Compare commits

...

2 Commits

Author SHA1 Message Date
c5922bf2b7 print edge -> face 2025-12-15 13:03:05 -08:00
ff990e1d9f the message prints when you fall through the log 2025-12-12 14:51:38 -08:00
2 changed files with 15 additions and 9 deletions

View File

@@ -74,13 +74,13 @@ impl<F:Copy,M:MeshQuery<Normal=Vector3<F>,Offset=Fixed<4,128>>> FEV<M>
where where
// This is hardcoded for MinkowskiMesh lol // This is hardcoded for MinkowskiMesh lol
M::Face:Copy, M::Face:Copy,
M::Edge:Copy, M::Edge:Copy+core::fmt::Debug,
M::Vert:Copy, M::Vert:Copy+core::fmt::Debug,
F:core::ops::Mul<Fixed<1,32>,Output=Fixed<4,128>>, F:core::ops::Mul<Fixed<1,32>,Output=Fixed<4,128>>,
<F as core::ops::Mul<Fixed<1,32>>>::Output:core::iter::Sum, <F as core::ops::Mul<Fixed<1,32>>>::Output:core::iter::Sum,
M::Offset:core::ops::Sub<<F as std::ops::Mul<Fixed<1,32>>>::Output>, M::Offset:core::ops::Sub<<F as std::ops::Mul<Fixed<1,32>>>::Output>,
{ {
fn next_transition(&self,mesh:&M,body:&Body,lower_bound:Bound<GigaTime>,mut upper_bound:Bound<GigaTime>)->Transition<M>{ fn next_transition<const ENABLE_DEBUG:bool>(&self,mesh:&M,body:&Body,lower_bound:Bound<GigaTime>,mut upper_bound:Bound<GigaTime>)->Transition<M>{
//conflicting derivative means it crosses in the wrong direction. //conflicting derivative means it crosses in the wrong direction.
//if the transition time is equal to an already tested transition, do not replace the current best. //if the transition time is equal to an already tested transition, do not replace the current best.
let mut best_transition=Transition::Miss; let mut best_transition=Transition::Miss;
@@ -132,6 +132,9 @@ impl<F:Copy,M:MeshQuery<Normal=Vector3<F>,Offset=Fixed<4,128>>> FEV<M>
//wrap for speed //wrap for speed
for dt in Fixed::<4,128>::zeroes2(n.dot(delta_pos).wrap_4(),n.dot(body.velocity).wrap_4()*2,n.dot(body.acceleration).wrap_4()){ for dt in Fixed::<4,128>::zeroes2(n.dot(delta_pos).wrap_4(),n.dot(body.velocity).wrap_4()*2,n.dot(body.acceleration).wrap_4()){
if low(&lower_bound,&dt)&&upp(&dt,&upper_bound)&&n.dot(body.extrapolated_velocity_ratio_dt(dt)).is_negative(){ if low(&lower_bound,&dt)&&upp(&dt,&upper_bound)&&n.dot(body.extrapolated_velocity_ratio_dt(dt)).is_negative(){
if ENABLE_DEBUG{
println!("Face Crawler FEV::Edge({edge_id:?}) -> FEV::Face");
}
upper_bound=Bound::Included(dt); upper_bound=Bound::Included(dt);
best_transition=Transition::Next(FEV::Face(edge_face_id),dt); best_transition=Transition::Next(FEV::Face(edge_face_id),dt);
break; break;
@@ -160,6 +163,9 @@ impl<F:Copy,M:MeshQuery<Normal=Vector3<F>,Offset=Fixed<4,128>>> FEV<M>
let n=-mesh.directed_edge_n(directed_edge_id); let n=-mesh.directed_edge_n(directed_edge_id);
for dt in Fixed::<2,64>::zeroes2((n.dot(body.position-mesh.vert(vert_id)))*2,n.dot(body.velocity)*2,n.dot(body.acceleration)){ for dt in Fixed::<2,64>::zeroes2((n.dot(body.position-mesh.vert(vert_id)))*2,n.dot(body.velocity)*2,n.dot(body.acceleration)){
if low(&lower_bound,&dt)&&upp(&dt,&upper_bound)&&n.dot(body.extrapolated_velocity_ratio_dt(dt)).is_negative(){ if low(&lower_bound,&dt)&&upp(&dt,&upper_bound)&&n.dot(body.extrapolated_velocity_ratio_dt(dt)).is_negative(){
if ENABLE_DEBUG{
println!("Face Crawler FEV::Vert({vert_id:?}) -> FEV::Edge");
}
let dt=Ratio::new(dt.num.widen_4(),dt.den.widen_4()); let dt=Ratio::new(dt.num.widen_4(),dt.den.widen_4());
upper_bound=Bound::Included(dt); upper_bound=Bound::Included(dt);
best_transition=Transition::Next(FEV::Edge(directed_edge_id.as_undirected()),dt); best_transition=Transition::Next(FEV::Edge(directed_edge_id.as_undirected()),dt);
@@ -172,11 +178,11 @@ impl<F:Copy,M:MeshQuery<Normal=Vector3<F>,Offset=Fixed<4,128>>> FEV<M>
} }
best_transition best_transition
} }
pub fn crawl(mut self,mesh:&M,relative_body:&Body,lower_bound:Bound<&Time>,upper_bound:Bound<&Time>)->CrawlResult<M>{ pub fn crawl<const ENABLE_DEBUG:bool>(mut self,mesh:&M,relative_body:&Body,lower_bound:Bound<&Time>,upper_bound:Bound<&Time>)->CrawlResult<M>{
let mut lower_bound=lower_bound.map(|&t|into_giga_time(t,relative_body.time)); let mut lower_bound=lower_bound.map(|&t|into_giga_time(t,relative_body.time));
let upper_bound=upper_bound.map(|&t|into_giga_time(t,relative_body.time)); let upper_bound=upper_bound.map(|&t|into_giga_time(t,relative_body.time));
for _ in 0..20{ for _ in 0..20{
match self.next_transition(mesh,relative_body,lower_bound,upper_bound){ match self.next_transition::<ENABLE_DEBUG>(mesh,relative_body,lower_bound,upper_bound){
Transition::Miss=>return CrawlResult::Miss(self), Transition::Miss=>return CrawlResult::Miss(self),
Transition::Next(next_fev,next_time)=>(self,lower_bound)=(next_fev,Bound::Included(next_time)), Transition::Next(next_fev,next_time)=>(self,lower_bound)=(next_fev,Bound::Included(next_time)),
Transition::Hit(face,time)=>return CrawlResult::Hit(face,time), Transition::Hit(face,time)=>return CrawlResult::Hit(face,time),

View File

@@ -766,13 +766,13 @@ impl MinkowskiMesh<'_>{
infinity_body.velocity=dir; infinity_body.velocity=dir;
infinity_body.acceleration=vec3::zero(); infinity_body.acceleration=vec3::zero();
//crawl in from negative infinity along a tangent line to get the closest fev //crawl in from negative infinity along a tangent line to get the closest fev
infinity_fev.crawl(self,&infinity_body,Bound::Unbounded,start_time).miss() infinity_fev.crawl::<false>(self,&infinity_body,Bound::Unbounded,start_time).miss()
}) })
} }
pub fn predict_collision_in(&self,relative_body:&Body,range:impl RangeBounds<Time>)->Option<(MinkowskiFace,GigaTime)>{ pub fn predict_collision_in(&self,relative_body:&Body,range:impl RangeBounds<Time>)->Option<(MinkowskiFace,GigaTime)>{
self.closest_fev_not_inside(*relative_body,range.start_bound()).and_then(|fev|{ self.closest_fev_not_inside(*relative_body,range.start_bound()).and_then(|fev|{
//continue forwards along the body parabola //continue forwards along the body parabola
fev.crawl(self,relative_body,range.start_bound(),range.end_bound()).hit() fev.crawl::<true>(self,relative_body,range.start_bound(),range.end_bound()).hit()
}) })
} }
pub fn predict_collision_out(&self,relative_body:&Body,range:impl RangeBounds<Time>)->Option<(MinkowskiFace,GigaTime)>{ pub fn predict_collision_out(&self,relative_body:&Body,range:impl RangeBounds<Time>)->Option<(MinkowskiFace,GigaTime)>{
@@ -782,7 +782,7 @@ impl MinkowskiMesh<'_>{
let infinity_body=-relative_body; let infinity_body=-relative_body;
self.closest_fev_not_inside(infinity_body,lower_bound.as_ref()).and_then(|fev|{ self.closest_fev_not_inside(infinity_body,lower_bound.as_ref()).and_then(|fev|{
//continue backwards along the body parabola //continue backwards along the body parabola
fev.crawl(self,&infinity_body,lower_bound.as_ref(),upper_bound.as_ref()).hit() fev.crawl::<true>(self,&infinity_body,lower_bound.as_ref(),upper_bound.as_ref()).hit()
//no need to test -time<time_limit because of the first step //no need to test -time<time_limit because of the first step
.map(|(face,time)|(face,-time)) .map(|(face,time)|(face,-time))
}) })
@@ -818,7 +818,7 @@ impl MinkowskiMesh<'_>{
fn infinity_in(&self,infinity_body:Body)->Option<(MinkowskiFace,GigaTime)>{ fn infinity_in(&self,infinity_body:Body)->Option<(MinkowskiFace,GigaTime)>{
let infinity_fev=self.infinity_fev(-infinity_body.velocity,infinity_body.position); let infinity_fev=self.infinity_fev(-infinity_body.velocity,infinity_body.position);
// Bound::Included means that the surface of the mesh is included in the mesh // Bound::Included means that the surface of the mesh is included in the mesh
infinity_fev.crawl(self,&infinity_body,Bound::Unbounded,Bound::Included(&infinity_body.time)).hit() infinity_fev.crawl::<false>(self,&infinity_body,Bound::Unbounded,Bound::Included(&infinity_body.time)).hit()
} }
pub fn is_point_in_mesh(&self,point:Planar64Vec3)->bool{ pub fn is_point_in_mesh(&self,point:Planar64Vec3)->bool{
let infinity_body=Body::new(point,vec3::Y,vec3::zero(),Time::ZERO); let infinity_body=Body::new(point,vec3::Y,vec3::zero(),Time::ZERO);