec3(
Planar64::try_from(value[0])?.0,
Planar64::try_from(value[1])?.0,
Planar64::try_from(value[2])?.0,
)))
}
}
impl TryFrom<glam::Vec3A> for Planar64Vec3{
type Error=Planar64TryFromFloatError;
#[inline]
fn try_from(value:glam::Vec3A)->Result<Self,Self::Error>{
Ok(Self(glam::i64vec3(
Planar64::try_from(value.x)?.0,
Planar64::try_from(value.y)?.0,
Planar64::try_from(value.z)?.0,
)))
}
}
impl std::fmt::Display for Planar64Vec3{
fn fmt(&self,f:&mut std::fmt::Formatter<'_>)->std::fmt::Result{
write!(f,"{:.3},{:.3},{:.3}",
Into::<f32>::into(self.x()),Into::<f32>::into(self.y()),Into::<f32>::into(self.z()),
)
}
}
impl std::ops::Neg for Planar64Vec3{
type Output=Planar64Vec3;
#[inline]
fn neg(self)->Self::Output{
Planar64Vec3(-self.0)
}
}
impl std::ops::Add<Planar64Vec3> for Planar64Vec3{
type Output=Planar64Vec3;
#[inline]
fn add(self,rhs:Planar64Vec3) -> Self::Output {
Planar64Vec3(self.0+rhs.0)
}
}
impl std::ops::AddAssign<Planar64Vec3> for Planar64Vec3{
#[inline]
fn add_assign(&mut self,rhs:Planar64Vec3){
*self=*self+rhs
}
}
impl std::ops::Sub<Planar64Vec3> for Planar64Vec3{
type Output=Planar64Vec3;
#[inline]
fn sub(self,rhs:Planar64Vec3) -> Self::Output {
Planar64Vec3(self.0-rhs.0)
}
}
impl std::ops::SubAssign<Planar64Vec3> for Planar64Vec3{
#[inline]
fn sub_assign(&mut self,rhs:Planar64Vec3){
*self=*self-rhs
}
}
impl std::ops::Mul<Planar64Vec3> for Planar64Vec3{
type Output=Planar64Vec3;
#[inline]
fn mul(self, rhs: Planar64Vec3) -> Self::Output {
Planar64Vec3(glam::i64vec3(
(((self.0.x as i128)*(rhs.0.x as i128))>>32) as i64,
(((self.0.y as i128)*(rhs.0.y as i128))>>32) as i64,
(((self.0.z as i128)*(rhs.0.z as i128))>>32) as i64
))
}
}
impl std::ops::Mul<Planar64> for Planar64Vec3{
type Output=Planar64Vec3;
#[inline]
fn mul(self, rhs: Planar64) -> Self::Output {
Planar64Vec3(glam::i64vec3(
(((self.0.x as i128)*(rhs.0 as i128))>>32) as i64,
(((self.0.y as i128)*(rhs.0 as i128))>>32) as i64,
(((self.0.z as i128)*(rhs.0 as i128))>>32) as i64
))
}
}
impl std::ops::Mul<i64> for Planar64Vec3{
type Output=Planar64Vec3;
#[inline]
fn mul(self,rhs:i64)->Self::Output {
Planar64Vec3(glam::i64vec3(
self.0.x*rhs,
self.0.y*rhs,
self.0.z*rhs
))
}
}
impl std::ops::Mul<Time> for Planar64Vec3{
type Output=Planar64Vec3;
#[inline]
fn mul(self,rhs:Time)->Self::Output{
Planar64Vec3(glam::i64vec3(
(((self.0.x as i128)*(rhs.0 as i128))/1_000_000_000) as i64,
(((self.0.y as i128)*(rhs.0 as i128))/1_000_000_000) as i64,
(((self.0.z as i128)*(rhs.0 as i128))/1_000_000_000) as i64
))
}
}
impl std::ops::Div<i64> for Planar64Vec3{
type Output=Planar64Vec3;
#[inline]
fn div(self,rhs:i64)->Self::Output{
Planar64Vec3(glam::i64vec3(
self.0.x/rhs,
self.0.y/rhs,
self.0.z/rhs,
))
}
}
///[-1.0,1.0] = [-2^32,2^32]
#[derive(Clone,Copy)]
pub struct Planar64Mat3{
x_axis:Planar64Vec3,
y_axis:Planar64Vec3,
z_axis:Planar64Vec3,
}
impl Default for Planar64Mat3{
#[inline]
fn default() -> Self {
Self{
x_axis:Planar64Vec3::X,
y_axis:Planar64Vec3::Y,
z_axis:Planar64Vec3::Z,
}
}
}
impl std::ops::Mul<Planar64Vec3> for Planar64Mat3{
type Output=Planar64Vec3;
#[inline]
fn mul(self,rhs:Planar64Vec3) -> Self::Output {
self.x_axis*rhs.x()
+self.y_axis*rhs.y()
+self.z_axis*rhs.z()
}
}
impl Planar64Mat3{
#[inline]
pub fn from_cols(x_axis:Planar64Vec3,y_axis:Planar64Vec3,z_axis:Planar64Vec3)->Self{
Self{
x_axis,
y_axis,
z_axis,
}
}
pub const fn int_from_cols_array(array:[i32;9])->Self{
Self{
x_axis:Planar64Vec3::int(array[0],array[1],array[2]),
y_axis:Planar64Vec3::int(array[3],array[4],array[5]),
z_axis:Planar64Vec3::int(array[6],array[7],array[8]),
}
}
#[inline]
pub fn from_rotation_yx(yaw:Angle32,pitch:Angle32)->Self{
let xtheta=yaw.0 as f64*ANGLE32_TO_FLOAT64_RADIANS;
let (xs,xc)=xtheta.sin_cos();
let (xc,xs)=(xc*PLANAR64_ONE_FLOAT64,xs*PLANAR64_ONE_FLOAT64);
let ytheta=pitch.0 as f64*ANGLE32_TO_FLOAT64_RADIANS;
let (ys,yc)=ytheta.sin_cos();
let (yc,ys)=(yc*PLANAR64_ONE_FLOAT64,ys*PLANAR64_ONE_FLOAT64);
//TODO: fix this rounding towards 0
let (xc,xs):(i64,i64)=(unsafe{xc.to_int_unchecked()},unsafe{xs.to_int_unchecked()});
let (yc,ys):(i64,i64)=(unsafe{yc.to_int_unchecked()},unsafe{ys.to_int_unchecked()});
Self::from_cols(
Planar64Vec3(glam::i64vec3(xc,0,-xs)),
Planar64Vec3(glam::i64vec3(((xs as i128*ys as i128)>>32) as i64,yc,((xc as i128*ys as i128)>>32) as i64)),
Planar64Vec3(glam::i64vec3(((xs as i128*yc as i128)>>32) as i64,-ys,((xc as i128*yc as i128)>>32) as i64)),
)
}
#[inline]
pub fn from_rotation_y(angle:Angle32)->Self{
let theta=angle.0 as f64*ANGLE32_TO_FLOAT64_RADIANS;
let (s,c)=theta.sin_cos();
let (c,s)=(c*PLANAR64_ONE_FLOAT64,s*PLANAR64_ONE_FLOAT64);
//TODO: fix this rounding towards 0
let (c,s):(i64,i64)=(unsafe{c.to_int_unchecked()},unsafe{s.to_int_unchecked()});
Self::from_cols(
Planar64Vec3(glam::i64vec3(c,0,-s)),
Planar64Vec3::Y,
Planar64Vec3(glam::i64vec3(s,0,c)),
)
}
}
impl Into<glam::Mat3> for Planar64Mat3{
#[inline]
fn into(self)->glam::Mat3{
glam::Mat3::from_cols(
self.x_axis.into(),
self.y_axis.into(),
self.z_axis.into(),
)
}
}
impl TryFrom<glam::Mat3A> for Planar64Mat3{
type Error=Planar64TryFromFloatError;
#[inline]
fn try_from(value:glam::Mat3A)->Result<Self,Self::Error>{
Ok(Self{
x_axis:Planar64Vec3::try_from(value.x_axis)?,
y_axis:Planar64Vec3::try_from(value.y_axis)?,
z_axis:Planar64Vec3::try_from(value.z_axis)?,
})
}
}
impl std::fmt::Display for Planar64Mat3{
fn fmt(&self,f:&mut std::fmt::Formatter<'_>)->std::fmt::Result{
write!(f,"\n{:.3},{:.3},{:.3}\n{:.3},{:.3},{:.3}\n{:.3},{:.3},{:.3}",
Into::<f32>::into(self.x_axis.x()),Into::<f32>::into(self.x_axis.y()),Into::<f32>::into(self.x_axis.z()),
Into::<f32>::into(self.y_axis.x()),Into::<f32>::into(self.y_axis.y()),Into::<f32>::into(self.y_axis.z()),
Into::<f32>::into(self.z_axis.x()),Into::<f32>::into(self.z_axis.y()),Into::<f32>::into(self.z_axis.z()),
)
}
}
impl std::ops::Div<i64> for Planar64Mat3{
type Output=Planar64Mat3;
#[inline]
fn div(self,rhs:i64)->Self::Output{
Planar64Mat3{
x_axis:self.x_axis/rhs,
y_axis:self.y_axis/rhs,
z_axis:self.z_axis/rhs,
}
}
}
///[-1.0,1.0] = [-2^32,2^32]
#[derive(Clone,Copy,Default)]
pub struct Planar64Affine3{
pub matrix3:Planar64Mat3,//includes scale above 1
pub translation:Planar64Vec3,
}
impl Planar64Affine3{
#[inline]
pub fn new(matrix3:Planar64Mat3,translation:Planar64Vec3)->Self{
Self{matrix3,translation}
}
#[inline]
pub fn transform_point3(&self,point:Planar64Vec3) -> Planar64Vec3{
Planar64Vec3(
self.translation.0
+(self.matrix3.x_axis*point.x()).0
+(self.matrix3.y_axis*point.y()).0
+(self.matrix3.z_axis*point.z()).0
)
}
}
impl Into<glam::Mat4> for Planar64Affine3{
#[inline]
fn into(self)->glam::Mat4{
glam::Mat4::from_cols_array(&[
self.matrix3.x_axis.0.x as f32,self.matrix3.x_axis.0.y as f32,self.matrix3.x_axis.0.z as f32,0.0,
self.matrix3.y_axis.0.x as f32,self.matrix3.y_axis.0.y as f32,self.matrix3.y_axis.0.z as f32,0.0,
self.matrix3.z_axis.0.x as f32,self.matrix3.z_axis.0.y as f32,self.matrix3.z_axis.0.z as f32,0.0,
self.translation.0.x as f32,self.translation.0.y as f32,self.translation.0.z as f32,PLANAR64_ONE_FLOAT32
])*PLANAR64_CONVERT_TO_FLOAT32
}
}
impl TryFrom<glam::Affine3A> for Planar64Affine3{
type Error=Planar64TryFromFloatError;
fn try_from(value: glam::Affine3A)->Result<Self, Self::Error> {
Ok(Self{
matrix3:Planar64Mat3::try_from(value.matrix3)?,
translation:Planar64Vec3::try_from(value.translation)?
})
}
}
impl std::fmt::Display for Planar64Affine3{
fn fmt(&self,f:&mut std::fmt::Formatter<'_>)->std::fmt::Result{
write!(f,"translation: {:.3},{:.3},{:.3}\nmatrix3:\n{:.3},{:.3},{:.3}\n{:.3},{:.3},{:.3}\n{:.3},{:.3},{:.3}",
Into::<f32>::into(self.translation.x()),Into::<f32>::into(self.translation.y()),Into::<f32>::into(self.translation.z()),
Into::<f32>::into(self.matrix3.x_axis.x()),Into::<f32>::into(self.matrix3.x_axis.y()),Into::<f32>::into(self.matrix3.x_axis.z()),
Into::<f32>::into(self.matrix3.y_axis.x()),Into::<f32>::into(self.matrix3.y_axis.y()),Into::<f32>::into(self.matrix3.y_axis.z()),
Into::<f32>::into(self.matrix3.z_axis.x()),Into::<f32>::into(self.matrix3.z_axis.y()),Into::<f32>::into(self.matrix3.z_axis.z()),
)
}
}
#[test]
fn test_sqrt(){
let r=Planar64::int(400);
println!("r{}",r.get());
let s=r.sqrt();
println!("s{}",s.get());
}

View File

@ -1,232 +0,0 @@
use strafesnet_common::integer;
const VALVE_SCALE:f32=1.0/16.0;
fn valve_transform(v:[f32;3])->integer::Planar64Vec3{
integer::Planar64Vec3::try_from([v[0]*VALVE_SCALE,v[2]*VALVE_SCALE,-v[1]*VALVE_SCALE]).unwrap()
}
pub fn generate_indexed_models<R:std::io::Read+std::io::Seek>(input:&mut R)->Result<crate::model::IndexedModelInstances,vbsp::BspError>{
let mut s=Vec::new();
match input.read_to_end(&mut s){
Ok(_)=>(),
Err(e)=>println!("load_bsp::generate_indexed_models read_to_end failed: {:?}",e),
}
match vbsp::Bsp::read(s.as_slice()){
Ok(bsp)=>{
let mut spawn_point=integer::Planar64Vec3::ZERO;
let mut name_from_texture_id=Vec::new();
let mut texture_id_from_name=std::collections::HashMap::new();
let mut models=bsp.models().map(|world_model|{
//non-deduplicated
let mut spam_pos=Vec::new();
let mut spam_tex=Vec::new();
let mut spam_normal=Vec::new();
let mut spam_vertices=Vec::new();
let groups=world_model.faces()
.filter(|face| face.is_visible())//TODO: look at this
.map(|face|{
let face_texture=face.texture();
let face_texture_data=face_texture.texture_data();
let (texture_u,texture_v)=(glam::Vec3A::from_slice(&face_texture.texture_transforms_u[0..3]),glam::Vec3A::from_slice(&face_texture.texture_transforms_v[0..3]));
let texture_offset=glam::vec2(face_texture.texture_transforms_u[3],face_texture.texture_transforms_v[3]);
let texture_size=glam::vec2(face_texture_data.width as f32,face_texture_data.height as f32);
//texture
let texture_id=if let Some(&texture_id)=texture_id_from_name.get(face_texture_data.name()){
texture_id
}else{
let texture_id=name_from_texture_id.len() as u32;
texture_id_from_name.insert(face_texture_data.name().to_string(),texture_id);
name_from_texture_id.push(face_texture_data.name().to_string());
texture_id
};
//normal
let normal=face.normal();
let normal_idx=spam_normal.len() as u32;
spam_normal.push(valve_transform(<[f32;3]>::from(normal)));
let mut vertices:Vec<u32>=face.vertex_positions().map(|vertex_pos|{
let vertex_xyz=<[f32;3]>::from(vertex_pos);
let pos=glam::Vec3A::from_array(vertex_xyz);
let pos_idx=spam_pos.len();
spam_pos.push(valve_transform(vertex_xyz));
//calculate texture coordinates
let tex=(glam::vec2(pos.dot(texture_u),pos.dot(texture_v))+texture_offset)/texture_size;
let tex_idx=spam_tex.len() as u32;
spam_tex.push(tex);
let i=spam_vertices.len() as u32;
spam_vertices.push(crate::model::IndexedVertex{
pos: pos_idx as u32,
tex: tex_idx as u32,
normal: normal_idx,
color: 0,
});
i
}).collect();
vertices.reverse();
crate::model::IndexedGroup{
texture:Some(texture_id),
polys:vec![crate::model::IndexedPolygon{vertices}],
}
}).collect();
crate::model::IndexedModel{
unique_pos:spam_pos,
unique_tex:spam_tex,
unique_normal:spam_normal,
unique_color:vec![glam::Vec4::ONE],
unique_vertices:spam_vertices,
groups,
instances:vec![crate::model::ModelInstance{
attributes:crate::model::CollisionAttributes::Decoration,
transform:integer::Planar64Affine3::new(
integer::Planar64Mat3::default(),
valve_transform(<[f32;3]>::from(world_model.origin))
),
..Default::default()
}],
}
}).collect();
//dedupe prop models
let mut model_dedupe=std::collections::HashSet::new();
for prop in bsp.static_props(){
model_dedupe.insert(prop.model());
}
//generate unique meshes
let mut model_map=std::collections::HashMap::with_capacity(model_dedupe.len());
let mut prop_models=Vec::new();
for model_name in model_dedupe{
let model_name_lower=model_name.to_lowercase();
//.mdl, .vvd, .dx90.vtx
let mut path=std::path::PathBuf::from(model_name_lower.as_str());
let file_name=std::path::PathBuf::from(path.file_stem().unwrap());
path.pop();
path.push(file_name);
let mut vvd_path=path.clone();
let mut vtx_path=path.clone();
vvd_path.set_extension("vvd");
vtx_path.set_extension("dx90.vtx");
match (bsp.pack.get(model_name_lower.as_str()),bsp.pack.get(vvd_path.as_os_str().to_str().unwrap()),bsp.pack.get(vtx_path.as_os_str().to_str().unwrap())){
(Ok(Some(mdl_file)),Ok(Some(vvd_file)),Ok(Some(vtx_file)))=>{
match (vmdl::mdl::Mdl::read(mdl_file.as_ref()),vmdl::vvd::Vvd::read(vvd_file.as_ref()),vmdl::vtx::Vtx::read(vtx_file.as_ref())){
(Ok(mdl),Ok(vvd),Ok(vtx))=>{
let model=vmdl::Model::from_parts(mdl,vtx,vvd);
let texture_paths=model.texture_directories();
if texture_paths.len()!=1{
println!("WARNING: multiple texture paths");
}
let skin=model.skin_tables().nth(0).unwrap();
let mut spam_pos=Vec::with_capacity(model.vertices().len());
let mut spam_normal=Vec::with_capacity(model.vertices().len());
let mut spam_tex=Vec::with_capacity(model.vertices().len());
let mut spam_vertices=Vec::with_capacity(model.vertices().len());
for (i,vertex) in model.vertices().iter().enumerate(){
spam_pos.push(valve_transform(<[f32;3]>::from(vertex.position)));
spam_normal.push(valve_transform(<[f32;3]>::from(vertex.normal)));
spam_tex.push(glam::Vec2::from_array(vertex.texture_coordinates));
spam_vertices.push(crate::model::IndexedVertex{
pos:i as u32,
tex:i as u32,
normal:i as u32,
color:0,
});
}
let model_id=prop_models.len();
model_map.insert(model_name,model_id);
prop_models.push(crate::model::IndexedModel{
unique_pos:spam_pos,
unique_normal:spam_normal,
unique_tex:spam_tex,
unique_color:vec![glam::Vec4::ONE],
unique_vertices:spam_vertices,
groups:model.meshes().map(|mesh|{
let texture=if let (Some(texture_path),Some(texture_name))=(texture_paths.get(0),skin.texture(mesh.material_index())){
let mut path=std::path::PathBuf::from(texture_path.as_str());
path.push(texture_name);
let texture_location=path.as_os_str().to_str().unwrap();
let texture_id=if let Some(&texture_id)=texture_id_from_name.get(texture_location){
texture_id
}else{
println!("texture! {}",texture_location);
let texture_id=name_from_texture_id.len() as u32;
texture_id_from_name.insert(texture_location.to_string(),texture_id);
name_from_texture_id.push(texture_location.to_string());
texture_id
};
Some(texture_id)
}else{
None
};
crate::model::IndexedGroup{
texture,
polys:{
//looking at the code, it would seem that the strips are pre-deindexed into triangle lists when calling this function
mesh.vertex_strip_indices().map(|strip|{
strip.collect::<Vec<usize>>().chunks(3).map(|tri|{
crate::model::IndexedPolygon{vertices:vec![tri[0] as u32,tri[1] as u32,tri[2] as u32]}
}).collect::<Vec<crate::model::IndexedPolygon>>()
}).flatten().collect()
},
}
}).collect(),
instances:Vec::new(),
});
},
_=>println!("model_name={} error",model_name),
}
},
_=>println!("no model name={}",model_name),
}
}
//generate model instances
for prop in bsp.static_props(){
let placement=prop.as_prop_placement();
if let Some(&model_index)=model_map.get(placement.model){
prop_models[model_index].instances.push(crate::model::ModelInstance{
transform:integer::Planar64Affine3::new(
integer::Planar64Mat3::try_from(
glam::Mat3A::from_diagonal(glam::Vec3::splat(placement.scale))
//TODO: figure this out
*glam::Mat3A::from_quat(glam::Quat::from_xyzw(
placement.rotation.v.x,//b
placement.rotation.v.y,//c
placement.rotation.v.z,//d
placement.rotation.s,//a
))
).unwrap(),
valve_transform(<[f32;3]>::from(placement.origin)),
),
attributes:crate::model::CollisionAttributes::Decoration,
..Default::default()
});
}else{
//println!("model not found {}",placement.model);
}
}
//actually add the prop models
prop_models.append(&mut models);
Ok(crate::model::IndexedModelInstances{
textures:name_from_texture_id,
models:prop_models,
spawn_point,
modes:Vec::new(),
})
},
Err(e)=>{
println!("rotten {:?}",e);
Err(e)
},
}
}

View File

@ -1,5 +1,5 @@
use crate::primitives;
use strafesnet_common::integer::{Planar64,Planar64Vec3,Planar64Mat3,Planar64Affine3};
use crate::integer::{Planar64,Planar64Vec3,Planar64Mat3,Planar64Affine3};
fn class_is_a(class: &str, superclass: &str) -> bool {
if class==superclass {
@ -14,18 +14,23 @@ fn class_is_a(class: &str, superclass: &str) -> bool {
return false
}
fn recursive_collect_superclass(objects: &mut std::vec::Vec<rbx_dom_weak::types::Ref>,dom: &rbx_dom_weak::WeakDom, instance: &rbx_dom_weak::Instance, superclass: &str){
let mut stack=vec![instance];
while let Some(item)=stack.pop(){
for &referent in item.children(){
if let Some(c)=dom.get_by_ref(referent){
if class_is_a(c.class.as_str(),superclass){
objects.push(c.referent());//copy ref
}
stack.push(c);
for &referent in instance.children() {
if let Some(c) = dom.get_by_ref(referent) {
if class_is_a(c.class.as_str(), superclass) {
objects.push(c.referent());//copy ref
}
recursive_collect_superclass(objects,dom,c,superclass);
}
}
}
fn get_texture_refs(dom:&rbx_dom_weak::WeakDom) -> Vec<rbx_dom_weak::types::Ref>{
let mut objects = std::vec::Vec::new();
recursive_collect_superclass(&mut objects, dom, dom.root(),"Decal");
//get ids
//clear vec
//next class
objects
}
fn planar64_affine3_from_roblox(cf:&rbx_dom_weak::types::CFrame,size:&rbx_dom_weak::types::Vector3)->Planar64Affine3{
Planar64Affine3::new(
Planar64Mat3::from_cols(
@ -48,19 +53,13 @@ fn get_attributes(name:&str,can_collide:bool,velocity:Planar64Vec3,force_interse
"Water"=>{
force_can_collide=false;
//TODO: read stupid CustomPhysicalProperties
intersecting.water=Some(crate::model::IntersectingWater{density:Planar64::ONE,viscosity:Planar64::ONE/10,velocity});
intersecting.water=Some(crate::model::IntersectingWater{density:Planar64::ONE,viscosity:Planar64::ONE/10,current:velocity});
},
"Accelerator"=>{
//although the new game supports collidable accelerators, this is a roblox compatability map loader
force_can_collide=false;
general.accelerator=Some(crate::model::GameMechanicAccelerator{acceleration:velocity});
},
// "UnorderedCheckpoint"=>general.teleport_behaviour=Some(crate::model::TeleportBehaviour::StageElement(crate::model::GameMechanicStageElement{
// mode_id:0,
// stage_id:0,
// force:false,
// behaviour:crate::model::StageElementBehaviour::Unordered
// })),
"SetVelocity"=>general.trajectory=Some(crate::model::GameMechanicSetTrajectory::Velocity(velocity)),
"MapFinish"=>{force_can_collide=false;general.zone=Some(crate::model::GameMechanicZone{mode_id:0,behaviour:crate::model::ZoneBehaviour::Finish})},
"MapAnticheat"=>{force_can_collide=false;general.zone=Some(crate::model::GameMechanicZone{mode_id:0,behaviour:crate::model::ZoneBehaviour::Anitcheat})},
@ -120,13 +119,6 @@ fn get_attributes(name:&str,can_collide:bool,velocity:Planar64Vec3,force_interse
_=>panic!("regex3[1] messed up bad"),
}
}
// else if let Some(captures)=lazy_regex::regex!(r"^(OrderedCheckpoint)(\d+)$")
// .captures(other){
// match &captures[1]{
// "OrderedCheckpoint"=>general.checkpoint=Some(crate::model::GameMechanicCheckpoint::Ordered{mode_id:0,checkpoint_id:captures[2].parse::<u32>().unwrap()}),
// _=>panic!("regex3[1] messed up bad"),
// }
// }
}
}
//need some way to skip this
@ -226,9 +218,9 @@ type RobloxWedgeDescription=[Option<RobloxFaceTextureDescription>;5];
type RobloxCornerWedgeDescription=[Option<RobloxFaceTextureDescription>;5];
#[derive(Clone,Eq,Hash,PartialEq)]
enum RobloxBasePartDescription{
Sphere(RobloxPartDescription),
Sphere,
Part(RobloxPartDescription),
Cylinder(RobloxPartDescription),
Cylinder,
Wedge(RobloxWedgeDescription),
CornerWedge(RobloxCornerWedgeDescription),
}
@ -265,18 +257,6 @@ pub fn generate_indexed_models(dom:rbx_dom_weak::WeakDom) -> crate::model::Index
{
let model_transform=planar64_affine3_from_roblox(cf,size);
if model_transform.matrix3.determinant()==Planar64::ZERO{
let mut parent_ref=object.parent();
let mut full_path=object.name.clone();
while let Some(parent)=dom.get_by_ref(parent_ref){
full_path=format!("{}.{}",parent.name,full_path);
parent_ref=parent.parent();
}
println!("Zero determinant CFrame at location {}",full_path);
println!("matrix3:{}",model_transform.matrix3);
continue;
}
//push TempIndexedAttributes
let mut force_intersecting=false;
let mut temp_indexing_attributes=Vec::new();
@ -285,12 +265,14 @@ pub fn generate_indexed_models(dom:rbx_dom_weak::WeakDom) -> crate::model::Index
spawn_point=model_transform.transform_point3(Planar64Vec3::ZERO)+Planar64Vec3::Y*5/2;
Some(crate::model::TempIndexedAttributes::Start(crate::model::TempAttrStart{mode_id:0}))
},
"UnorderedCheckpoint"=>Some(crate::model::TempIndexedAttributes::UnorderedCheckpoint(crate::model::TempAttrUnorderedCheckpoint{mode_id:0})),
other=>{
let regman=lazy_regex::regex!(r"^(BonusStart|Spawn|ForceSpawn|WormholeOut)(\d+)$");
let regman=lazy_regex::regex!(r"^(BonusStart|Spawn|ForceSpawn|OrderedCheckpoint|WormholeOut)(\d+)$");
if let Some(captures) = regman.captures(other) {
match &captures[1]{
"BonusStart"=>Some(crate::model::TempIndexedAttributes::Start(crate::model::TempAttrStart{mode_id:captures[2].parse::<u32>().unwrap()})),
"Spawn"|"ForceSpawn"=>Some(crate::model::TempIndexedAttributes::Spawn(crate::model::TempAttrSpawn{mode_id:0,stage_id:captures[2].parse::<u32>().unwrap()})),
"OrderedCheckpoint"=>Some(crate::model::TempIndexedAttributes::OrderedCheckpoint(crate::model::TempAttrOrderedCheckpoint{mode_id:0,checkpoint_id:captures[2].parse::<u32>().unwrap()})),
"WormholeOut"=>Some(crate::model::TempIndexedAttributes::Wormhole(crate::model::TempAttrWormhole{wormhole_id:captures[2].parse::<u32>().unwrap()})),
_=>None,
}
@ -319,7 +301,6 @@ pub fn generate_indexed_models(dom:rbx_dom_weak::WeakDom) -> crate::model::Index
panic!("Part has no Shape!");
}
},
"TrussPart"=>primitives::Primitives::Cube,
"WedgePart"=>primitives::Primitives::Wedge,
"CornerWedgePart"=>primitives::Primitives::CornerWedge,
_=>{
@ -414,9 +395,9 @@ pub fn generate_indexed_models(dom:rbx_dom_weak::WeakDom) -> crate::model::Index
f5,//Cube::Front
]=part_texture_description;
let basepart_texture_description=match shape{
primitives::Primitives::Sphere=>RobloxBasePartDescription::Sphere([f0,f1,f2,f3,f4,f5]),
primitives::Primitives::Sphere=>RobloxBasePartDescription::Sphere,
primitives::Primitives::Cube=>RobloxBasePartDescription::Part([f0,f1,f2,f3,f4,f5]),
primitives::Primitives::Cylinder=>RobloxBasePartDescription::Cylinder([f0,f1,f2,f3,f4,f5]),
primitives::Primitives::Cylinder=>RobloxBasePartDescription::Cylinder,
//use front face texture first and use top face texture as a fallback
primitives::Primitives::Wedge=>RobloxBasePartDescription::Wedge([
f0,//Cube::Right->Wedge::Right
@ -442,10 +423,9 @@ pub fn generate_indexed_models(dom:rbx_dom_weak::WeakDom) -> crate::model::Index
let model_id=indexed_models.len();
model_id_from_description.insert(basepart_texture_description.clone(),model_id);//borrow checker going crazy
indexed_models.push(match basepart_texture_description{
RobloxBasePartDescription::Sphere(part_texture_description)
|RobloxBasePartDescription::Cylinder(part_texture_description)
|RobloxBasePartDescription::Part(part_texture_description)=>{
let mut cube_face_description=primitives::CubeFaceDescription::default();
RobloxBasePartDescription::Sphere=>primitives::unit_sphere(),
RobloxBasePartDescription::Part(part_texture_description)=>{
let mut cube_face_description=primitives::CubeFaceDescription::new();
for (face_id,roblox_face_description) in part_texture_description.iter().enumerate(){
cube_face_description.insert(
match face_id{
@ -464,8 +444,9 @@ pub fn generate_indexed_models(dom:rbx_dom_weak::WeakDom) -> crate::model::Index
}
primitives::generate_partial_unit_cube(cube_face_description)
},
RobloxBasePartDescription::Cylinder=>primitives::unit_cylinder(),
RobloxBasePartDescription::Wedge(wedge_texture_description)=>{
let mut wedge_face_description=primitives::WedgeFaceDescription::default();
let mut wedge_face_description=primitives::WedgeFaceDescription::new();
for (face_id,roblox_face_description) in wedge_texture_description.iter().enumerate(){
wedge_face_description.insert(
match face_id{
@ -484,7 +465,7 @@ pub fn generate_indexed_models(dom:rbx_dom_weak::WeakDom) -> crate::model::Index
primitives::generate_partial_unit_wedge(wedge_face_description)
},
RobloxBasePartDescription::CornerWedge(cornerwedge_texture_description)=>{
let mut cornerwedge_face_description=primitives::CornerWedgeFaceDescription::default();
let mut cornerwedge_face_description=primitives::CornerWedgeFaceDescription::new();
for (face_id,roblox_face_description) in cornerwedge_texture_description.iter().enumerate(){
cornerwedge_face_description.insert(
match face_id{

View File

@ -1,21 +1,42 @@
use strafesnet_common::integer;
use std::time::Instant;
use physics::PhysicsInstruction;
use render_thread::InputInstruction;
use instruction::{TimedInstruction, InstructionConsumer};
mod bvh;
mod aabb;
mod model;
mod setup;
mod window;
mod worker;
mod zeroes;
mod integer;
mod physics;
mod graphics;
mod settings;
mod primitives;
mod load_bsp;
mod instruction;
mod load_roblox;
mod face_crawler;
mod compat_worker;
mod model_physics;
mod render_thread;
mod model_graphics;
mod physics_worker;
mod graphics_worker;
mod graphics_context;
pub struct GlobalState{
start_time: std::time::Instant,
manual_mouse_lock:bool,
mouse:std::sync::Arc<std::sync::Mutex<physics::MouseState>>,
user_settings:settings::UserSettings,
//Ideally the graphics thread worker description is:
/*
WorkerDescription{
input:Immediate,
output:Realtime(PoolOrdering::Ordered(3)),
}
*/
//up to three frames in flight, dropping new frame requests when all three are busy, and dropping output frames when one renders out of order
graphics_thread:worker::INWorker<graphics::GraphicsInstruction>,
physics_thread:worker::QNWorker<TimedInstruction<InputInstruction>>,
}
fn load_file(path: std::path::PathBuf)->Option<model::IndexedModelInstances>{
println!("Loading file: {:?}", &path);
@ -44,7 +65,7 @@ fn load_file(path: std::path::PathBuf)->Option<model::IndexedModelInstances>{
},
}
},
b"VBSP"=>load_bsp::generate_indexed_models(&mut input).ok(),
//b"VBSP"=>Some(load_bsp::generate_indexed_models(input)),
//b"SNFM"=>Some(sniffer::generate_indexed_models(input)),
//b"SNFB"=>Some(sniffer::load_bot(input)),
other=>{
@ -62,46 +83,51 @@ fn load_file(path: std::path::PathBuf)->Option<model::IndexedModelInstances>{
}
}
pub fn default_models()->model::IndexedModelInstances{
fn default_models()->model::IndexedModelInstances{
let mut indexed_models = Vec::new();
indexed_models.append(&mut model::generate_indexed_model_list_from_obj(obj::ObjData::load_buf(&include_bytes!("../models/teslacyberv3.0.obj")[..]).unwrap(),glam::Vec4::ONE));
indexed_models.push(primitives::unit_sphere());
indexed_models.push(primitives::unit_cylinder());
indexed_models.push(primitives::unit_cube());
println!("models.len = {:?}", indexed_models.len());
//quad monkeys
indexed_models[0].instances.push(model::ModelInstance{
transform:integer::Planar64Affine3::try_from(glam::Affine3A::from_translation(glam::vec3(10.,0.,-10.))).unwrap(),
..Default::default()
});
//quad monkeys
indexed_models[1].instances.push(model::ModelInstance{
transform:integer::Planar64Affine3::try_from(glam::Affine3A::from_translation(glam::vec3(10.,5.,10.))).unwrap(),
..Default::default()
});
indexed_models[0].instances.push(model::ModelInstance{
indexed_models[1].instances.push(model::ModelInstance{
transform:integer::Planar64Affine3::try_from(glam::Affine3A::from_translation(glam::vec3(20.,5.,10.))).unwrap(),
color:glam::vec4(1.0,0.0,0.0,1.0),
..Default::default()
});
indexed_models[0].instances.push(model::ModelInstance{
indexed_models[1].instances.push(model::ModelInstance{
transform:integer::Planar64Affine3::try_from(glam::Affine3A::from_translation(glam::vec3(10.,5.,20.))).unwrap(),
color:glam::vec4(0.0,1.0,0.0,1.0),
..Default::default()
});
indexed_models[0].instances.push(model::ModelInstance{
indexed_models[1].instances.push(model::ModelInstance{
transform:integer::Planar64Affine3::try_from(glam::Affine3A::from_translation(glam::vec3(20.,5.,20.))).unwrap(),
color:glam::vec4(0.0,0.0,1.0,1.0),
..Default::default()
});
//decorative monkey
indexed_models[0].instances.push(model::ModelInstance{
indexed_models[1].instances.push(model::ModelInstance{
transform:integer::Planar64Affine3::try_from(glam::Affine3A::from_translation(glam::vec3(15.,10.,15.))).unwrap(),
color:glam::vec4(0.5,0.5,0.5,0.5),
attributes:model::CollisionAttributes::Decoration,
..Default::default()
});
//teapot
indexed_models[1].instances.push(model::ModelInstance{
indexed_models[2].instances.push(model::ModelInstance{
transform:integer::Planar64Affine3::try_from(glam::Affine3A::from_scale_rotation_translation(glam::vec3(0.5, 1.0, 0.2),glam::quat(-0.22248298016985793,-0.839457167990537,-0.05603504040830783,-0.49261857546227916),glam::vec3(-10.,7.,10.))).unwrap(),
..Default::default()
});
//ground
indexed_models[2].instances.push(model::ModelInstance{
indexed_models[3].instances.push(model::ModelInstance{
transform:integer::Planar64Affine3::try_from(glam::Affine3A::from_translation(glam::vec3(0.,0.,0.))*glam::Affine3A::from_scale(glam::vec3(160.0, 1.0, 160.0))).unwrap(),
..Default::default()
});
@ -113,6 +139,49 @@ pub fn default_models()->model::IndexedModelInstances{
}
}
fn main(){
setup::setup_and_start(format!("Strafe Client v{}",env!("CARGO_PKG_VERSION")));
impl GlobalState {
fn init() -> Self {
//wee
let user_settings=settings::read_user_settings();
let mut graphics=GraphicsState::new();
graphics.load_user_settings(&user_settings);
//how to multithread
//1. build
physics.generate_models(&indexed_model_instances);
//2. move
let physics_thread=physics.into_worker();
//3. forget
let mut state=GlobalState{
start_time:Instant::now(),
manual_mouse_lock:false,
mouse:physics::MouseState::default(),
user_settings,
graphics,
physics_thread,
};
state.generate_model_graphics(&device,&queue,indexed_model_instances);
let args:Vec<String>=std::env::args().collect();
if args.len()==2{
let indexed_model_instances=load_file(std::path::PathBuf::from(&args[1]));
state.render_thread=RenderThread::new(user_settings,indexed_model_instances);
}
return state;
}
}
fn main(){
let title=format!("Strafe Client v{}",env!("CARGO_PKG_VERSION")).as_str();
let context=graphics_context::setup(title);
let global_state=GlobalState::init();//new
global_state.replace_models(&context,default_models());
context.start(global_state);
}

View File

@ -1,4 +1,4 @@
use strafesnet_common::integer::{Time,Planar64,Planar64Vec3,Planar64Affine3};
use crate::integer::{Time,Planar64,Planar64Vec3,Planar64Affine3};
pub type TextureCoordinate=glam::Vec2;
pub type Color4=glam::Vec4;
#[derive(Clone,Hash,PartialEq,Eq)]
@ -50,10 +50,10 @@ pub struct IndexedModelInstances{
}
//stage description referencing flattened ids is spooky, but the map loading is meant to be deterministic.
pub struct ModeDescription{
//TODO: put "default" style modifiers in mode
//pub style:StyleModifiers,
pub start:usize,//start=model_id
pub spawns:Vec<usize>,//spawns[spawn_id]=model_id
pub ordered_checkpoints:Vec<usize>,//ordered_checkpoints[checkpoint_id]=model_id
pub unordered_checkpoints:Vec<usize>,//unordered_checkpoints[checkpoint_id]=model_id
pub spawn_from_stage_id:std::collections::HashMap::<u32,usize>,
pub ordered_checkpoint_from_checkpoint_id:std::collections::HashMap::<u32,usize>,
}
@ -61,6 +61,9 @@ impl ModeDescription{
pub fn get_spawn_model_id(&self,stage_id:u32)->Option<&usize>{
self.spawns.get(*self.spawn_from_stage_id.get(&stage_id)?)
}
pub fn get_ordered_checkpoint_model_id(&self,checkpoint_id:u32)->Option<&usize>{
self.ordered_checkpoints.get(*self.ordered_checkpoint_from_checkpoint_id.get(&checkpoint_id)?)
}
}
//I don't want this code to exist!
#[derive(Clone)]
@ -73,88 +76,84 @@ pub struct TempAttrSpawn{
pub stage_id:u32,
}
#[derive(Clone)]
pub struct TempAttrOrderedCheckpoint{
pub mode_id:u32,
pub checkpoint_id:u32,
}
#[derive(Clone)]
pub struct TempAttrUnorderedCheckpoint{
pub mode_id:u32,
}
#[derive(Clone)]
pub struct TempAttrWormhole{
pub wormhole_id:u32,
}
pub enum TempIndexedAttributes{
Start(TempAttrStart),
Spawn(TempAttrSpawn),
OrderedCheckpoint(TempAttrOrderedCheckpoint),
UnorderedCheckpoint(TempAttrUnorderedCheckpoint),
Wormhole(TempAttrWormhole),
}
//you have this effect while in contact
#[derive(Clone,Hash,Eq,PartialEq)]
#[derive(Clone)]
pub struct ContactingLadder{
pub sticky:bool
}
#[derive(Clone,Hash,Eq,PartialEq)]
#[derive(Clone)]
pub enum ContactingBehaviour{
Surf,
Cling,//usable as a zipline, or other weird and wonderful things
Ladder(ContactingLadder),
Elastic(u32),//[1/2^32,1] 0=None (elasticity+1)/2^32
Surf,
Ladder(ContactingLadder),
Elastic(u32),//[1/2^32,1] 0=None (elasticity+1)/2^32
}
//you have this effect while intersecting
#[derive(Clone,Hash,Eq,PartialEq)]
#[derive(Clone)]
pub struct IntersectingWater{
pub viscosity:Planar64,
pub density:Planar64,
pub velocity:Planar64Vec3,
pub current:Planar64Vec3,
}
//All models can be given these attributes
#[derive(Clone,Hash,Eq,PartialEq)]
#[derive(Clone)]
pub struct GameMechanicAccelerator{
pub acceleration:Planar64Vec3
}
#[derive(Clone,Hash,Eq,PartialEq)]
#[derive(Clone)]
pub enum GameMechanicBooster{
Affine(Planar64Affine3),//capable of SetVelocity,DotVelocity,normal booster,bouncy part,redirect velocity, and much more
Velocity(Planar64Vec3),//straight up boost velocity adds to your current velocity
Energy{direction:Planar64Vec3,energy:Planar64},//increase energy in direction
}
#[derive(Clone,Hash,Eq,PartialEq)]
#[derive(Clone)]
pub enum TrajectoryChoice{
HighArcLongDuration,//underhand lob at target: less horizontal speed and more air time
LowArcShortDuration,//overhand throw at target: more horizontal speed and less air time
}
#[derive(Clone,Hash,Eq,PartialEq)]
#[derive(Clone)]
pub enum GameMechanicSetTrajectory{
//Speed-type SetTrajectory
AirTime(Time),//air time (relative to gravity direction) is invariant across mass and gravity changes
Height(Planar64),//boost height (relative to gravity direction) is invariant across mass and gravity changes
DotVelocity{direction:Planar64Vec3,dot:Planar64},//set your velocity in a specific direction without touching other directions
//Velocity-type SetTrajectory
TargetPointTime{//launch on a trajectory that will land at a target point in a set amount of time
target_point:Planar64Vec3,
time:Time,//short time = fast and direct, long time = launch high in the air, negative time = wrong way
},
TargetPointSpeed{//launch at a fixed speed and land at a target point
TrajectoryTargetPoint{//launch at a fixed speed and land at a target point
target_point:Planar64Vec3,
speed:Planar64,//if speed is too low this will fail to reach the target. The closest-passing trajectory will be chosen instead
trajectory_choice:TrajectoryChoice,
},
Velocity(Planar64Vec3),//SetVelocity
DotVelocity{direction:Planar64Vec3,dot:Planar64},//set your velocity in a specific direction without touching other directions
}
impl GameMechanicSetTrajectory{
fn is_velocity(&self)->bool{
match self{
GameMechanicSetTrajectory::AirTime(_)
|GameMechanicSetTrajectory::Height(_)
|GameMechanicSetTrajectory::DotVelocity{direction:_,dot:_}=>false,
GameMechanicSetTrajectory::TargetPointTime{target_point:_,time:_}
|GameMechanicSetTrajectory::TargetPointSpeed{target_point:_,speed:_,trajectory_choice:_}
|GameMechanicSetTrajectory::Velocity(_)=>true,
}
}
}
#[derive(Clone,Hash,Eq,PartialEq)]
#[derive(Clone)]
pub enum ZoneBehaviour{
//Start is indexed
//Checkpoints are indexed
Finish,
Anitcheat,
}
#[derive(Clone,Hash,Eq,PartialEq)]
#[derive(Clone)]
pub struct GameMechanicZone{
pub mode_id:u32,
pub behaviour:ZoneBehaviour,
@ -165,36 +164,24 @@ pub struct GameMechanicZone{
// InRange(Planar64,Planar64),
// OutsideRange(Planar64,Planar64),
// }
#[derive(Clone,Hash,Eq,PartialEq)]
#[derive(Clone)]
pub enum StageElementBehaviour{
//Spawn,//The behaviour of stepping on a spawn setting the spawnid
SpawnAt,//must be standing on top to get effect. except cancollide false
Trigger,
Teleport,
Platform,
//Checkpoint acts like a trigger if you haven't hit all the checkpoints yet.
//Note that all stage elements act like this for the next stage.
Checkpoint,
//OrderedCheckpoint. You must pass through all of these in ascending order.
//If you hit them out of order it acts like a trigger.
//Do not support backtracking at all for now.
Ordered{
checkpoint_id:u32,
},
//UnorderedCheckpoint. You must pass through all of these in any order.
Unordered,
//If you get reset by a jump limit
JumpLimit(u32),
//Speedtrap(TrapCondition),//Acts as a trigger with a speed condition
//Spawn,//The behaviour of stepping on a spawn setting the spawnid
SpawnAt,
Trigger,
Teleport,
Platform,
JumpLimit(u32),
//Speedtrap(TrapCondition),//Acts as a trigger with a speed condition
}
#[derive(Clone,Hash,Eq,PartialEq)]
#[derive(Clone)]
pub struct GameMechanicStageElement{
pub mode_id:u32,
pub stage_id:u32,//which spawn to send to
pub force:bool,//allow setting to lower spawn id i.e. 7->3
pub behaviour:StageElementBehaviour
}
#[derive(Clone,Hash,Eq,PartialEq)]
#[derive(Clone)]
pub struct GameMechanicWormhole{
//destination does not need to be another wormhole
//this defines a one way portal to a destination model transform
@ -202,13 +189,13 @@ pub struct GameMechanicWormhole{
pub destination_model_id:u32,
//(position,angles)*=origin.transform.inverse()*destination.transform
}
#[derive(Clone,Hash,Eq,PartialEq)]
#[derive(Clone)]
pub enum TeleportBehaviour{
StageElement(GameMechanicStageElement),
Wormhole(GameMechanicWormhole),
}
//attributes listed in order of handling
#[derive(Default,Clone,Hash,Eq,PartialEq)]
#[derive(Default,Clone)]
pub struct GameMechanicAttributes{
pub zone:Option<GameMechanicZone>,
pub booster:Option<GameMechanicBooster>,
@ -218,28 +205,14 @@ pub struct GameMechanicAttributes{
}
impl GameMechanicAttributes{
pub fn any(&self)->bool{
self.zone.is_some()
||self.booster.is_some()
self.booster.is_some()
||self.trajectory.is_some()
||self.zone.is_some()
||self.teleport_behaviour.is_some()
||self.accelerator.is_some()
}
pub fn is_wrcp(&self,current_mode_id:u32)->bool{
self.trajectory.as_ref().map_or(false,|t|t.is_velocity())
&&match &self.teleport_behaviour{
Some(TeleportBehaviour::StageElement(
GameMechanicStageElement{
mode_id,
stage_id:_,
force:true,
behaviour:StageElementBehaviour::Trigger|StageElementBehaviour::Teleport
}
))=>current_mode_id==*mode_id,
_=>false,
}
}
}
#[derive(Default,Clone,Hash,Eq,PartialEq)]
#[derive(Default,Clone)]
pub struct ContactingAttributes{
//friction?
pub contact_behaviour:Option<ContactingBehaviour>,
@ -249,7 +222,7 @@ impl ContactingAttributes{
self.contact_behaviour.is_some()
}
}
#[derive(Default,Clone,Hash,Eq,PartialEq)]
#[derive(Default,Clone)]
pub struct IntersectingAttributes{
pub water:Option<IntersectingWater>,
}

View File

@ -11,7 +11,7 @@ pub struct GraphicsVertex {
pub struct IndexedGroupFixedTexture{
pub polys:Vec<IndexedPolygon>,
}
pub struct IndexedGraphicsModelSingleTexture{
pub struct IndexedModelGraphicsSingleTexture{
pub unique_pos:Vec<[f32; 3]>,
pub unique_tex:Vec<[f32; 2]>,
pub unique_normal:Vec<[f32; 3]>,
@ -19,41 +19,37 @@ pub struct IndexedGraphicsModelSingleTexture{
pub unique_vertices:Vec<IndexedVertex>,
pub texture:Option<u32>,//RenderPattern? material/texture/shader/flat color
pub groups: Vec<IndexedGroupFixedTexture>,
pub instances:Vec<GraphicsModelInstance>,
pub instances:Vec<ModelGraphicsInstance>,
}
pub enum Entities{
U32(Vec<Vec<u32>>),
U16(Vec<Vec<u16>>),
}
pub struct GraphicsModelSingleTexture{
pub instances:Vec<GraphicsModelInstance>,
pub vertices:Vec<GraphicsVertex>,
pub entities:Entities,
pub texture:Option<u32>,
pub struct ModelGraphicsSingleTexture{
pub instances: Vec<ModelGraphicsInstance>,
pub vertices: Vec<GraphicsVertex>,
pub entities: Vec<Vec<u16>>,
pub texture: Option<u32>,
}
#[derive(Clone,PartialEq)]
pub struct GraphicsModelColor4(glam::Vec4);
impl GraphicsModelColor4{
pub struct ModelGraphicsColor4(glam::Vec4);
impl ModelGraphicsColor4{
pub const fn get(&self)->glam::Vec4{
self.0
}
}
impl From<glam::Vec4> for GraphicsModelColor4{
impl From<glam::Vec4> for ModelGraphicsColor4{
fn from(value:glam::Vec4)->Self{
Self(value)
}
}
impl std::hash::Hash for GraphicsModelColor4{
impl std::hash::Hash for ModelGraphicsColor4{
fn hash<H: std::hash::Hasher>(&self,state:&mut H) {
for &f in self.0.as_ref(){
bytemuck::cast::<f32,u32>(f).hash(state);
}
}
}
impl Eq for GraphicsModelColor4{}
impl Eq for ModelGraphicsColor4{}
#[derive(Clone)]
pub struct GraphicsModelInstance{
pub struct ModelGraphicsInstance{
pub transform:glam::Mat4,
pub normal_transform:glam::Mat3,
pub color:GraphicsModelColor4,
}
pub color:ModelGraphicsColor4,
}

View File

@ -1,745 +1 @@
use std::borrow::{Borrow,Cow};
use strafesnet_common::zeroes;
use strafesnet_common::integer::{self,Planar64,Planar64Vec3};
#[derive(Debug,Clone,Copy,Hash,Eq,PartialEq)]
pub struct VertId(usize);
#[derive(Debug,Clone,Copy,Hash,Eq,PartialEq)]
pub struct EdgeId(usize);
pub trait UndirectedEdge{
type DirectedEdge:Copy+DirectedEdge;
fn as_directed(&self,parity:bool)->Self::DirectedEdge;
}
impl UndirectedEdge for EdgeId{
type DirectedEdge=DirectedEdgeId;
fn as_directed(&self,parity:bool)->DirectedEdgeId{
DirectedEdgeId(self.0|((parity as usize)<<(usize::BITS-1)))
}
}
pub trait DirectedEdge{
type UndirectedEdge:Copy+UndirectedEdge;
fn as_undirected(&self)->Self::UndirectedEdge;
fn parity(&self)->bool;
//this is stupid but may work fine
fn reverse(&self)-><<Self as DirectedEdge>::UndirectedEdge as UndirectedEdge>::DirectedEdge{
self.as_undirected().as_directed(!self.parity())
}
}
/// DirectedEdgeId refers to an EdgeId when undirected.
#[derive(Debug,Clone,Copy,Hash,Eq,PartialEq)]
pub struct DirectedEdgeId(usize);
impl DirectedEdge for DirectedEdgeId{
type UndirectedEdge=EdgeId;
fn as_undirected(&self)->EdgeId{
EdgeId(self.0&!(1<<(usize::BITS-1)))
}
fn parity(&self)->bool{
self.0&(1<<(usize::BITS-1))!=0
}
}
#[derive(Debug,Clone,Copy,Hash,Eq,PartialEq)]
pub struct FaceId(usize);
//Vertex <-> Edge <-> Face -> Collide
pub enum FEV<F,E:DirectedEdge,V>{
Face(F),
Edge(E::UndirectedEdge),
Vert(V),
}
//use Unit32 #[repr(C)] for map files
struct Face{
normal:Planar64Vec3,
dot:Planar64,
}
struct Vert(Planar64Vec3);
pub trait MeshQuery<FACE:Clone,EDGE:Clone+DirectedEdge,VERT:Clone>{
fn edge_n(&self,edge_id:EDGE::UndirectedEdge)->Planar64Vec3{
let verts=self.edge_verts(edge_id);
self.vert(verts[1].clone())-self.vert(verts[0].clone())
}
fn directed_edge_n(&self,directed_edge_id:EDGE)->Planar64Vec3{
let verts=self.edge_verts(directed_edge_id.as_undirected());
(self.vert(verts[1].clone())-self.vert(verts[0].clone()))*((directed_edge_id.parity() as i64)*2-1)
}
fn vert(&self,vert_id:VERT)->Planar64Vec3;
fn face_nd(&self,face_id:FACE)->(Planar64Vec3,Planar64);
fn face_edges(&self,face_id:FACE)->Cow<Vec<EDGE>>;
fn edge_faces(&self,edge_id:EDGE::UndirectedEdge)->Cow<[FACE;2]>;
fn edge_verts(&self,edge_id:EDGE::UndirectedEdge)->Cow<[VERT;2]>;
fn vert_edges(&self,vert_id:VERT)->Cow<Vec<EDGE>>;
fn vert_faces(&self,vert_id:VERT)->Cow<Vec<FACE>>;
}
struct FaceRefs{
edges:Vec<DirectedEdgeId>,
//verts:Vec<VertId>,
}
struct EdgeRefs{
faces:[FaceId;2],//left, right
verts:[VertId;2],//bottom, top
}
struct VertRefs{
faces:Vec<FaceId>,
edges:Vec<DirectedEdgeId>,
}
pub struct PhysicsMesh{
faces:Vec<Face>,
verts:Vec<Vert>,
face_topology:Vec<FaceRefs>,
edge_topology:Vec<EdgeRefs>,
vert_topology:Vec<VertRefs>,
}
#[derive(Default,Clone)]
struct VertRefGuy{
edges:std::collections::HashSet<DirectedEdgeId>,
faces:std::collections::HashSet<FaceId>,
}
#[derive(Clone,Hash,Eq,PartialEq)]
struct EdgeRefVerts([VertId;2]);
impl EdgeRefVerts{
fn new(v0:VertId,v1:VertId)->(Self,bool){
(if v0.0<v1.0{
Self([v0,v1])
}else{
Self([v1,v0])
},v0.0<v1.0)
}
}
struct EdgeRefFaces([FaceId;2]);
impl EdgeRefFaces{
fn new()->Self{
Self([FaceId(0);2])
}
fn push(&mut self,i:usize,face_id:FaceId){
self.0[i]=face_id;
}
}
struct FaceRefEdges(Vec<DirectedEdgeId>);
#[derive(Default)]
struct EdgePool{
edge_guys:Vec<(EdgeRefVerts,EdgeRefFaces)>,
edge_id_from_guy:std::collections::HashMap<EdgeRefVerts,usize>,
}
impl EdgePool{
fn push(&mut self,edge_ref_verts:EdgeRefVerts)->(&mut EdgeRefFaces,EdgeId){
let edge_id=if let Some(&edge_id)=self.edge_id_from_guy.get(&edge_ref_verts){
edge_id
}else{
let edge_id=self.edge_guys.len();
self.edge_guys.push((edge_ref_verts.clone(),EdgeRefFaces::new()));
self.edge_id_from_guy.insert(edge_ref_verts,edge_id);
edge_id
};
(&mut unsafe{self.edge_guys.get_unchecked_mut(edge_id)}.1,EdgeId(edge_id))
}
}
impl From<&crate::model::IndexedModel> for PhysicsMesh{
fn from(indexed_model:&crate::model::IndexedModel)->Self{
assert!(indexed_model.unique_pos.len()!=0,"Mesh cannot have 0 vertices");
let verts=indexed_model.unique_pos.iter().map(|v|Vert(v.clone())).collect();
let mut vert_ref_guys=vec![VertRefGuy::default();indexed_model.unique_pos.len()];
let mut edge_pool=EdgePool::default();
let mut face_i=0;
let mut faces=Vec::new();
let mut face_ref_guys=Vec::new();
for group in indexed_model.groups.iter(){for poly in group.polys.iter(){
let face_id=FaceId(face_i);
//one face per poly
let mut normal=Planar64Vec3::ZERO;
let len=poly.vertices.len();
let face_edges=poly.vertices.iter().enumerate().map(|(i,&vert_id)|{
let vert0_id=indexed_model.unique_vertices[vert_id as usize].pos as usize;
let vert1_id=indexed_model.unique_vertices[poly.vertices[(i+1)%len] as usize].pos as usize;
//https://www.khronos.org/opengl/wiki/Calculating_a_Surface_Normal (Newell's Method)
let v0=indexed_model.unique_pos[vert0_id];
let v1=indexed_model.unique_pos[vert1_id];
normal+=Planar64Vec3::new(
(v0.y()-v1.y())*(v0.z()+v1.z()),
(v0.z()-v1.z())*(v0.x()+v1.x()),
(v0.x()-v1.x())*(v0.y()+v1.y()),
);
//get/create edge and push face into it
let (edge_ref_verts,is_sorted)=EdgeRefVerts::new(VertId(vert0_id),VertId(vert1_id));
let (edge_ref_faces,edge_id)=edge_pool.push(edge_ref_verts);
//polygon vertices as assumed to be listed clockwise
//populate the edge face on the left or right depending on how the edge vertices got sorted
edge_ref_faces.push(!is_sorted as usize,face_id);
//index edges & face into vertices
{
let vert_ref_guy=unsafe{vert_ref_guys.get_unchecked_mut(vert0_id)};
vert_ref_guy.edges.insert(edge_id.as_directed(is_sorted));
vert_ref_guy.faces.insert(face_id);
unsafe{vert_ref_guys.get_unchecked_mut(vert1_id)}.edges.insert(edge_id.as_directed(!is_sorted));
}
//return directed_edge_id
edge_id.as_directed(is_sorted)
}).collect();
//choose precision loss randomly idk
normal=normal/len as i64;
let mut dot=Planar64::ZERO;
for &v in poly.vertices.iter(){
dot+=normal.dot(indexed_model.unique_pos[indexed_model.unique_vertices[v as usize].pos as usize]);
}
faces.push(Face{normal,dot:dot/len as i64});
face_ref_guys.push(FaceRefEdges(face_edges));
face_i+=1;
}}
//conceivably faces, edges, and vertices exist now
Self{
faces,
verts,
face_topology:face_ref_guys.into_iter().map(|face_ref_guy|{
FaceRefs{edges:face_ref_guy.0}
}).collect(),
edge_topology:edge_pool.edge_guys.into_iter().map(|(edge_ref_verts,edge_ref_faces)|
EdgeRefs{faces:edge_ref_faces.0,verts:edge_ref_verts.0}
).collect(),
vert_topology:vert_ref_guys.into_iter().map(|vert_ref_guy|
VertRefs{
edges:vert_ref_guy.edges.into_iter().collect(),
faces:vert_ref_guy.faces.into_iter().collect(),
}
).collect(),
}
}
}
impl PhysicsMesh{
pub fn verts<'a>(&'a self)->impl Iterator<Item=Planar64Vec3>+'a{
self.verts.iter().map(|Vert(pos)|*pos)
}
}
impl MeshQuery<FaceId,DirectedEdgeId,VertId> for PhysicsMesh{
fn face_nd(&self,face_id:FaceId)->(Planar64Vec3,Planar64){
(self.faces[face_id.0].normal,self.faces[face_id.0].dot)
}
//ideally I never calculate the vertex position, but I have to for the graphical meshes...
fn vert(&self,vert_id:VertId)->Planar64Vec3{
self.verts[vert_id.0].0
}
fn face_edges(&self,face_id:FaceId)->Cow<Vec<DirectedEdgeId>>{
Cow::Borrowed(&self.face_topology[face_id.0].edges)
}
fn edge_faces(&self,edge_id:EdgeId)->Cow<[FaceId;2]>{
Cow::Borrowed(&self.edge_topology[edge_id.0].faces)
}
fn edge_verts(&self,edge_id:EdgeId)->Cow<[VertId;2]>{
Cow::Borrowed(&self.edge_topology[edge_id.0].verts)
}
fn vert_edges(&self,vert_id:VertId)->Cow<Vec<DirectedEdgeId>>{
Cow::Borrowed(&self.vert_topology[vert_id.0].edges)
}
fn vert_faces(&self,vert_id:VertId)->Cow<Vec<FaceId>>{
Cow::Borrowed(&self.vert_topology[vert_id.0].faces)
}
}
pub struct TransformedMesh<'a>{
mesh:&'a PhysicsMesh,
transform:&'a integer::Planar64Affine3,
normal_transform:&'a integer::Planar64Mat3,
transform_det:Planar64,
}
impl TransformedMesh<'_>{
pub fn new<'a>(
mesh:&'a PhysicsMesh,
transform:&'a integer::Planar64Affine3,
normal_transform:&'a integer::Planar64Mat3,
transform_det:Planar64,
)->TransformedMesh<'a>{
TransformedMesh{
mesh,
transform,
normal_transform,
transform_det,
}
}
fn farthest_vert(&self,dir:Planar64Vec3)->VertId{
let mut best_dot=Planar64::MIN;
let mut best_vert=VertId(0);
for (i,vert) in self.mesh.verts.iter().enumerate(){
let p=self.transform.transform_point3(vert.0);
let d=dir.dot(p);
if best_dot<d{
best_dot=d;
best_vert=VertId(i);
}
}
best_vert
}
}
impl MeshQuery<FaceId,DirectedEdgeId,VertId> for TransformedMesh<'_>{
fn face_nd(&self,face_id:FaceId)->(Planar64Vec3,Planar64){
let (n,d)=self.mesh.face_nd(face_id);
let transformed_n=*self.normal_transform*n;
let transformed_d=d+transformed_n.dot(self.transform.translation)/self.transform_det;
(transformed_n/self.transform_det,transformed_d)
}
fn vert(&self,vert_id:VertId)->Planar64Vec3{
self.transform.transform_point3(self.mesh.vert(vert_id))
}
#[inline]
fn face_edges(&self,face_id:FaceId)->Cow<Vec<DirectedEdgeId>>{
self.mesh.face_edges(face_id)
}
#[inline]
fn edge_faces(&self,edge_id:EdgeId)->Cow<[FaceId;2]>{
self.mesh.edge_faces(edge_id)
}
#[inline]
fn edge_verts(&self,edge_id:EdgeId)->Cow<[VertId;2]>{
self.mesh.edge_verts(edge_id)
}
#[inline]
fn vert_edges(&self,vert_id:VertId)->Cow<Vec<DirectedEdgeId>>{
self.mesh.vert_edges(vert_id)
}
#[inline]
fn vert_faces(&self,vert_id:VertId)->Cow<Vec<FaceId>>{
self.mesh.vert_faces(vert_id)
}
}
//Note that a face on a minkowski mesh refers to a pair of fevs on the meshes it's summed from
//(face,vertex)
//(edge,edge)
//(vertex,face)
#[derive(Clone,Copy)]
pub enum MinkowskiVert{
VertVert(VertId,VertId),
}
#[derive(Clone,Copy)]
pub enum MinkowskiEdge{
VertEdge(VertId,EdgeId),
EdgeVert(EdgeId,VertId),
//EdgeEdge when edges are parallel
}
impl UndirectedEdge for MinkowskiEdge{
type DirectedEdge=MinkowskiDirectedEdge;
fn as_directed(&self,parity:bool)->Self::DirectedEdge{
match self{
MinkowskiEdge::VertEdge(v0,e1)=>MinkowskiDirectedEdge::VertEdge(*v0,e1.as_directed(parity)),
MinkowskiEdge::EdgeVert(e0,v1)=>MinkowskiDirectedEdge::EdgeVert(e0.as_directed(parity),*v1),
}
}
}
#[derive(Clone,Copy)]
pub enum MinkowskiDirectedEdge{
VertEdge(VertId,DirectedEdgeId),
EdgeVert(DirectedEdgeId,VertId),
//EdgeEdge when edges are parallel
}
impl DirectedEdge for MinkowskiDirectedEdge{
type UndirectedEdge=MinkowskiEdge;
fn as_undirected(&self)->Self::UndirectedEdge{
match self{
MinkowskiDirectedEdge::VertEdge(v0,e1)=>MinkowskiEdge::VertEdge(*v0,e1.as_undirected()),
MinkowskiDirectedEdge::EdgeVert(e0,v1)=>MinkowskiEdge::EdgeVert(e0.as_undirected(),*v1),
}
}
fn parity(&self)->bool{
match self{
MinkowskiDirectedEdge::VertEdge(_,e)
|MinkowskiDirectedEdge::EdgeVert(e,_)=>e.parity(),
}
}
}
#[derive(Debug,Clone,Copy,Hash,Eq,PartialEq)]
pub enum MinkowskiFace{
VertFace(VertId,FaceId),
EdgeEdge(EdgeId,EdgeId,bool),
FaceVert(FaceId,VertId),
//EdgeFace
//FaceEdge
//FaceFace
}
pub struct MinkowskiMesh<'a>{
mesh0:&'a TransformedMesh<'a>,
mesh1:&'a TransformedMesh<'a>,
}
//infinity fev algorithm state transition
enum Transition{
Done,//found closest vert, no edges are better
Vert(MinkowskiVert),//transition to vert
}
enum EV{
Vert(MinkowskiVert),
Edge(MinkowskiEdge),
}
impl MinkowskiMesh<'_>{
pub fn minkowski_sum<'a>(mesh0:&'a TransformedMesh,mesh1:&'a TransformedMesh)->MinkowskiMesh<'a>{
MinkowskiMesh{
mesh0,
mesh1,
}
}
fn farthest_vert(&self,dir:Planar64Vec3)->MinkowskiVert{
MinkowskiVert::VertVert(self.mesh0.farthest_vert(dir),self.mesh1.farthest_vert(-dir))
}
fn next_transition_vert(&self,vert_id:MinkowskiVert,best_distance_squared:&mut Planar64,infinity_dir:Planar64Vec3,point:Planar64Vec3)->Transition{
let mut best_transition=Transition::Done;
for &directed_edge_id in self.vert_edges(vert_id).iter(){
let edge_n=self.directed_edge_n(directed_edge_id);
//is boundary uncrossable by a crawl from infinity
let edge_verts=self.edge_verts(directed_edge_id.as_undirected());
//select opposite vertex
let test_vert_id=edge_verts[directed_edge_id.parity() as usize];
//test if it's closer
let diff=point-self.vert(test_vert_id);
if zeroes::zeroes1(edge_n.dot(diff),edge_n.dot(infinity_dir)).len()==0{
let distance_squared=diff.dot(diff);
if distance_squared<*best_distance_squared{
best_transition=Transition::Vert(test_vert_id);
*best_distance_squared=distance_squared;
}
}
}
best_transition
}
fn final_ev(&self,vert_id:MinkowskiVert,best_distance_squared:&mut Planar64,infinity_dir:Planar64Vec3,point:Planar64Vec3)->EV{
let mut best_transition=EV::Vert(vert_id);
let diff=point-self.vert(vert_id);
for &directed_edge_id in self.vert_edges(vert_id).iter(){
let edge_n=self.directed_edge_n(directed_edge_id);
//is boundary uncrossable by a crawl from infinity
//check if time of collision is outside Time::MIN..Time::MAX
let d=edge_n.dot(diff);
if zeroes::zeroes1(d,edge_n.dot(infinity_dir)).len()==0{
//test the edge
let edge_nn=edge_n.dot(edge_n);
if Planar64::ZERO<=d&&d<=edge_nn{
let distance_squared={
let c=diff.cross(edge_n);
c.dot(c)/edge_nn
};
if distance_squared<=*best_distance_squared{
best_transition=EV::Edge(directed_edge_id.as_undirected());
*best_distance_squared=distance_squared;
}
}
}
}
best_transition
}
fn crawl_boundaries(&self,mut vert_id:MinkowskiVert,infinity_dir:Planar64Vec3,point:Planar64Vec3)->EV{
let mut best_distance_squared={
let diff=point-self.vert(vert_id);
diff.dot(diff)
};
loop{
match self.next_transition_vert(vert_id,&mut best_distance_squared,infinity_dir,point){
Transition::Done=>return self.final_ev(vert_id,&mut best_distance_squared,infinity_dir,point),
Transition::Vert(new_vert_id)=>vert_id=new_vert_id,
}
}
}
/// This function drops a vertex down to an edge or a face if the path from infinity did not cross any vertex-edge boundaries but the point is supposed to have already crossed a boundary down from a vertex
fn infinity_fev(&self,infinity_dir:Planar64Vec3,point:Planar64Vec3)->FEV::<MinkowskiFace,MinkowskiDirectedEdge,MinkowskiVert>{
//start on any vertex
//cross uncrossable vertex-edge boundaries until you find the closest vertex or edge
//cross edge-face boundary if it's uncrossable
match self.crawl_boundaries(self.farthest_vert(infinity_dir),infinity_dir,point){
//if a vert is returned, it is the closest point to the infinity point
EV::Vert(vert_id)=>FEV::<MinkowskiFace,MinkowskiDirectedEdge,MinkowskiVert>::Vert(vert_id),
EV::Edge(edge_id)=>{
//cross to face if the boundary is not crossable and we are on the wrong side
let edge_n=self.edge_n(edge_id);
// point is multiplied by two because vert_sum sums two vertices.
let delta_pos=point*2-{
let &[v0,v1]=self.edge_verts(edge_id).borrow();
self.vert(v0)+self.vert(v1)
};
for (i,&face_id) in self.edge_faces(edge_id).iter().enumerate(){
let face_n=self.face_nd(face_id).0;
//edge-face boundary nd, n facing out of the face towards the edge
let boundary_n=face_n.cross(edge_n)*(i as i64*2-1);
let boundary_d=boundary_n.dot(delta_pos);
//check if time of collision is outside Time::MIN..Time::MAX
//infinity_dir can always be treated as a velocity
if (boundary_d)<=Planar64::ZERO&&zeroes::zeroes1(boundary_d,boundary_n.dot(infinity_dir)*2).len()==0{
//both faces cannot pass this condition, return early if one does.
return FEV::<MinkowskiFace,MinkowskiDirectedEdge,MinkowskiVert>::Face(face_id);
}
}
FEV::<MinkowskiFace,MinkowskiDirectedEdge,MinkowskiVert>::Edge(edge_id)
},
}
}
fn closest_fev_not_inside(&self,mut infinity_body:crate::physics::Body)->Option<FEV::<MinkowskiFace,MinkowskiDirectedEdge,MinkowskiVert>>{
infinity_body.infinity_dir().map_or(None,|dir|{
let infinity_fev=self.infinity_fev(-dir,infinity_body.position);
//a line is simpler to solve than a parabola
infinity_body.velocity=dir;
infinity_body.acceleration=Planar64Vec3::ZERO;
//crawl in from negative infinity along a tangent line to get the closest fev
match crate::face_crawler::crawl_fev(infinity_fev,self,&infinity_body,integer::Time::MIN,infinity_body.time){
crate::face_crawler::CrawlResult::Miss(fev)=>Some(fev),
crate::face_crawler::CrawlResult::Hit(_,_)=>None,
}
})
}
pub fn predict_collision_in(&self,relative_body:&crate::physics::Body,time_limit:integer::Time)->Option<(MinkowskiFace,integer::Time)>{
self.closest_fev_not_inside(relative_body.clone()).map_or(None,|fev|{
//continue forwards along the body parabola
match crate::face_crawler::crawl_fev(fev,self,relative_body,relative_body.time,time_limit){
crate::face_crawler::CrawlResult::Miss(_)=>None,
crate::face_crawler::CrawlResult::Hit(face,time)=>Some((face,time)),
}
})
}
pub fn predict_collision_out(&self,relative_body:&crate::physics::Body,time_limit:integer::Time)->Option<(MinkowskiFace,integer::Time)>{
//create an extrapolated body at time_limit
let infinity_body=crate::physics::Body::new(
relative_body.extrapolated_position(time_limit),
-relative_body.extrapolated_velocity(time_limit),
relative_body.acceleration,
-time_limit,
);
self.closest_fev_not_inside(infinity_body).map_or(None,|fev|{
//continue backwards along the body parabola
match crate::face_crawler::crawl_fev(fev,self,&-relative_body.clone(),-time_limit,-relative_body.time){
crate::face_crawler::CrawlResult::Miss(_)=>None,
crate::face_crawler::CrawlResult::Hit(face,time)=>Some((face,-time)),//no need to test -time<time_limit because of the first step
}
})
}
pub fn predict_collision_face_out(&self,relative_body:&crate::physics::Body,time_limit:integer::Time,contact_face_id:MinkowskiFace)->Option<(MinkowskiEdge,integer::Time)>{
//no algorithm needed, there is only one state and two cases (Edge,None)
//determine when it passes an edge ("sliding off" case)
let mut best_time=time_limit;
let mut best_edge=None;
let face_n=self.face_nd(contact_face_id).0;
for &directed_edge_id in self.face_edges(contact_face_id).iter(){
let edge_n=self.directed_edge_n(directed_edge_id);
//f x e points in
let n=face_n.cross(edge_n);
let verts=self.edge_verts(directed_edge_id.as_undirected());
let d=n.dot(self.vert(verts[0])+self.vert(verts[1]));
//WARNING! d outside of *2
for t in zeroes::zeroes2((n.dot(relative_body.position))*2-d,n.dot(relative_body.velocity)*2,n.dot(relative_body.acceleration)){
let t=relative_body.time+integer::Time::from(t);
if relative_body.time<t&&t<best_time&&n.dot(relative_body.extrapolated_velocity(t))<Planar64::ZERO{
best_time=t;
best_edge=Some(directed_edge_id);
break;
}
}
}
best_edge.map(|e|(e.as_undirected(),best_time))
}
}
impl MeshQuery<MinkowskiFace,MinkowskiDirectedEdge,MinkowskiVert> for MinkowskiMesh<'_>{
fn face_nd(&self,face_id:MinkowskiFace)->(Planar64Vec3,Planar64){
match face_id{
MinkowskiFace::VertFace(v0,f1)=>{
let (n,d)=self.mesh1.face_nd(f1);
(-n,d-n.dot(self.mesh0.vert(v0)))
},
MinkowskiFace::EdgeEdge(e0,e1,parity)=>{
let edge0_n=self.mesh0.edge_n(e0);
let edge1_n=self.mesh1.edge_n(e1);
let &[e0v0,e0v1]=self.mesh0.edge_verts(e0).borrow();
let &[e1v0,e1v1]=self.mesh1.edge_verts(e1).borrow();
let n=edge0_n.cross(edge1_n);
let e0d=n.dot(self.mesh0.vert(e0v0)+self.mesh0.vert(e0v1));
let e1d=n.dot(self.mesh1.vert(e1v0)+self.mesh1.vert(e1v1));
(n*(parity as i64*4-2),(e0d-e1d)*(parity as i64*2-1))
},
MinkowskiFace::FaceVert(f0,v1)=>{
let (n,d)=self.mesh0.face_nd(f0);
(n,d-n.dot(self.mesh1.vert(v1)))
},
}
}
fn vert(&self,vert_id:MinkowskiVert)->Planar64Vec3{
match vert_id{
MinkowskiVert::VertVert(v0,v1)=>{
self.mesh0.vert(v0)-self.mesh1.vert(v1)
},
}
}
fn face_edges(&self,face_id:MinkowskiFace)->Cow<Vec<MinkowskiDirectedEdge>>{
match face_id{
MinkowskiFace::VertFace(v0,f1)=>{
Cow::Owned(self.mesh1.face_edges(f1).iter().map(|&edge_id1|{
MinkowskiDirectedEdge::VertEdge(v0,edge_id1.reverse())
}).collect())
},
MinkowskiFace::EdgeEdge(e0,e1,parity)=>{
let e0v=self.mesh0.edge_verts(e0);
let e1v=self.mesh1.edge_verts(e1);
//could sort this if ordered edges are needed
//probably just need to reverse this list according to parity
Cow::Owned(vec![
MinkowskiDirectedEdge::VertEdge(e0v[0],e1.as_directed(parity)),
MinkowskiDirectedEdge::EdgeVert(e0.as_directed(!parity),e1v[0]),
MinkowskiDirectedEdge::VertEdge(e0v[1],e1.as_directed(!parity)),
MinkowskiDirectedEdge::EdgeVert(e0.as_directed(parity),e1v[1]),
])
},
MinkowskiFace::FaceVert(f0,v1)=>{
Cow::Owned(self.mesh0.face_edges(f0).iter().map(|&edge_id0|{
MinkowskiDirectedEdge::EdgeVert(edge_id0,v1)
}).collect())
},
}
}
fn edge_faces(&self,edge_id:MinkowskiEdge)->Cow<[MinkowskiFace;2]>{
match edge_id{
MinkowskiEdge::VertEdge(v0,e1)=>{
//faces are listed backwards from the minkowski mesh
let v0e=self.mesh0.vert_edges(v0);
let &[e1f0,e1f1]=self.mesh1.edge_faces(e1).borrow();
Cow::Owned([(e1f1,false),(e1f0,true)].map(|(edge_face_id1,face_parity)|{
let mut best_edge=None;
let mut best_d=Planar64::ZERO;
let edge_face1_n=self.mesh1.face_nd(edge_face_id1).0;
let edge_face1_nn=edge_face1_n.dot(edge_face1_n);
for &directed_edge_id0 in v0e.iter(){
let edge0_n=self.mesh0.directed_edge_n(directed_edge_id0);
//must be behind other face.
let d=edge_face1_n.dot(edge0_n);
if d<Planar64::ZERO{
let edge0_nn=edge0_n.dot(edge0_n);
//divide by zero???
let dd=d*d/(edge_face1_nn*edge0_nn);
if best_d<dd{
best_d=dd;
best_edge=Some(directed_edge_id0);
}
}
}
best_edge.map_or(
MinkowskiFace::VertFace(v0,edge_face_id1),
|directed_edge_id0|MinkowskiFace::EdgeEdge(directed_edge_id0.as_undirected(),e1,directed_edge_id0.parity()^face_parity)
)
}))
},
MinkowskiEdge::EdgeVert(e0,v1)=>{
//tracking index with an external variable because .enumerate() is not available
let v1e=self.mesh1.vert_edges(v1);
let &[e0f0,e0f1]=self.mesh0.edge_faces(e0).borrow();
Cow::Owned([(e0f0,true),(e0f1,false)].map(|(edge_face_id0,face_parity)|{
let mut best_edge=None;
let mut best_d=Planar64::ZERO;
let edge_face0_n=self.mesh0.face_nd(edge_face_id0).0;
let edge_face0_nn=edge_face0_n.dot(edge_face0_n);
for &directed_edge_id1 in v1e.iter(){
let edge1_n=self.mesh1.directed_edge_n(directed_edge_id1);
let d=edge_face0_n.dot(edge1_n);
if d<Planar64::ZERO{
let edge1_nn=edge1_n.dot(edge1_n);
let dd=d*d/(edge_face0_nn*edge1_nn);
if best_d<dd{
best_d=dd;
best_edge=Some(directed_edge_id1);
}
}
}
best_edge.map_or(
MinkowskiFace::FaceVert(edge_face_id0,v1),
|directed_edge_id1|MinkowskiFace::EdgeEdge(e0,directed_edge_id1.as_undirected(),directed_edge_id1.parity()^face_parity)
)
}))
},
}
}
fn edge_verts(&self,edge_id:MinkowskiEdge)->Cow<[MinkowskiVert;2]>{
match edge_id{
MinkowskiEdge::VertEdge(v0,e1)=>{
Cow::Owned(self.mesh1.edge_verts(e1).map(|vert_id1|{
MinkowskiVert::VertVert(v0,vert_id1)
}))
},
MinkowskiEdge::EdgeVert(e0,v1)=>{
Cow::Owned(self.mesh0.edge_verts(e0).map(|vert_id0|{
MinkowskiVert::VertVert(vert_id0,v1)
}))
},
}
}
fn vert_edges(&self,vert_id:MinkowskiVert)->Cow<Vec<MinkowskiDirectedEdge>>{
match vert_id{
MinkowskiVert::VertVert(v0,v1)=>{
let mut edges=Vec::new();
//detect shared volume when the other mesh is mirrored along a test edge dir
let v0f=self.mesh0.vert_faces(v0);
let v1f=self.mesh1.vert_faces(v1);
let v0f_n:Vec<Planar64Vec3>=v0f.iter().map(|&face_id|self.mesh0.face_nd(face_id).0).collect();
let v1f_n:Vec<Planar64Vec3>=v1f.iter().map(|&face_id|self.mesh1.face_nd(face_id).0).collect();
let the_len=v0f.len()+v1f.len();
for &directed_edge_id in self.mesh0.vert_edges(v0).iter(){
let n=self.mesh0.directed_edge_n(directed_edge_id);
let nn=n.dot(n);
//make a set of faces
let mut face_normals=Vec::with_capacity(the_len);
//add mesh0 faces as-is
face_normals.clone_from(&v0f_n);
for face_n in &v1f_n{
//add reflected mesh1 faces
face_normals.push(*face_n-n*(face_n.dot(n)*2/nn));
}
if is_empty_volume(face_normals){
edges.push(MinkowskiDirectedEdge::EdgeVert(directed_edge_id,v1));
}
}
for &directed_edge_id in self.mesh1.vert_edges(v1).iter(){
let n=self.mesh1.directed_edge_n(directed_edge_id);
let nn=n.dot(n);
let mut face_normals=Vec::with_capacity(the_len);
face_normals.clone_from(&v1f_n);
for face_n in &v0f_n{
face_normals.push(*face_n-n*(face_n.dot(n)*2/nn));
}
if is_empty_volume(face_normals){
edges.push(MinkowskiDirectedEdge::VertEdge(v0,directed_edge_id));
}
}
Cow::Owned(edges)
},
}
}
fn vert_faces(&self,_vert_id:MinkowskiVert)->Cow<Vec<MinkowskiFace>>{
unimplemented!()
}
}
fn is_empty_volume(normals:Vec<Planar64Vec3>)->bool{
let len=normals.len();
for i in 0..len-1{
for j in i+1..len{
let n=normals[i].cross(normals[j]);
let mut d_comp=None;
for k in 0..len{
if k!=i&&k!=j{
let d=n.dot(normals[k]);
if let Some(comp)=&d_comp{
if *comp*d<Planar64::ZERO{
return true;
}
}else{
d_comp=Some(d);
}
}
}
}
}
return false;
}
#[test]
fn test_is_empty_volume(){
assert!(!is_empty_volume([Planar64Vec3::X,Planar64Vec3::Y,Planar64Vec3::Z].to_vec()));
assert!(is_empty_volume([Planar64Vec3::X,Planar64Vec3::Y,Planar64Vec3::Z,Planar64Vec3::NEG_X].to_vec()));
}
#[test]
fn build_me_a_cube(){
let unit_cube=crate::primitives::unit_cube();
let mesh=PhysicsMesh::from(&unit_cube);
//println!("mesh={:?}",mesh);
}
//

File diff suppressed because it is too large Load Diff

View File

@ -1,165 +0,0 @@
use crate::physics::{MouseState,PhysicsInputInstruction};
use strafesnet_common::integer::Time;
use strafesnet_common::instruction::{TimedInstruction,InstructionConsumer};
use strafesnet_common::integer::{self,Planar64,Planar64Vec3,Planar64Mat3,Angle32,Ratio64,Ratio64Vec2};
#[derive(Debug)]
pub enum InputInstruction {
MoveMouse(glam::IVec2),
MoveRight(bool),
MoveUp(bool),
MoveBack(bool),
MoveLeft(bool),
MoveDown(bool),
MoveForward(bool),
Jump(bool),
Zoom(bool),
Reset,
}
pub enum Instruction{
Input(InputInstruction),
Render,
Resize(winit::dpi::PhysicalSize<u32>,crate::settings::UserSettings),
GenerateModels(crate::model::IndexedModelInstances),
ClearModels,
//Graphics(crate::graphics_worker::Instruction),
}
pub struct Speed{
pub player_vel:Planar64Vec3,
pub time:Time
}
impl std::ops::Neg for Speed{
type Output=Self;
fn neg(self)->Self::Output{
Self{
player_vel:self.player_vel,
time:self.time
}
}
}
impl Speed{
pub fn new(player_vel:Planar64Vec3,time:Time)->Self{
Self{
player_vel,
time,
}
}
}
pub fn new(mut physics:crate::physics::PhysicsState,mut graphics_worker:crate::compat_worker::INWorker<crate::graphics_worker::Instruction>)->crate::compat_worker::QNWorker<TimedInstruction<Instruction>>{
let mut mouse_blocking=true;
let mut last_mouse_time=physics.next_mouse.time;
let mut timeline=std::collections::VecDeque::new();
let mut next_velocity_print=std::time::Instant::now();
let mut player_vel = physics.body.velocity.length();
crate::compat_worker::QNWorker::new(move |ins:TimedInstruction<Instruction>|{
if if let Some(phys_input)=match &ins.instruction{
Instruction::Input(input_instruction)=>match input_instruction{
&InputInstruction::MoveMouse(m)=>{
if mouse_blocking{
//tell the game state which is living in the past about its future
timeline.push_front(TimedInstruction{
time:last_mouse_time,
instruction:PhysicsInputInstruction::SetNextMouse(MouseState{time:ins.time,pos:m}),
});
}else{
//mouse has just started moving again after being still for longer than 10ms.
//replace the entire mouse interpolation state to avoid an intermediate state with identical m0.t m1.t timestamps which will divide by zero
timeline.push_front(TimedInstruction{
time:last_mouse_time,
instruction:PhysicsInputInstruction::ReplaceMouse(
MouseState{time:last_mouse_time,pos:physics.next_mouse.pos},
MouseState{time:ins.time,pos:m}
),
});
//delay physics execution until we have an interpolation target
mouse_blocking=true;
}
last_mouse_time=ins.time;
None
},
&InputInstruction::MoveForward(s)=>Some(PhysicsInputInstruction::SetMoveForward(s)),
&InputInstruction::MoveLeft(s)=>Some(PhysicsInputInstruction::SetMoveLeft(s)),
&InputInstruction::MoveBack(s)=>Some(PhysicsInputInstruction::SetMoveBack(s)),
&InputInstruction::MoveRight(s)=>Some(PhysicsInputInstruction::SetMoveRight(s)),
&InputInstruction::MoveUp(s)=>Some(PhysicsInputInstruction::SetMoveUp(s)),
&InputInstruction::MoveDown(s)=>Some(PhysicsInputInstruction::SetMoveDown(s)),
&InputInstruction::Jump(s)=>Some(PhysicsInputInstruction::SetJump(s)),
&InputInstruction::Zoom(s)=>Some(PhysicsInputInstruction::SetZoom(s)),
InputInstruction::Reset=>Some(PhysicsInputInstruction::Reset),
},
Instruction::GenerateModels(_)=>Some(PhysicsInputInstruction::Idle),
Instruction::ClearModels=>Some(PhysicsInputInstruction::Idle),
Instruction::Resize(_,_)=>Some(PhysicsInputInstruction::Idle),
Instruction::Render=>Some(PhysicsInputInstruction::Idle),
}{
//non-mouse event
timeline.push_back(TimedInstruction{
time:ins.time,
instruction:phys_input,
});
if mouse_blocking{
//assume the mouse has stopped moving after 10ms.
//shitty mice are 125Hz which is 8ms so this should cover that.
//setting this to 100us still doesn't print even though it's 10x lower than the polling rate,
//so mouse events are probably not handled separately from drawing and fire right before it :(
if Time::from_millis(10)<ins.time-physics.next_mouse.time{
//push an event to extrapolate no movement from
timeline.push_front(TimedInstruction{
time:last_mouse_time,
instruction:PhysicsInputInstruction::SetNextMouse(MouseState{time:ins.time,pos:physics.next_mouse.pos}),
});
last_mouse_time=ins.time;
//stop blocking. the mouse is not moving so the physics does not need to live in the past and wait for interpolation targets.
mouse_blocking=false;
true
}else{
false
}
}else{
//keep this up to date so that it can be used as a known-timestamp
//that the mouse was not moving when the mouse starts moving again
last_mouse_time=ins.time;
true
}
}else{
//mouse event
true
}{
//empty queue
while let Some(instruction)=timeline.pop_front(){
physics.run(instruction.time);
physics.process_instruction(TimedInstruction{
time:instruction.time,
instruction:crate::physics::PhysicsInstruction::Input(instruction.instruction),
});
}
//some random print stuff
if 3.0/5.0<next_velocity_print.elapsed().as_secs_f64(){
next_velocity_print=next_velocity_print+std::time::Duration::from_secs_f64(1.0/30.0);
println!("velocity: {} u/s", (Planar64Vec3::new(physics.body.velocity.x(), Planar64::int(0), physics.body.velocity.z())).length()*(Planar64::int(130)/9));
}
}
match ins.instruction{
Instruction::Render=>{
graphics_worker.send(crate::graphics_worker::Instruction::Render(physics.output(),ins.time,physics.next_mouse.pos)).unwrap();
},
Instruction::Resize(size,user_settings)=>{
graphics_worker.send(crate::graphics_worker::Instruction::Resize(size,user_settings)).unwrap();
},
Instruction::GenerateModels(indexed_model_instances)=>{
physics.generate_models(&indexed_model_instances);
physics.spawn(indexed_model_instances.spawn_point);
graphics_worker.send(crate::graphics_worker::Instruction::GenerateModels(indexed_model_instances)).unwrap();
},
Instruction::ClearModels=>{
physics.clear();
graphics_worker.send(crate::graphics_worker::Instruction::ClearModels).unwrap();
},
_=>(),
}
})
}

View File

@ -1,5 +1,5 @@
use crate::model::{Color4,TextureCoordinate,IndexedModel,IndexedPolygon,IndexedGroup,IndexedVertex};
use strafesnet_common::integer::Planar64Vec3;
use crate::integer::Planar64Vec3;
#[derive(Debug)]
pub enum Primitives{
@ -126,21 +126,17 @@ const CORNERWEDGE_DEFAULT_NORMALS:[Planar64Vec3;5]=[
Planar64Vec3::int( 0,-1, 0),//CornerWedge::Bottom
Planar64Vec3::int( 0, 0,-1),//CornerWedge::Front
];
//HashMap fits this use case perfectly but feels like using a sledgehammer to drive a nail
pub fn unit_sphere()->crate::model::IndexedModel{
unit_cube()
}
#[derive(Default)]
pub struct CubeFaceDescription([Option<FaceDescription>;6]);
impl CubeFaceDescription{
pub fn insert(&mut self,index:CubeFace,value:FaceDescription){
self.0[index as usize]=Some(value);
}
pub fn pairs(self)->std::iter::FilterMap<std::iter::Enumerate<std::array::IntoIter<Option<FaceDescription>,6>>,impl FnMut((usize,Option<FaceDescription>))->Option<(usize,FaceDescription)>>{
self.0.into_iter().enumerate().filter_map(|v|v.1.map(|u|(v.0,u)))
let mut indexed_model=crate::model::generate_indexed_model_list_from_obj(obj::ObjData::load_buf(&include_bytes!("../models/suzanne.obj")[..]).unwrap(),Color4::ONE).remove(0);
for pos in indexed_model.unique_pos.iter_mut(){
*pos=*pos/2;
}
indexed_model
}
pub type CubeFaceDescription=std::collections::HashMap::<CubeFace,FaceDescription>;
pub fn unit_cube()->crate::model::IndexedModel{
let mut t=CubeFaceDescription::default();
let mut t=CubeFaceDescription::new();
t.insert(CubeFace::Right,FaceDescription::default());
t.insert(CubeFace::Top,FaceDescription::default());
t.insert(CubeFace::Back,FaceDescription::default());
@ -149,21 +145,17 @@ pub fn unit_cube()->crate::model::IndexedModel{
t.insert(CubeFace::Front,FaceDescription::default());
generate_partial_unit_cube(t)
}
const TEAPOT_TRANSFORM:crate::integer::Planar64Mat3=crate::integer::Planar64Mat3::int_from_cols_array([0,1,0, -1,0,0, 0,0,1]);
pub fn unit_cylinder()->crate::model::IndexedModel{
unit_cube()
}
#[derive(Default)]
pub struct WedgeFaceDescription([Option<FaceDescription>;5]);
impl WedgeFaceDescription{
pub fn insert(&mut self,index:WedgeFace,value:FaceDescription){
self.0[index as usize]=Some(value);
}
pub fn pairs(self)->std::iter::FilterMap<std::iter::Enumerate<std::array::IntoIter<Option<FaceDescription>,5>>,impl FnMut((usize,Option<FaceDescription>))->Option<(usize,FaceDescription)>>{
self.0.into_iter().enumerate().filter_map(|v|v.1.map(|u|(v.0,u)))
let mut indexed_model=crate::model::generate_indexed_model_list_from_obj(obj::ObjData::load_buf(&include_bytes!("../models/teapot.obj")[..]).unwrap(),Color4::ONE).remove(0);
for pos in indexed_model.unique_pos.iter_mut(){
*pos=TEAPOT_TRANSFORM*(*pos)/10;
}
indexed_model
}
pub type WedgeFaceDescription=std::collections::HashMap::<WedgeFace,FaceDescription>;
pub fn unit_wedge()->crate::model::IndexedModel{
let mut t=WedgeFaceDescription::default();
let mut t=WedgeFaceDescription::new();
t.insert(WedgeFace::Right,FaceDescription::default());
t.insert(WedgeFace::TopFront,FaceDescription::default());
t.insert(WedgeFace::Back,FaceDescription::default());
@ -171,18 +163,9 @@ pub fn unit_wedge()->crate::model::IndexedModel{
t.insert(WedgeFace::Bottom,FaceDescription::default());
generate_partial_unit_wedge(t)
}
#[derive(Default)]
pub struct CornerWedgeFaceDescription([Option<FaceDescription>;5]);
impl CornerWedgeFaceDescription{
pub fn insert(&mut self,index:CornerWedgeFace,value:FaceDescription){
self.0[index as usize]=Some(value);
}
pub fn pairs(self)->std::iter::FilterMap<std::iter::Enumerate<std::array::IntoIter<Option<FaceDescription>,5>>,impl FnMut((usize,Option<FaceDescription>))->Option<(usize,FaceDescription)>>{
self.0.into_iter().enumerate().filter_map(|v|v.1.map(|u|(v.0,u)))
}
}
pub type CornerWedgeFaceDescription=std::collections::HashMap::<CornerWedgeFace,FaceDescription>;
pub fn unit_cornerwedge()->crate::model::IndexedModel{
let mut t=CornerWedgeFaceDescription::default();
let mut t=CornerWedgeFaceDescription::new();
t.insert(CornerWedgeFace::Right,FaceDescription::default());
t.insert(CornerWedgeFace::TopBack,FaceDescription::default());
t.insert(CornerWedgeFace::TopLeft,FaceDescription::default());
@ -206,6 +189,18 @@ impl std::default::Default for FaceDescription{
}
}
}
impl FaceDescription{
pub fn new(texture:u32,transform:glam::Affine2,color:Color4)->Self{
Self{texture:Some(texture),transform,color}
}
pub fn from_texture(texture:u32)->Self{
Self{
texture:Some(texture),
transform:glam::Affine2::IDENTITY,
color:Color4::ONE,
}
}
}
//TODO: it's probably better to use a shared vertex buffer between all primitives and use indexed rendering instead of generating a unique vertex buffer for each primitive.
//implementation: put all roblox primitives into one model.groups <- this won't work but I forget why
pub fn generate_partial_unit_cube(face_descriptions:CubeFaceDescription)->crate::model::IndexedModel{
@ -217,7 +212,7 @@ pub fn generate_partial_unit_cube(face_descriptions:CubeFaceDescription)->crate:
let mut groups=Vec::new();
let mut transforms=Vec::new();
//note that on a cube every vertex is guaranteed to be unique, so there's no need to hash them against existing vertices.
for (face_id,face_description) in face_descriptions.pairs(){
for (face,face_description) in face_descriptions.into_iter(){
//assume that scanning short lists is faster than hashing.
let transform_index=if let Some(transform_index)=transforms.iter().position(|&transform|transform==face_description.transform){
transform_index
@ -238,6 +233,14 @@ pub fn generate_partial_unit_cube(face_descriptions:CubeFaceDescription)->crate:
generated_color.push(face_description.color);
color_index
} as u32;
let face_id=match face{
CubeFace::Right => 0,
CubeFace::Top => 1,
CubeFace::Back => 2,
CubeFace::Left => 3,
CubeFace::Bottom => 4,
CubeFace::Front => 5,
};
//always push normal
let normal_index=generated_normal.len() as u32;
generated_normal.push(CUBE_DEFAULT_NORMALS[face_id]);
@ -324,7 +327,7 @@ pub fn generate_partial_unit_wedge(face_descriptions:WedgeFaceDescription)->crat
let mut groups=Vec::new();
let mut transforms=Vec::new();
//note that on a cube every vertex is guaranteed to be unique, so there's no need to hash them against existing vertices.
for (face_id,face_description) in face_descriptions.pairs(){
for (face,face_description) in face_descriptions.into_iter(){
//assume that scanning short lists is faster than hashing.
let transform_index=if let Some(transform_index)=transforms.iter().position(|&transform|transform==face_description.transform){
transform_index
@ -345,6 +348,13 @@ pub fn generate_partial_unit_wedge(face_descriptions:WedgeFaceDescription)->crat
generated_color.push(face_description.color);
color_index
} as u32;
let face_id=match face{
WedgeFace::Right => 0,
WedgeFace::TopFront => 1,
WedgeFace::Back => 2,
WedgeFace::Left => 3,
WedgeFace::Bottom => 4,
};
//always push normal
let normal_index=generated_normal.len() as u32;
generated_normal.push(WEDGE_DEFAULT_NORMALS[face_id]);
@ -429,7 +439,7 @@ pub fn generate_partial_unit_cornerwedge(face_descriptions:CornerWedgeFaceDescri
let mut groups=Vec::new();
let mut transforms=Vec::new();
//note that on a cube every vertex is guaranteed to be unique, so there's no need to hash them against existing vertices.
for (face_id,face_description) in face_descriptions.pairs(){
for (face,face_description) in face_descriptions.into_iter(){
//assume that scanning short lists is faster than hashing.
let transform_index=if let Some(transform_index)=transforms.iter().position(|&transform|transform==face_description.transform){
transform_index
@ -450,6 +460,13 @@ pub fn generate_partial_unit_cornerwedge(face_descriptions:CornerWedgeFaceDescri
generated_color.push(face_description.color);
color_index
} as u32;
let face_id=match face{
CornerWedgeFace::Right => 0,
CornerWedgeFace::TopBack => 1,
CornerWedgeFace::TopLeft => 2,
CornerWedgeFace::Bottom => 3,
CornerWedgeFace::Front => 4,
};
//always push normal
let normal_index=generated_normal.len() as u32;
generated_normal.push(CORNERWEDGE_DEFAULT_NORMALS[face_id]);

129
src/render_thread.rs Normal file
View File

@ -0,0 +1,129 @@
use crate::integer::Time;
use crate::physics::{MouseState,PhysicsInputInstruction};
use crate::instruction::{TimedInstruction,InstructionConsumer};
#[derive(Debug)]
pub enum InputInstruction {
MoveMouse(glam::IVec2),
MoveRight(bool),
MoveUp(bool),
MoveBack(bool),
MoveLeft(bool),
MoveDown(bool),
MoveForward(bool),
Jump(bool),
Zoom(bool),
Reset,
Render,
//Idle: there were no input events, but the simulation is safe to advance to this timestep
//for interpolation / networking / playback reasons, most playback heads will always want
//to be 1 instruction ahead to generate the next state for interpolation.
}
pub struct RenderState{
physics:crate::physics::PhysicsState,
graphics:crate::graphics::GraphicsState,
}
impl RenderState{
pub fn new(user_settings:&crate::settings::UserSettings,indexed_model_instances:crate::model::IndexedModelInstances){
let mut physics=crate::physics::PhysicsState::default();
physics.spawn(indexed_model_instances.spawn_point);
physics.load_user_settings(user_settings);
physics.generate_models(&indexed_model_instances);
let mut graphics=Self::new_graphics_state();
graphics.load_user_settings(user_settings);
graphics.generate_models(indexed_model_instances);
//manual reset
}
pub fn into_worker(mut self)->crate::worker::CNWorker<TimedInstruction<InputInstruction>>{
let mut mouse_blocking=true;
let mut last_mouse_time=self.physics.next_mouse.time;
let mut timeline=std::collections::VecDeque::new();
crate::worker::CNWorker::new(move |ins:TimedInstruction<InputInstruction>|{
let mut render=false;
if if let Some(phys_input)=match ins.instruction{
InputInstruction::MoveMouse(m)=>{
if mouse_blocking{
//tell the game state which is living in the past about its future
timeline.push_front(TimedInstruction{
time:last_mouse_time,
instruction:PhysicsInputInstruction::SetNextMouse(MouseState{time:ins.time,pos:m}),
});
}else{
//mouse has just started moving again after being still for longer than 10ms.
//replace the entire mouse interpolation state to avoid an intermediate state with identical m0.t m1.t timestamps which will divide by zero
timeline.push_front(TimedInstruction{
time:last_mouse_time,
instruction:PhysicsInputInstruction::ReplaceMouse(
MouseState{time:last_mouse_time,pos:self.physics.next_mouse.pos},
MouseState{time:ins.time,pos:m}
),
});
//delay physics execution until we have an interpolation target
mouse_blocking=true;
}
last_mouse_time=ins.time;
None
},
InputInstruction::MoveForward(s)=>Some(PhysicsInputInstruction::SetMoveForward(s)),
InputInstruction::MoveLeft(s)=>Some(PhysicsInputInstruction::SetMoveLeft(s)),
InputInstruction::MoveBack(s)=>Some(PhysicsInputInstruction::SetMoveBack(s)),
InputInstruction::MoveRight(s)=>Some(PhysicsInputInstruction::SetMoveRight(s)),
InputInstruction::MoveUp(s)=>Some(PhysicsInputInstruction::SetMoveUp(s)),
InputInstruction::MoveDown(s)=>Some(PhysicsInputInstruction::SetMoveDown(s)),
InputInstruction::Jump(s)=>Some(PhysicsInputInstruction::SetJump(s)),
InputInstruction::Zoom(s)=>Some(PhysicsInputInstruction::SetZoom(s)),
InputInstruction::Reset=>Some(PhysicsInputInstruction::Reset),
InputInstruction::Render=>{render=true;Some(PhysicsInputInstruction::Idle)},
}{
//non-mouse event
timeline.push_back(TimedInstruction{
time:ins.time,
instruction:phys_input,
});
if mouse_blocking{
//assume the mouse has stopped moving after 10ms.
//shitty mice are 125Hz which is 8ms so this should cover that.
//setting this to 100us still doesn't print even though it's 10x lower than the polling rate,
//so mouse events are probably not handled separately from drawing and fire right before it :(
if Time::from_millis(10)<ins.time-self.physics.next_mouse.time{
//push an event to extrapolate no movement from
timeline.push_front(TimedInstruction{
time:last_mouse_time,
instruction:PhysicsInputInstruction::SetNextMouse(MouseState{time:ins.time,pos:self.physics.next_mouse.pos}),
});
last_mouse_time=ins.time;
//stop blocking. the mouse is not moving so the physics does not need to live in the past and wait for interpolation targets.
mouse_blocking=false;
true
}else{
false
}
}else{
//keep this up to date so that it can be used as a known-timestamp
//that the mouse was not moving when the mouse starts moving again
last_mouse_time=ins.time;
true
}
}else{
//mouse event
true
}{
//empty queue
while let Some(instruction)=timeline.pop_front(){
self.physics.run(instruction.time);
self.physics.process_instruction(TimedInstruction{
time:instruction.time,
instruction:crate::physics::PhysicsInstruction::Input(instruction.instruction),
});
}
}
if render{
self.graphics.render();
}
})
}
}

View File

@ -1,14 +1,11 @@
use strafesnet_common::integer::{Ratio64,Ratio64Vec2};
#[derive(Clone)]
use crate::integer::{Ratio64,Ratio64Vec2};
struct Ratio{
ratio:f64,
}
#[derive(Clone)]
enum DerivedFov{
FromScreenAspect,
FromAspect(Ratio),
}
#[derive(Clone)]
enum Fov{
Exactly{x:f64,y:f64},
SpecifyXDeriveY{x:f64,y:DerivedFov},
@ -19,11 +16,9 @@ impl Default for Fov{
Fov::SpecifyYDeriveX{x:DerivedFov::FromScreenAspect,y:1.0}
}
}
#[derive(Clone)]
enum DerivedSensitivity{
FromRatio(Ratio64),
}
#[derive(Clone)]
enum Sensitivity{
Exactly{x:Ratio64,y:Ratio64},
SpecifyXDeriveY{x:Ratio64,y:DerivedSensitivity},
@ -35,7 +30,7 @@ impl Default for Sensitivity{
}
}
#[derive(Default,Clone)]
#[derive(Default)]
pub struct UserSettings{
fov:Fov,
sensitivity:Sensitivity,

View File

@ -1,281 +0,0 @@
use crate::window::WindowInstruction;
use strafesnet_common::instruction::TimedInstruction;
use strafesnet_common::integer;
fn optional_features()->wgpu::Features{
wgpu::Features::TEXTURE_COMPRESSION_ASTC
|wgpu::Features::TEXTURE_COMPRESSION_ETC2
}
fn required_features()->wgpu::Features{
wgpu::Features::TEXTURE_COMPRESSION_BC
}
fn required_downlevel_capabilities()->wgpu::DownlevelCapabilities{
wgpu::DownlevelCapabilities{
flags:wgpu::DownlevelFlags::empty(),
shader_model:wgpu::ShaderModel::Sm5,
..wgpu::DownlevelCapabilities::default()
}
}
pub fn required_limits()->wgpu::Limits{
wgpu::Limits::default()
}
struct SetupContextPartial1{
backends:wgpu::Backends,
instance:wgpu::Instance,
}
fn create_window(title:&str,event_loop:&winit::event_loop::EventLoop<()>)->Result<winit::window::Window,winit::error::OsError>{
let mut builder = winit::window::WindowBuilder::new();
builder = builder.with_title(title);
#[cfg(windows_OFF)] // TODO
{
use winit::platform::windows::WindowBuilderExtWindows;
builder = builder.with_no_redirection_bitmap(true);
}
builder.build(event_loop)
}
fn create_instance()->SetupContextPartial1{
let backends=wgpu::util::backend_bits_from_env().unwrap_or_else(wgpu::Backends::all);
let dx12_shader_compiler=wgpu::util::dx12_shader_compiler_from_env().unwrap_or_default();
SetupContextPartial1{
backends,
instance:wgpu::Instance::new(wgpu::InstanceDescriptor{
backends,
dx12_shader_compiler,
..Default::default()
}),
}
}
impl SetupContextPartial1{
fn create_surface<'a>(self,window:&'a winit::window::Window)->Result<SetupContextPartial2<'a>,wgpu::CreateSurfaceError>{
Ok(SetupContextPartial2{
backends:self.backends,
surface:self.instance.create_surface(window)?,
instance:self.instance,
})
}
}
struct SetupContextPartial2<'a>{
backends:wgpu::Backends,
instance:wgpu::Instance,
surface:wgpu::Surface<'a>,
}
impl<'a> SetupContextPartial2<'a>{
fn pick_adapter(self)->SetupContextPartial3<'a>{
let adapter;
//TODO: prefer adapter that implements optional features
//let optional_features=optional_features();
let required_features=required_features();
//no helper function smh gotta write it myself
let adapters=self.instance.enumerate_adapters(self.backends);
let mut chosen_adapter=None;
let mut chosen_adapter_score=0;
for adapter in adapters {
if !adapter.is_surface_supported(&self.surface) {
continue;
}
let score=match adapter.get_info().device_type{
wgpu::DeviceType::IntegratedGpu=>3,
wgpu::DeviceType::DiscreteGpu=>4,
wgpu::DeviceType::VirtualGpu=>2,
wgpu::DeviceType::Other|wgpu::DeviceType::Cpu=>1,
};
let adapter_features=adapter.features();
if chosen_adapter_score<score&&adapter_features.contains(required_features) {
chosen_adapter_score=score;
chosen_adapter=Some(adapter);
}
}
if let Some(maybe_chosen_adapter)=chosen_adapter{
adapter=maybe_chosen_adapter;
}else{
panic!("No suitable GPU adapters found on the system!");
}
let adapter_info=adapter.get_info();
println!("Using {} ({:?})", adapter_info.name, adapter_info.backend);
let required_downlevel_capabilities=required_downlevel_capabilities();
let downlevel_capabilities=adapter.get_downlevel_capabilities();
assert!(
downlevel_capabilities.shader_model >= required_downlevel_capabilities.shader_model,
"Adapter does not support the minimum shader model required to run this example: {:?}",
required_downlevel_capabilities.shader_model
);
assert!(
downlevel_capabilities
.flags
.contains(required_downlevel_capabilities.flags),
"Adapter does not support the downlevel capabilities required to run this example: {:?}",
required_downlevel_capabilities.flags - downlevel_capabilities.flags
);
SetupContextPartial3{
instance:self.instance,
surface:self.surface,
adapter,
}
}
}
struct SetupContextPartial3<'a>{
instance:wgpu::Instance,
surface:wgpu::Surface<'a>,
adapter:wgpu::Adapter,
}
impl<'a> SetupContextPartial3<'a>{
fn request_device(self)->SetupContextPartial4<'a>{
let optional_features=optional_features();
let required_features=required_features();
// Make sure we use the texture resolution limits from the adapter, so we can support images the size of the surface.
let needed_limits=required_limits().using_resolution(self.adapter.limits());
let trace_dir=std::env::var("WGPU_TRACE");
let (device, queue)=pollster::block_on(self.adapter
.request_device(
&wgpu::DeviceDescriptor {
label: None,
required_features: (optional_features & self.adapter.features()) | required_features,
required_limits: needed_limits,
},
trace_dir.ok().as_ref().map(std::path::Path::new),
))
.expect("Unable to find a suitable GPU adapter!");
SetupContextPartial4{
instance:self.instance,
surface:self.surface,
adapter:self.adapter,
device,
queue,
}
}
}
struct SetupContextPartial4<'a>{
instance:wgpu::Instance,
surface:wgpu::Surface<'a>,
adapter:wgpu::Adapter,
device:wgpu::Device,
queue:wgpu::Queue,
}
impl<'a> SetupContextPartial4<'a>{
fn configure_surface(self,size:&'a winit::dpi::PhysicalSize<u32>)->SetupContext<'a>{
let mut config=self.surface
.get_default_config(&self.adapter, size.width, size.height)
.expect("Surface isn't supported by the adapter.");
let surface_view_format=config.format.add_srgb_suffix();
config.view_formats.push(surface_view_format);
config.present_mode=wgpu::PresentMode::AutoNoVsync;
self.surface.configure(&self.device, &config);
SetupContext{
instance:self.instance,
surface:self.surface,
device:self.device,
queue:self.queue,
config,
}
}
}
pub struct SetupContext<'a>{
pub instance:wgpu::Instance,
pub surface:wgpu::Surface<'a>,
pub device:wgpu::Device,
pub queue:wgpu::Queue,
pub config:wgpu::SurfaceConfiguration,
}
pub fn setup_and_start(title:String){
let event_loop=winit::event_loop::EventLoop::new().unwrap();
println!("Initializing the surface...");
let partial_1=create_instance();
let window=create_window(title.as_str(),&event_loop).unwrap();
let partial_2=partial_1.create_surface(&window).unwrap();
let partial_3=partial_2.pick_adapter();
let partial_4=partial_3.request_device();
let size=window.inner_size();
let setup_context=partial_4.configure_surface(&size);
//dedicated thread to ping request redraw back and resize the window doesn't seem logical
let window=crate::window::WindowContextSetup::new(&setup_context,&window);
//the thread that spawns the physics thread
let window_thread=window.into_worker(setup_context);
println!("Entering event loop...");
let root_time=std::time::Instant::now();
run_event_loop(event_loop,window_thread,root_time).unwrap();
}
fn run_event_loop(
event_loop:winit::event_loop::EventLoop<()>,
mut window_thread:crate::compat_worker::QNWorker<TimedInstruction<WindowInstruction>>,
root_time:std::time::Instant
)->Result<(),winit::error::EventLoopError>{
event_loop.run(move |event,elwt|{
let time=integer::Time::from_nanos(root_time.elapsed().as_nanos() as i64);
// *control_flow=if cfg!(feature="metal-auto-capture"){
// winit::event_loop::ControlFlow::Exit
// }else{
// winit::event_loop::ControlFlow::Poll
// };
match event{
winit::event::Event::AboutToWait=>{
window_thread.send(TimedInstruction{time,instruction:WindowInstruction::RequestRedraw}).unwrap();
}
winit::event::Event::WindowEvent {
event:
// WindowEvent::Resized(size)
// | WindowEvent::ScaleFactorChanged {
// new_inner_size: &mut size,
// ..
// },
winit::event::WindowEvent::Resized(size),//ignoring scale factor changed for now because mutex bruh
window_id:_,
} => {
window_thread.send(TimedInstruction{time,instruction:WindowInstruction::Resize(size)}).unwrap();
}
winit::event::Event::WindowEvent{event,..}=>match event{
winit::event::WindowEvent::KeyboardInput{
event:
winit::event::KeyEvent {
logical_key: winit::keyboard::Key::Named(winit::keyboard::NamedKey::Escape),
state: winit::event::ElementState::Pressed,
..
},
..
}
|winit::event::WindowEvent::CloseRequested=>{
elwt.exit();
}
winit::event::WindowEvent::RedrawRequested=>{
window_thread.send(TimedInstruction{time,instruction:WindowInstruction::Render}).unwrap();
}
_=>{
window_thread.send(TimedInstruction{time,instruction:WindowInstruction::WindowEvent(event)}).unwrap();
}
},
winit::event::Event::DeviceEvent{
event,
..
} => {
window_thread.send(TimedInstruction{time,instruction:WindowInstruction::DeviceEvent(event)}).unwrap();
},
_=>{}
}
})
}

8
src/sweep.rs Normal file
View File

@ -0,0 +1,8 @@
//something that implements body + hitbox + transform can predict collision
impl crate::sweep::PredictCollision for Model {
fn predict_collision(&self,other:&Model) -> Option<crate::event::EventStruct> {
//math!
None
}
}

View File

@ -1,69 +1,50 @@
use crate::physics_worker::InputInstruction;
use strafesnet_common::integer;
use strafesnet_common::instruction::TimedInstruction;
pub enum WindowInstruction{
Resize(winit::dpi::PhysicalSize<u32>),
WindowEvent(winit::event::WindowEvent),
DeviceEvent(winit::event::DeviceEvent),
RequestRedraw,
Render,
pub struct WindowState{
//ok
}
impl WindowState{
fn resize(&mut self);
fn render(&self);
//holds thread handles to dispatch to
struct WindowContext<'a>{
manual_mouse_lock:bool,
mouse:crate::physics::MouseState,//std::sync::Arc<std::sync::Mutex<>>
screen_size:glam::UVec2,
user_settings:crate::settings::UserSettings,
window:&'a winit::window::Window,
physics_thread:crate::compat_worker::QNWorker<'a, TimedInstruction<crate::physics_worker::Instruction>>,
}
impl WindowContext<'_>{
fn get_middle_of_screen(&self)->winit::dpi::PhysicalPosition<f32>{
winit::dpi::PhysicalPosition::new(self.screen_size.x as f32/2.0,self.screen_size.y as f32/2.0)
}
fn window_event(&mut self,time:integer::Time,event: winit::event::WindowEvent) {
fn update(&mut self, window: &winit::window::Window, event: winit::event::WindowEvent) {
let time=integer::Time::from_nanos(self.start_time.elapsed().as_nanos() as i64);
match event {
winit::event::WindowEvent::DroppedFile(path)=>{
//blocking because it's simpler...
if let Some(indexed_model_instances)=crate::load_file(path){
self.physics_thread.send(TimedInstruction{time,instruction:crate::physics_worker::Instruction::ClearModels}).unwrap();
self.physics_thread.send(TimedInstruction{time,instruction:crate::physics_worker::Instruction::GenerateModels(indexed_model_instances)}).unwrap();
}
std::thread::spawn(move ||{
let indexed_model_instances=load_file(path);
self.render_thread.send(Instruction::Die(indexed_model_instances));
});
},
winit::event::WindowEvent::Focused(_state)=>{
winit::event::WindowEvent::Focused(state)=>{
//pause unpause
//recalculate pressed keys on focus
},
winit::event::WindowEvent::KeyboardInput{
event:winit::event::KeyEvent{state,logical_key,repeat:false,..},
winit::event::WindowEvent::KeyboardInput {
input:winit::event::KeyboardInput{state, virtual_keycode,..},
..
}=>{
let s=match state{
winit::event::ElementState::Pressed=>true,
winit::event::ElementState::Released=>false,
let s=match state {
winit::event::ElementState::Pressed => true,
winit::event::ElementState::Released => false,
};
match logical_key{
winit::keyboard::Key::Named(winit::keyboard::NamedKey::Tab)=>{
match virtual_keycode{
Some(winit::event::VirtualKeyCode::Tab)=>{
if s{
self.manual_mouse_lock=false;
match self.window.set_cursor_position(self.get_middle_of_screen()){
match window.set_cursor_position(winit::dpi::PhysicalPosition::new(self.graphics.camera.screen_size.x as f32/2.0, self.graphics.camera.screen_size.y as f32/2.0)){
Ok(())=>(),
Err(e)=>println!("Could not set cursor position: {:?}",e),
}
match self.window.set_cursor_grab(winit::window::CursorGrabMode::None){
match window.set_cursor_grab(winit::window::CursorGrabMode::None){
Ok(())=>(),
Err(e)=>println!("Could not release cursor: {:?}",e),
}
}else{
//if cursor is outside window don't lock but apparently there's no get pos function
//let pos=window.get_cursor_pos();
match self.window.set_cursor_grab(winit::window::CursorGrabMode::Locked){
match window.set_cursor_grab(winit::window::CursorGrabMode::Locked){
Ok(())=>(),
Err(_)=>{
match self.window.set_cursor_grab(winit::window::CursorGrabMode::Confined){
match window.set_cursor_grab(winit::window::CursorGrabMode::Confined){
Ok(())=>(),
Err(e)=>{
self.manual_mouse_lock=true;
@ -73,62 +54,62 @@ impl WindowContext<'_>{
}
}
}
self.window.set_cursor_visible(s);
window.set_cursor_visible(s);
},
winit::keyboard::Key::Named(winit::keyboard::NamedKey::F11)=>{
Some(winit::event::VirtualKeyCode::F11)=>{
if s{
if self.window.fullscreen().is_some(){
self.window.set_fullscreen(None);
if window.fullscreen().is_some(){
window.set_fullscreen(None);
}else{
self.window.set_fullscreen(Some(winit::window::Fullscreen::Borderless(None)));
window.set_fullscreen(Some(winit::window::Fullscreen::Borderless(None)));
}
}
},
winit::keyboard::Key::Named(winit::keyboard::NamedKey::Escape)=>{
Some(winit::event::VirtualKeyCode::Escape)=>{
if s{
self.manual_mouse_lock=false;
match self.window.set_cursor_grab(winit::window::CursorGrabMode::None){
match window.set_cursor_grab(winit::window::CursorGrabMode::None){
Ok(())=>(),
Err(e)=>println!("Could not release cursor: {:?}",e),
}
self.window.set_cursor_visible(true);
window.set_cursor_visible(true);
}
},
keycode=>{
if let Some(input_instruction)=match keycode{
winit::keyboard::Key::Named(winit::keyboard::NamedKey::Space)=>Some(InputInstruction::Jump(s)),
winit::keyboard::Key::Character(key)=>match key.as_str(){
"w"=>Some(InputInstruction::MoveForward(s)),
"a"=>Some(InputInstruction::MoveLeft(s)),
"s"=>Some(InputInstruction::MoveBack(s)),
"d"=>Some(InputInstruction::MoveRight(s)),
"e"=>Some(InputInstruction::MoveUp(s)),
"q"=>Some(InputInstruction::MoveDown(s)),
"z"=>Some(InputInstruction::Zoom(s)),
"r"=>if s{Some(InputInstruction::Reset)}else{None},
_=>None,
},
_=>None,
Some(keycode)=>{
if let Some(input_instruction)=match keycode {
winit::event::VirtualKeyCode::W => Some(InputInstruction::MoveForward(s)),
winit::event::VirtualKeyCode::A => Some(InputInstruction::MoveLeft(s)),
winit::event::VirtualKeyCode::S => Some(InputInstruction::MoveBack(s)),
winit::event::VirtualKeyCode::D => Some(InputInstruction::MoveRight(s)),
winit::event::VirtualKeyCode::E => Some(InputInstruction::MoveUp(s)),
winit::event::VirtualKeyCode::Q => Some(InputInstruction::MoveDown(s)),
winit::event::VirtualKeyCode::Space => Some(InputInstruction::Jump(s)),
winit::event::VirtualKeyCode::Z => Some(InputInstruction::Zoom(s)),
winit::event::VirtualKeyCode::R => if s{Some(InputInstruction::Reset)}else{None},
_ => None,
}{
self.physics_thread.send(TimedInstruction{
time,
instruction:crate::physics_worker::Instruction::Input(input_instruction),
instruction:input_instruction,
}).unwrap();
}
},
_=>(),
}
},
_=>(),
}
}
fn device_event(&mut self,time:integer::Time,event: winit::event::DeviceEvent) {
fn device_event(&mut self, window: &winit::window::Window, event: winit::event::DeviceEvent) {
//there's no way this is the best way get a timestamp.
let time=integer::Time::from_nanos(self.start_time.elapsed().as_nanos() as i64);
match event {
winit::event::DeviceEvent::MouseMotion {
delta,//these (f64,f64) are integers on my machine
} => {
if self.manual_mouse_lock{
match self.window.set_cursor_position(self.get_middle_of_screen()){
match window.set_cursor_position(winit::dpi::PhysicalPosition::new(self.graphics.camera.screen_size.x as f32/2.0, self.graphics.camera.screen_size.y as f32/2.0)){
Ok(())=>(),
Err(e)=>println!("Could not set cursor position: {:?}",e),
}
@ -140,7 +121,7 @@ impl WindowContext<'_>{
self.mouse.pos+=delta;
self.physics_thread.send(TimedInstruction{
time,
instruction:crate::physics_worker::Instruction::Input(InputInstruction::MoveMouse(self.mouse.pos)),
instruction:InputInstruction::MoveMouse(self.mouse.pos),
}).unwrap();
},
winit::event::DeviceEvent::MouseWheel {
@ -150,95 +131,22 @@ impl WindowContext<'_>{
if false{//self.physics.style.use_scroll{
self.physics_thread.send(TimedInstruction{
time,
instruction:crate::physics_worker::Instruction::Input(InputInstruction::Jump(true)),//activates the immediate jump path, but the style modifier prevents controls&CONTROL_JUMP bit from being set to auto jump
instruction:InputInstruction::Jump(true),//activates the immediate jump path, but the style modifier prevents controls&CONTROL_JUMP bit from being set to auto jump
}).unwrap();
}
}
_=>(),
}
}
}
pub struct WindowContextSetup<'a>{
user_settings:crate::settings::UserSettings,
window:&'a winit::window::Window,
physics:crate::physics::PhysicsState,
graphics:crate::graphics::GraphicsState,
}
impl<'a> WindowContextSetup<'a>{
pub fn new(context:&crate::setup::SetupContext,window:&'a winit::window::Window)->Self{
//wee
let user_settings=crate::settings::read_user_settings();
let args:Vec<String>=std::env::args().collect();
let indexed_model_instances=if args.len()==2{
crate::load_file(std::path::PathBuf::from(&args[1]))
}else{
None
}.unwrap_or(crate::default_models());
let mut physics=crate::physics::PhysicsState::default();
physics.load_user_settings(&user_settings);
physics.generate_models(&indexed_model_instances);
physics.spawn(indexed_model_instances.spawn_point);
let mut graphics=crate::graphics::GraphicsState::new(&context.device,&context.queue,&context.config);
graphics.load_user_settings(&user_settings);
graphics.generate_models(&context.device,&context.queue,indexed_model_instances);
Self{
user_settings,
window,
graphics,
physics,
pub fn create_window(title:&str,event_loop:&winit::event_loop::EventLoop<()>)->Result<winit::window::Window,winit::error::OsError>{
let mut builder = winit::window::WindowBuilder::new();
builder = builder.with_title(title);
#[cfg(windows_OFF)] // TODO
{
use winit::platform::windows::WindowBuilderExtWindows;
builder = builder.with_no_redirection_bitmap(true);
}
}
fn into_context(self,setup_context:crate::setup::SetupContext<'a>)->WindowContext<'a>{
let screen_size=glam::uvec2(setup_context.config.width,setup_context.config.height);
let graphics_thread=crate::graphics_worker::new(self.graphics,setup_context.config,setup_context.surface,setup_context.device,setup_context.queue);
WindowContext{
manual_mouse_lock:false,
mouse:crate::physics::MouseState::default(),
//make sure to update this!!!!!
screen_size,
user_settings:self.user_settings,
window:self.window,
physics_thread:crate::physics_worker::new(self.physics,graphics_thread),
}
}
pub fn into_worker(self,setup_context:crate::setup::SetupContext<'a>)->crate::compat_worker::QNWorker<'a,TimedInstruction<WindowInstruction>>{
let mut window_context=self.into_context(setup_context);
crate::compat_worker::QNWorker::new(move |ins:TimedInstruction<WindowInstruction>|{
match ins.instruction{
WindowInstruction::RequestRedraw=>{
window_context.window.request_redraw();
}
WindowInstruction::WindowEvent(window_event)=>{
window_context.window_event(ins.time,window_event);
},
WindowInstruction::DeviceEvent(device_event)=>{
window_context.device_event(ins.time,device_event);
},
WindowInstruction::Resize(size)=>{
window_context.physics_thread.send(
TimedInstruction{
time:ins.time,
instruction:crate::physics_worker::Instruction::Resize(size,window_context.user_settings.clone())
}
).unwrap();
}
WindowInstruction::Render=>{
window_context.physics_thread.send(
TimedInstruction{
time:ins.time,
instruction:crate::physics_worker::Instruction::Render
}
).unwrap();
}
}
})
builder.build(event_loop)
}
}

View File

@ -1,6 +1,6 @@
use std::thread;
use std::sync::{mpsc,Arc};
use parking_lot::Mutex;
use parking_lot::{Mutex,Condvar};
//WorkerPool
struct Pool(u32);
@ -104,15 +104,17 @@ QN = WorkerDescription{
}
*/
//None Output Worker does all its work internally from the perspective of the work submitter
pub struct QNWorker<'a,Task:Send>{
pub struct QNWorker<Task:Send> {
sender: mpsc::Sender<Task>,
handle:thread::ScopedJoinHandle<'a,()>,
}
impl<'a,Task:Send+'a> QNWorker<'a,Task>{
pub fn new<F:FnMut(Task)+Send+'a>(scope:&'a thread::Scope<'a,'_>,mut f:F)->QNWorker<'a,Task>{
impl<Task:Send+'static> QNWorker<Task>{
pub fn new<F:FnMut(Task)+Send+'static>(mut f:F)->Self{
let (sender,receiver)=mpsc::channel::<Task>();
let handle=scope.spawn(move ||{
let ret=Self {
sender,
};
thread::spawn(move ||{
loop {
match receiver.recv() {
Ok(task)=>f(task),
@ -123,10 +125,7 @@ impl<'a,Task:Send+'a> QNWorker<'a,Task>{
}
}
});
Self{
sender,
handle,
}
ret
}
pub fn send(&self,task:Task)->Result<(),mpsc::SendError<Task>>{
self.sender.send(task)
@ -140,51 +139,119 @@ IN = WorkerDescription{
}
*/
//Inputs are dropped if the worker is busy
pub struct INWorker<'a,Task:Send>{
sender: mpsc::SyncSender<Task>,
handle:thread::ScopedJoinHandle<'a,()>,
pub struct INWorker<Task:Clone>{
input:Arc<(Mutex<Task>,Condvar)>,
}
impl<'a,Task:Send+'a> INWorker<'a,Task>{
pub fn new<F:FnMut(Task)+Send+'a>(scope:&'a thread::Scope<'a,'_>,mut f:F)->INWorker<'a,Task>{
let (sender,receiver)=mpsc::sync_channel::<Task>(1);
let handle=scope.spawn(move ||{
impl<Task:Clone+Send+'static> INWorker<Task>{
pub fn new<F:FnMut(Task)+Send+'static>(task:Task,mut f:F)->Self{
let ret=Self {
input:Arc::new((Mutex::new(task),Condvar::new())),
};
let input=ret.input.clone();
thread::spawn(move ||{
loop {
match receiver.recv() {
Ok(task)=>f(task),
input.1.wait(&mut input.0.lock());
f(input.0.lock().clone());
}
});
ret
}
pub fn send(&self,task:Task){
*self.input.0.lock()=task;
self.input.1.notify_one();
}
}
//worker pools work by cloning a mpsc and passing it into the thread, the thread sends its results through that
//worker pools have a master thread that manages the pool so that the work submission thread does not need to implement async
pub struct QQWorkerPool<Task:Send,Value:Send>{
sender:mpsc::Sender<Task>,
queue:Arc<Mutex<std::collections::VecDeque<Value>>>,
}
impl<Task:Send+'static,Value:Send+'static> QQWorkerPool<Task,Value>{
pub fn new<F:Fn(Task)->Value+Send+'static>(pool_size:usize,f:F)->Self{
let (task_sender,task_receiver)=mpsc::channel::<Task>();
let (value_sender,value_receiver)=mpsc::channel::<Value>();
let ret=Self{
sender:task_sender,
queue:Arc::new(Mutex::new(std::collections::VecDeque::new())),
};
let mut queue_collect=ret.queue.clone();
let mut worker_senders=Vec::with_capacity(pool_size);
let mut active_workers_collect=Arc::new(Mutex::new(0usize));
let mut active_workers_dispatch=active_workers_collect.clone();
let mut condvar_collect=Arc::new(Condvar::new());
let mut condvar_dispatch=condvar_collect.clone();
//task dispatch thread
thread::spawn(move ||{
loop{
//block if no workers are available, value collection thread will notify
let n=*active_workers_dispatch.lock();
if n==pool_size{
//wait for notifiy
condvar_dispatch.wait(&mut active_workers_dispatch.lock());
}
match task_receiver.recv(){
Ok(task)=>{
*active_workers_dispatch.lock()+=1;
//workers are never full here
//else if workers busy: spawn a new worker
//else: send task to an available worker
}
Err(_)=>{
println!("Worker stopping.",);
println!("Dispatch stopping.",);
break;
}
}
}
});
Self{
sender,
handle,
}
//value collection thread (bad idea, put this logic in each thread)
thread::spawn(move ||{
loop{
match value_receiver.recv(){
Ok(value)=>{
//maybe I can be smart with this as a signal that a worker finished a task
let n=*active_workers_collect.lock();
*active_workers_collect.lock()-=1;
if n==pool_size{
condvar_collect.notify_one();
}
(*queue_collect.lock()).push_front(value);
}
Err(_)=>{
println!("Collection stopping.",);
break;
}
}
}
});
ret
}
//blocking!
pub fn blocking_send(&self,task:Task)->Result<(), mpsc::SendError<Task>>{
pub fn send(&self,task:Task)->Result<(),mpsc::SendError<Task>>{
self.sender.send(task)
}
pub fn send(&self,task:Task)->Result<(), mpsc::TrySendError<Task>>{
self.sender.try_send(task)
pub fn get(&self)->Option<Value>{
(*self.queue.lock()).pop_back()
}
}
#[test]//How to run this test with printing: cargo test --release -- --nocapture
fn test_worker() {
println!("hiiiii");
// Create the worker thread
let test_body=crate::physics::Body::new(crate::integer::Planar64Vec3::ONE,crate::integer::Planar64Vec3::ONE,crate::integer::Planar64Vec3::ONE,crate::integer::Time::ZERO);
let worker=QRWorker::new(crate::physics::Body::default(),
|_|crate::physics::Body::new(crate::integer::Planar64Vec3::ONE,crate::integer::Planar64Vec3::ONE,crate::integer::Planar64Vec3::ONE,crate::integer::Time::ZERO)
let worker=QRWorker::new(crate::physics::Body::with_pva(crate::integer::Planar64Vec3::ZERO,crate::integer::Planar64Vec3::ZERO,crate::integer::Planar64Vec3::ZERO),
|_|crate::physics::Body::with_pva(crate::integer::Planar64Vec3::ONE,crate::integer::Planar64Vec3::ONE,crate::integer::Planar64Vec3::ONE)
);
// Send tasks to the worker
for _ in 0..5 {
let task = strafesnet_common::instruction::TimedInstruction{
time:strafesnet_common::integer::Time::ZERO,
let task = crate::instruction::TimedInstruction{
time:crate::integer::Time::ZERO,
instruction:crate::physics::PhysicsInstruction::StrafeTick,
};
worker.send(task).unwrap();
@ -194,17 +261,17 @@ fn test_worker() {
// sender.send("STOP".to_string()).unwrap();
// Sleep to allow the worker thread to finish processing
thread::sleep(std::time::Duration::from_millis(10));
thread::sleep(std::time::Duration::from_secs(2));
// Send a new task
let task = strafesnet_common::instruction::TimedInstruction{
time:strafesnet_common::integer::Time::ZERO,
let task = crate::instruction::TimedInstruction{
time:crate::integer::Time::ZERO,
instruction:crate::physics::PhysicsInstruction::StrafeTick,
};
worker.send(task).unwrap();
//assert_eq!(test_body,worker.grab_clone());
println!("value={}",worker.grab_clone());
// wait long enough to see print from final task
thread::sleep(std::time::Duration::from_millis(10));
thread::sleep(std::time::Duration::from_secs(1));
}

32
src/zeroes.rs Normal file
View File

@ -0,0 +1,32 @@
//find roots of polynomials
use crate::integer::Planar64;
#[inline]
pub fn zeroes2(a0:Planar64,a1:Planar64,a2:Planar64) -> Vec<Planar64>{
if a2==Planar64::ZERO{
return zeroes1(a0, a1);
}
let radicand=a1.get() as i128*a1.get() as i128-a2.get() as i128*a0.get() as i128*4;
if 0<radicand {
//start with f64 sqrt
let planar_radicand=Planar64::raw(unsafe{(radicand as f64).sqrt().to_int_unchecked()});
//TODO: one or two newtons
if Planar64::ZERO<a2 {
return vec![(-a1-planar_radicand)/(a2*2),(-a1+planar_radicand)/(a2*2)];
} else {
return vec![(-a1+planar_radicand)/(a2*2),(-a1-planar_radicand)/(a2*2)];
}
} else if radicand==0 {
return vec![a1/(a2*-2)];
} else {
return vec![];
}
}
#[inline]
pub fn zeroes1(a0:Planar64,a1:Planar64) -> Vec<Planar64> {
if a1==Planar64::ZERO{
return vec![];
} else {
return vec![-a0/a1];
}
}

View File

@ -1 +0,0 @@
mangohud ../target/release/strafe-client bhop_maps/5692113331.rbxm

View File

@ -1 +0,0 @@
/run/media/quat/Files/Documents/map-files/verify-scripts/maps/bhop_all/

View File

@ -1 +0,0 @@
cargo build --release --target x86_64-pc-windows-gnu

View File

@ -1,4 +0,0 @@
mkdir -p ../target/demo
mv ../target/x86_64-pc-windows-gnu/release/strafe-client.exe ../target/demo/strafe-client.exe
rm ../target/demo.7z
7z a -t7z -mx=9 -mfb=273 -ms -md=31 -myx=9 -mtm=- -mmt -mmtf -md=1536m -mmf=bt3 -mmc=10000 -mpb=0 -mlc=0 ../target/demo.7z ../target/demo

View File

@ -1 +0,0 @@
mangohud ../target/release/strafe-client "$1"

View File

@ -1,4 +0,0 @@
[camera]
sensitivity_x=98384
fov_y=1.0
#fov_x_from_y_ratio=1.33333333333333333333333333333333

View File

@ -1 +0,0 @@
/run/media/quat/Files/Documents/map-files/verify-scripts/maps/surf_all/

View File

@ -1 +0,0 @@
/run/media/quat/Files/Documents/map-files/verify-scripts/textures/dds/

View File

@ -1 +0,0 @@
mangohud ../target/release/strafe-client bhop_maps/5692152916.rbxm

View File

@ -1 +0,0 @@
mangohud ../target/release/strafe-client surf_maps/5692145408.rbxm