Compare commits

..

5 Commits

Author SHA1 Message Date
c5922bf2b7 print edge -> face 2025-12-15 13:03:05 -08:00
ff990e1d9f the message prints when you fall through the log 2025-12-12 14:51:38 -08:00
e4f3418bc6 document PhysicsMesh 2025-12-11 09:36:21 -08:00
6ca6d5e484 expect dead code 2025-12-10 18:05:16 -08:00
0668ac2def use allow instead of expect 2025-12-09 14:39:42 -08:00
7 changed files with 25 additions and 129 deletions

View File

@@ -74,13 +74,13 @@ impl<F:Copy,M:MeshQuery<Normal=Vector3<F>,Offset=Fixed<4,128>>> FEV<M>
where
// This is hardcoded for MinkowskiMesh lol
M::Face:Copy,
M::Edge:Copy,
M::Vert:Copy,
M::Edge:Copy+core::fmt::Debug,
M::Vert:Copy+core::fmt::Debug,
F:core::ops::Mul<Fixed<1,32>,Output=Fixed<4,128>>,
<F as core::ops::Mul<Fixed<1,32>>>::Output:core::iter::Sum,
M::Offset:core::ops::Sub<<F as std::ops::Mul<Fixed<1,32>>>::Output>,
{
fn next_transition(&self,mesh:&M,body:&Body,lower_bound:Bound<GigaTime>,mut upper_bound:Bound<GigaTime>)->Transition<M>{
fn next_transition<const ENABLE_DEBUG:bool>(&self,mesh:&M,body:&Body,lower_bound:Bound<GigaTime>,mut upper_bound:Bound<GigaTime>)->Transition<M>{
//conflicting derivative means it crosses in the wrong direction.
//if the transition time is equal to an already tested transition, do not replace the current best.
let mut best_transition=Transition::Miss;
@@ -132,6 +132,9 @@ impl<F:Copy,M:MeshQuery<Normal=Vector3<F>,Offset=Fixed<4,128>>> FEV<M>
//wrap for speed
for dt in Fixed::<4,128>::zeroes2(n.dot(delta_pos).wrap_4(),n.dot(body.velocity).wrap_4()*2,n.dot(body.acceleration).wrap_4()){
if low(&lower_bound,&dt)&&upp(&dt,&upper_bound)&&n.dot(body.extrapolated_velocity_ratio_dt(dt)).is_negative(){
if ENABLE_DEBUG{
println!("Face Crawler FEV::Edge({edge_id:?}) -> FEV::Face");
}
upper_bound=Bound::Included(dt);
best_transition=Transition::Next(FEV::Face(edge_face_id),dt);
break;
@@ -160,6 +163,9 @@ impl<F:Copy,M:MeshQuery<Normal=Vector3<F>,Offset=Fixed<4,128>>> FEV<M>
let n=-mesh.directed_edge_n(directed_edge_id);
for dt in Fixed::<2,64>::zeroes2((n.dot(body.position-mesh.vert(vert_id)))*2,n.dot(body.velocity)*2,n.dot(body.acceleration)){
if low(&lower_bound,&dt)&&upp(&dt,&upper_bound)&&n.dot(body.extrapolated_velocity_ratio_dt(dt)).is_negative(){
if ENABLE_DEBUG{
println!("Face Crawler FEV::Vert({vert_id:?}) -> FEV::Edge");
}
let dt=Ratio::new(dt.num.widen_4(),dt.den.widen_4());
upper_bound=Bound::Included(dt);
best_transition=Transition::Next(FEV::Edge(directed_edge_id.as_undirected()),dt);
@@ -172,11 +178,11 @@ impl<F:Copy,M:MeshQuery<Normal=Vector3<F>,Offset=Fixed<4,128>>> FEV<M>
}
best_transition
}
pub fn crawl(mut self,mesh:&M,relative_body:&Body,lower_bound:Bound<&Time>,upper_bound:Bound<&Time>)->CrawlResult<M>{
pub fn crawl<const ENABLE_DEBUG:bool>(mut self,mesh:&M,relative_body:&Body,lower_bound:Bound<&Time>,upper_bound:Bound<&Time>)->CrawlResult<M>{
let mut lower_bound=lower_bound.map(|&t|into_giga_time(t,relative_body.time));
let upper_bound=upper_bound.map(|&t|into_giga_time(t,relative_body.time));
for _ in 0..20{
match self.next_transition(mesh,relative_body,lower_bound,upper_bound){
match self.next_transition::<ENABLE_DEBUG>(mesh,relative_body,lower_bound,upper_bound){
Transition::Miss=>return CrawlResult::Miss(self),
Transition::Next(next_fev,next_time)=>(self,lower_bound)=(next_fev,Bound::Included(next_time)),
Transition::Hit(face,time)=>return CrawlResult::Hit(face,time),

View File

@@ -1,9 +1,7 @@
mod body;
mod face_crawler;
mod mesh_query;
mod minkowski;
mod model;
mod push_solve;
mod face_crawler;
mod model;
pub mod physics;

View File

@@ -1,36 +0,0 @@
pub struct Vert<VertId>(pub VertId);
pub struct Edge<VertId>(pub VertId,pub VertId);
pub struct Face<VertId>(pub VertId,pub VertId,pub VertId);
pub enum FEV<VertId>{
Vert(Vert<VertId>),
Edge(Edge<VertId>),
Face(Face<VertId>),
}
pub trait MeshTopology{
type VertId;
fn for_each_vert_edge(&self,vert_id:Vert<Self::VertId>,f:impl FnMut(Edge<Self::VertId>));
fn for_each_vert_face(&self,vert_id:Vert<Self::VertId>,f:impl FnMut(Face<Self::VertId>));
fn edge_faces(&self,edge_id:Edge<Self::VertId>)->impl AsRef<[Face<Self::VertId>;2]>;
fn edge_verts(&self,edge_id:Edge<Self::VertId>)->impl AsRef<[Vert<Self::VertId>;2]>;
fn for_each_face_vert(&self,face_id:Face<Self::VertId>,f:impl FnMut(Vert<Self::VertId>));
fn for_each_face_edge(&self,face_id:Face<Self::VertId>,f:impl FnMut(Edge<Self::VertId>));
}
// Make face_nd d value relative
// euclidean point?
// Simplex physics
// Directed edge nucessary?
// recursive for_each function calls
// define faces from vertices (Fixed<2> vs Fixed<3>)
pub trait MeshQuery:MeshTopology{
type Position;
type Normal;
type Offset;
fn vert(&self,vert_id:Vert<Self::VertId>)->Self::Position;
/// This must return a point inside the mesh.
fn hint_point(&self)->Self::Position;
fn face_nd(&self,face_id:Face<Self::VertId>)->(Self::Normal,Self::Offset);
fn edge_n(&self,edge_id:Edge<Self::VertId>)->Self::Position;
}

View File

@@ -1,75 +0,0 @@
use crate::mesh_query::{MeshQuery,MeshTopology};
use crate::mesh_query::{Face,Edge,Vert};
struct AsRefHelper<T>(T);
impl<T> AsRef<T> for AsRefHelper<T>{
fn as_ref(&self)->&T{
&self.0
}
}
pub struct MinkowskiVert<V>{
vert0:V,
vert1:V,
}
pub struct Minkowski<M>{
mesh0:M,
mesh1:M,
}
impl<M> Minkowski<M>{
pub fn sum(mesh0:M,mesh1:M)->Self{
Self{mesh0,mesh1}
}
}
impl<M:MeshTopology> MeshTopology for Minkowski<M>{
type VertId=MinkowskiVert<M::VertId>;
fn for_each_vert_edge(&self,vert_id:Vert<Self::VertId>,f:impl FnMut(Edge<Self::VertId>)){
todo!()
}
fn for_each_vert_face(&self,vert_id:Vert<Self::VertId>,f:impl FnMut(Face<Self::VertId>)){
todo!()
}
fn edge_faces(&self,edge_id:Edge<Self::VertId>)->impl AsRef<[Face<Self::VertId>;2]>{
AsRefHelper(todo!())
}
fn edge_verts(&self,edge_id:Edge<Self::VertId>)->impl AsRef<[Vert<Self::VertId>;2]>{
AsRefHelper(todo!())
}
fn for_each_face_vert(&self,face_id:Face<Self::VertId>,f:impl FnMut(Vert<Self::VertId>)){
todo!()
}
fn for_each_face_edge(&self,face_id:Face<Self::VertId>,f:impl FnMut(Edge<Self::VertId>)){
todo!()
}
}
use strafesnet_common::integer::vec3::Vector3;
use strafesnet_common::integer::Fixed;
impl<M> MeshQuery for Minkowski<M>
where
M:MeshQuery<
Position=Vector3<Fixed<1,32>>,
Normal=Vector3<Fixed<3,96>>,
Offset=Fixed<4,128>,
>
{
type Position=M::Position;
type Normal=M::Normal;
type Offset=M::Offset;
fn vert(&self,vert_id:Vert<Self::VertId>)->Self::Position{
let Vert(MinkowskiVert{vert0,vert1})=vert_id;
self.mesh1.vert(Vert(vert1))-self.mesh0.vert(Vert(vert0))
}
fn hint_point(&self)->Self::Position{
self.mesh1.hint_point()-self.mesh0.hint_point()
}
fn face_nd(&self,face_id:Face<Self::VertId>)->(Self::Normal,Self::Offset){
todo!()
}
fn edge_n(&self,edge_id:Edge<Self::VertId>)->Self::Position{
todo!()
}
}

View File

@@ -91,6 +91,7 @@ pub trait MeshQuery{
(self.vert(v1)-self.vert(v0))*((directed_edge_id.parity() as i64)*2-1)
}
/// This must return a point inside the mesh.
#[expect(dead_code)]
fn hint_point(&self)->Planar64Vec3;
fn vert(&self,vert_id:Self::Vert)->Planar64Vec3;
fn face_nd(&self,face_id:Self::Face)->(Self::Normal,Self::Offset);
@@ -102,17 +103,21 @@ pub trait MeshQuery{
}
#[derive(Debug)]
struct FaceRefs{
// I didn't write it down, but I assume the edges are directed
// clockwise when looking towards the face normal, i.e. right hand rule.
edges:Vec<SubmeshDirectedEdgeId>,
//verts are redundant, use edge[i].verts[0]
//verts:Vec<VertId>,
}
#[derive(Debug)]
struct EdgeRefs{
faces:[SubmeshFaceId;2],//left, right
verts:[SubmeshVertId;2],//bottom, top
verts:[SubmeshVertId;2],//start, end
}
#[derive(Debug)]
struct VertRefs{
faces:Vec<SubmeshFaceId>,
// edges are always directed away from the vert
edges:Vec<SubmeshDirectedEdgeId>,
}
#[derive(Debug)]
@@ -761,13 +766,13 @@ impl MinkowskiMesh<'_>{
infinity_body.velocity=dir;
infinity_body.acceleration=vec3::zero();
//crawl in from negative infinity along a tangent line to get the closest fev
infinity_fev.crawl(self,&infinity_body,Bound::Unbounded,start_time).miss()
infinity_fev.crawl::<false>(self,&infinity_body,Bound::Unbounded,start_time).miss()
})
}
pub fn predict_collision_in(&self,relative_body:&Body,range:impl RangeBounds<Time>)->Option<(MinkowskiFace,GigaTime)>{
self.closest_fev_not_inside(*relative_body,range.start_bound()).and_then(|fev|{
//continue forwards along the body parabola
fev.crawl(self,relative_body,range.start_bound(),range.end_bound()).hit()
fev.crawl::<true>(self,relative_body,range.start_bound(),range.end_bound()).hit()
})
}
pub fn predict_collision_out(&self,relative_body:&Body,range:impl RangeBounds<Time>)->Option<(MinkowskiFace,GigaTime)>{
@@ -777,7 +782,7 @@ impl MinkowskiMesh<'_>{
let infinity_body=-relative_body;
self.closest_fev_not_inside(infinity_body,lower_bound.as_ref()).and_then(|fev|{
//continue backwards along the body parabola
fev.crawl(self,&infinity_body,lower_bound.as_ref(),upper_bound.as_ref()).hit()
fev.crawl::<true>(self,&infinity_body,lower_bound.as_ref(),upper_bound.as_ref()).hit()
//no need to test -time<time_limit because of the first step
.map(|(face,time)|(face,-time))
})
@@ -813,7 +818,7 @@ impl MinkowskiMesh<'_>{
fn infinity_in(&self,infinity_body:Body)->Option<(MinkowskiFace,GigaTime)>{
let infinity_fev=self.infinity_fev(-infinity_body.velocity,infinity_body.position);
// Bound::Included means that the surface of the mesh is included in the mesh
infinity_fev.crawl(self,&infinity_body,Bound::Unbounded,Bound::Included(&infinity_body.time)).hit()
infinity_fev.crawl::<false>(self,&infinity_body,Bound::Unbounded,Bound::Included(&infinity_body.time)).hit()
}
pub fn is_point_in_mesh(&self,point:Planar64Vec3)->bool{
let infinity_body=Body::new(point,vec3::Y,vec3::zero(),Time::ZERO);

View File

@@ -1,2 +0,0 @@
// PhysicsMesh
// TransformedMesh?

View File

@@ -366,7 +366,7 @@ impl_additive_operator!( Fixed, BitXor, bitxor, Self );
// non-wide operators. The result is the same width as the inputs.
// This macro is not used in the default configuration.
#[allow(unused_macros)]
#[expect(unused_macros)]
macro_rules! impl_multiplicative_operator_not_const_generic {
( ($struct: ident, $trait: ident, $method: ident, $output: ty ), $width:expr ) => {
impl<const F:usize> core::ops::$trait for $struct<$width,F>{
@@ -545,7 +545,7 @@ impl_shift_operator!( Fixed, Shr, shr, Self );
// wide operators. The result width is the sum of the input widths, i.e. none of the multiplication
#[allow(unused_macros)]
#[expect(unused_macros)]
macro_rules! impl_wide_operators{
($lhs:expr,$rhs:expr)=>{
impl core::ops::Mul<Fixed<$rhs,{$rhs*32}>> for Fixed<$lhs,{$lhs*32}>{