strafe-project/src/physics.rs

1292 lines
44 KiB
Rust
Raw Normal View History

2023-09-18 13:20:51 -07:00
use crate::{instruction::{InstructionEmitter, InstructionConsumer, TimedInstruction}, zeroes::zeroes2};
2023-09-08 12:03:32 -07:00
2023-09-27 02:12:20 -07:00
use crate::integer::{Time,Planar64,Planar64Vec3,Planar64Mat3,Angle32,Ratio64,Ratio64Vec2};
2023-09-18 18:34:48 -07:00
#[derive(Debug)]
2023-09-08 17:34:26 -07:00
pub enum PhysicsInstruction {
2023-09-08 17:00:50 -07:00
CollisionStart(RelativeCollision),
CollisionEnd(RelativeCollision),
StrafeTick,
2023-09-08 20:14:18 -07:00
ReachWalkTargetVelocity,
// Water,
// Spawn(
// Option<SpawnId>,
// bool,//true = Trigger; false = teleport
// bool,//true = Force
// )
2023-09-19 17:53:29 -07:00
//InputInstructions conditionally activate RefreshWalkTarget (by doing what SetWalkTargetVelocity used to do and then flagging it)
2023-10-04 20:04:04 -07:00
Input(PhysicsInputInstruction),
}
#[derive(Debug)]
pub enum PhysicsInputInstruction {
ReplaceMouse(MouseState,MouseState),
SetNextMouse(MouseState),
SetMoveRight(bool),
SetMoveUp(bool),
2023-10-10 15:33:32 -07:00
SetMoveBack(bool),
SetMoveLeft(bool),
2023-10-04 20:04:04 -07:00
SetMoveDown(bool),
2023-10-10 15:33:32 -07:00
SetMoveForward(bool),
2023-10-04 20:04:04 -07:00
SetJump(bool),
SetZoom(bool),
Reset,
Idle,
2023-09-19 17:53:29 -07:00
}
#[derive(Debug)]
pub enum InputInstruction {
MoveMouse(glam::IVec2),
MoveRight(bool),
MoveUp(bool),
2023-10-10 15:33:32 -07:00
MoveBack(bool),
MoveLeft(bool),
2023-09-19 17:53:29 -07:00
MoveDown(bool),
2023-10-10 15:33:32 -07:00
MoveForward(bool),
2023-09-19 17:53:29 -07:00
Jump(bool),
Zoom(bool),
Reset,
Idle,
//Idle: there were no input events, but the simulation is safe to advance to this timestep
//for interpolation / networking / playback reasons, most playback heads will always want
//to be 1 instruction ahead to generate the next state for interpolation.
2023-09-08 17:00:50 -07:00
}
2023-09-27 02:12:20 -07:00
#[derive(Clone,Hash)]
2023-09-08 11:33:16 -07:00
pub struct Body {
2023-09-27 02:12:20 -07:00
position: Planar64Vec3,//I64 where 2^32 = 1 u
velocity: Planar64Vec3,//I64 where 2^32 = 1 u/s
acceleration: Planar64Vec3,//I64 where 2^32 = 1 u/s/s
time:Time,//nanoseconds x xxxxD!
2023-09-18 21:10:07 -07:00
}
2023-09-08 20:14:18 -07:00
pub enum MoveRestriction {
Air,
Water,
Ground,
Ladder,//multiple ladders how
2023-09-08 11:33:16 -07:00
}
2023-09-19 17:53:29 -07:00
/*
2023-09-10 13:24:47 -07:00
enum InputInstruction {
}
2023-09-10 14:13:24 -07:00
struct InputState {
}
impl InputState {
pub fn get_control(&self,control:u32) -> bool {
self.controls&control!=0
}
2023-09-19 17:53:29 -07:00
}
impl crate::instruction::InstructionEmitter<InputInstruction> for InputState{
2023-09-27 02:12:20 -07:00
fn next_instruction(&self, time_limit:crate::body::Time) -> Option<TimedInstruction<InputInstruction>> {
2023-10-04 14:01:06 -07:00
//this is polled by PhysicsState for actions like Jump
//no, it has to be the other way around. physics is run up until the jump instruction, and then the jump instruction is pushed.
self.queue.get(0)
2023-09-19 17:53:29 -07:00
}
}
impl crate::instruction::InstructionConsumer<InputInstruction> for InputState{
fn process_instruction(&mut self,ins:TimedInstruction<InputInstruction>){
//add to queue
self.queue.push(ins);
2023-09-12 00:05:30 -07:00
}
2023-09-10 14:13:24 -07:00
}
2023-09-19 17:53:29 -07:00
*/
2023-09-10 14:13:24 -07:00
2023-10-02 22:45:48 -07:00
//hey dumbass just use a delta
2023-10-04 20:04:04 -07:00
#[derive(Clone,Debug)]
pub struct MouseState {
pub pos: glam::IVec2,
2023-09-27 02:12:20 -07:00
pub time:Time,
2023-09-10 13:24:47 -07:00
}
2023-10-04 20:04:04 -07:00
impl Default for MouseState{
fn default() -> Self {
2023-09-19 17:53:29 -07:00
Self {
2023-09-27 02:12:20 -07:00
time:Time::ZERO,
2023-10-04 20:04:04 -07:00
pos:glam::IVec2::ZERO,
2023-09-19 17:53:29 -07:00
}
}
2023-10-04 20:04:04 -07:00
}
impl MouseState {
2023-09-27 02:12:20 -07:00
pub fn lerp(&self,target:&MouseState,time:Time)->glam::IVec2 {
2023-10-04 20:04:04 -07:00
let m0=self.pos.as_i64vec2();
let m1=target.pos.as_i64vec2();
//these are deltas
2023-09-27 02:12:20 -07:00
let t1t=(target.time-time).nanos();
let tt0=(time-self.time).nanos();
let dt=(target.time-self.time).nanos();
2023-10-04 20:04:04 -07:00
((m0*t1t+m1*tt0)/dt).as_ivec2()
2023-09-10 13:24:47 -07:00
}
}
pub enum WalkEnum{
Reached,
Transient,
}
2023-09-18 21:10:07 -07:00
pub struct WalkState {
2023-09-27 02:12:20 -07:00
pub target_velocity: Planar64Vec3,
pub target_time: Time,
pub state: WalkEnum,
2023-09-18 21:10:07 -07:00
}
impl WalkState {
pub fn new() -> Self {
Self{
2023-09-27 02:12:20 -07:00
target_velocity:Planar64Vec3::ZERO,
target_time:Time::ZERO,
2023-09-19 17:53:29 -07:00
state:WalkEnum::Reached,
2023-09-18 21:10:07 -07:00
}
}
}
2023-09-27 02:12:20 -07:00
2023-10-04 20:04:04 -07:00
#[derive(Clone)]
pub struct PhysicsCamera {
2023-09-27 02:12:20 -07:00
offset: Planar64Vec3,
//punch: Planar64Vec3,
//punch_velocity: Planar64Vec3,
sensitivity:Ratio64Vec2,//dots to Angle32 ratios
mouse:MouseState,//last seen absolute mouse pos
clamped_mouse_pos:glam::IVec2,//angles are calculated from this cumulative value
angle_pitch_lower_limit:Angle32,
angle_pitch_upper_limit:Angle32,
//angle limits could be an enum + struct that defines whether it's limited and selects clamp or wrap depending
// enum AngleLimit{
// Unlimited,
// Limited{lower:Angle32,upper:Angle32},
// }
//pitch_limit:AngleLimit,
//yaw_limit:AngleLimit,
2023-09-19 17:53:29 -07:00
}
2023-10-04 20:04:04 -07:00
impl PhysicsCamera {
2023-09-27 02:12:20 -07:00
pub fn from_offset(offset:Planar64Vec3) -> Self {
2023-09-19 17:53:29 -07:00
Self{
2023-10-04 14:01:06 -07:00
offset,
2023-09-27 02:12:20 -07:00
sensitivity:Ratio64Vec2::ONE*200_000,
mouse:MouseState::default(),//t=0 does not cause divide by zero because it's immediately replaced
clamped_mouse_pos:glam::IVec2::ZERO,
angle_pitch_lower_limit:-Angle32::FRAC_PI_2,
angle_pitch_upper_limit:Angle32::FRAC_PI_2,
2023-09-19 17:53:29 -07:00
}
}
2023-09-27 02:12:20 -07:00
pub fn move_mouse(&mut self,mouse_pos:glam::IVec2){
let mut unclamped_mouse_pos=self.clamped_mouse_pos+mouse_pos-self.mouse.pos;
unclamped_mouse_pos.y=unclamped_mouse_pos.y.clamp(
self.sensitivity.y.rhs_div_int(self.angle_pitch_lower_limit.get() as i64) as i32,
self.sensitivity.y.rhs_div_int(self.angle_pitch_upper_limit.get() as i64) as i32,
);
self.clamped_mouse_pos=unclamped_mouse_pos;
2023-09-19 17:53:29 -07:00
}
2023-09-27 02:12:20 -07:00
pub fn simulate_move_angles(&self,mouse_pos:glam::IVec2)->glam::Vec2 {
let a=-self.sensitivity.mul_int((mouse_pos-self.mouse.pos+self.clamped_mouse_pos).as_i64vec2());
let ax=Angle32::wrap_from_i64(a.x);
let ay=Angle32::clamp_from_i64(a.y)
//clamp to actual vertical cam limit
.clamp(self.angle_pitch_lower_limit,self.angle_pitch_upper_limit);
return glam::vec2(ax.into(),ay.into());
}
fn simulate_move_rotation_y(&self,mouse_pos_x:i32)->Planar64Mat3{
let ax=-self.sensitivity.x.mul_int((mouse_pos_x-self.mouse.pos.x+self.clamped_mouse_pos.x) as i64);
Planar64Mat3::from_rotation_y(Angle32::wrap_from_i64(ax))
2023-09-19 17:53:29 -07:00
}
}
2023-10-02 22:45:20 -07:00
pub struct GameMechanicsState{
pub stage_id:u32,
2023-10-02 22:45:20 -07:00
//jump_counts:HashMap<u32,u32>,
}
impl std::default::Default for GameMechanicsState{
fn default() -> Self {
Self{
stage_id:0,
2023-10-02 22:45:20 -07:00
}
}
}
pub struct WorldState{}
pub struct StyleModifiers{
pub controls_mask:u32,//controls which are unable to be activated
pub controls_held:u32,//controls which must be active to be able to strafe
2023-10-14 14:51:13 -07:00
pub strafe_tick_rate:Ratio64,
pub jump_time:Time,
2023-09-27 02:12:20 -07:00
pub mv:Planar64,
pub walkspeed:Planar64,
pub friction:Planar64,
pub walk_accel:Planar64,
pub gravity:Planar64Vec3,
pub hitbox_halfsize:Planar64Vec3,
2023-10-02 22:45:20 -07:00
}
impl std::default::Default for StyleModifiers{
fn default() -> Self {
Self{
2023-10-03 17:31:30 -07:00
controls_mask: !0,//&!(Self::CONTROL_MOVEUP|Self::CONTROL_MOVEDOWN),
2023-10-02 22:45:20 -07:00
controls_held: 0,
2023-09-27 02:12:20 -07:00
strafe_tick_rate:Ratio64::new(100,Time::ONE_SECOND.nanos() as u64).unwrap(),
2023-10-14 14:51:13 -07:00
jump_time: Time::from_nanos(715_588_000/2*100),//0.715588/2.0*100.0
2023-09-27 02:12:20 -07:00
gravity: Planar64Vec3::int(0,-100,0),
friction: Planar64::int(12)/10,
walk_accel: Planar64::int(90),
mv: Planar64::int(27)/10,
walkspeed: Planar64::int(18),
hitbox_halfsize: Planar64Vec3::int(2,5,2)/2,
2023-10-02 22:45:20 -07:00
}
}
}
2023-10-03 16:52:45 -07:00
impl StyleModifiers{
2023-09-27 02:12:20 -07:00
const CONTROL_MOVEFORWARD:u32=0b00000001;
const CONTROL_MOVEBACK:u32=0b00000010;
const CONTROL_MOVERIGHT:u32=0b00000100;
const CONTROL_MOVELEFT:u32=0b00001000;
const CONTROL_MOVEUP:u32=0b00010000;
const CONTROL_MOVEDOWN:u32=0b00100000;
const CONTROL_JUMP:u32=0b01000000;
const CONTROL_ZOOM:u32=0b10000000;
2023-10-03 16:52:45 -07:00
2023-09-27 02:12:20 -07:00
const RIGHT_DIR:Planar64Vec3=Planar64Vec3::X;
const UP_DIR:Planar64Vec3=Planar64Vec3::Y;
const FORWARD_DIR:Planar64Vec3=Planar64Vec3::NEG_Z;
2023-10-03 16:52:45 -07:00
fn get_control(&self,control:u32,controls:u32)->bool{
2023-10-04 20:04:04 -07:00
controls&self.controls_mask&control==control
2023-10-03 16:52:45 -07:00
}
2023-09-27 02:12:20 -07:00
fn get_control_dir(&self,controls:u32)->Planar64Vec3{
2023-10-03 16:52:45 -07:00
//don't get fancy just do it
2023-09-27 02:12:20 -07:00
let mut control_dir:Planar64Vec3 = Planar64Vec3::ZERO;
2023-10-03 16:52:45 -07:00
//Disallow strafing if held controls are not held
if controls&self.controls_held!=self.controls_held{
return control_dir;
}
//Apply mask after held check so you can require non-allowed keys to be held for some reason
let controls=controls&self.controls_mask;
if controls & Self::CONTROL_MOVEFORWARD == Self::CONTROL_MOVEFORWARD {
control_dir+=Self::FORWARD_DIR;
}
if controls & Self::CONTROL_MOVEBACK == Self::CONTROL_MOVEBACK {
2023-09-27 02:12:20 -07:00
control_dir-=Self::FORWARD_DIR;
2023-10-03 16:52:45 -07:00
}
if controls & Self::CONTROL_MOVELEFT == Self::CONTROL_MOVELEFT {
2023-09-27 02:12:20 -07:00
control_dir-=Self::RIGHT_DIR;
2023-10-03 16:52:45 -07:00
}
if controls & Self::CONTROL_MOVERIGHT == Self::CONTROL_MOVERIGHT {
control_dir+=Self::RIGHT_DIR;
}
if controls & Self::CONTROL_MOVEUP == Self::CONTROL_MOVEUP {
control_dir+=Self::UP_DIR;
}
if controls & Self::CONTROL_MOVEDOWN == Self::CONTROL_MOVEDOWN {
2023-09-27 02:12:20 -07:00
control_dir-=Self::UP_DIR;
2023-10-03 16:52:45 -07:00
}
return control_dir
}
2023-10-14 14:51:13 -07:00
fn get_jump_power(&self)->Planar64Vec3{
Planar64Vec3::int(0,715588,0)/(2*1000000/100)
}
2023-10-03 16:52:45 -07:00
}
2023-10-02 22:45:20 -07:00
pub struct PhysicsState{
2023-09-27 02:12:20 -07:00
pub time:Time,
2023-10-02 22:45:20 -07:00
pub body:Body,
pub world:WorldState,//currently there is only one state the world can be in
pub game:GameMechanicsState,
pub style:StyleModifiers,
pub contacts:std::collections::HashMap::<u32,RelativeCollision>,
pub intersects:std::collections::HashMap::<u32,RelativeCollision>,
2023-09-18 13:44:43 -07:00
//pub intersections: Vec<ModelId>,
2023-09-10 13:24:47 -07:00
//camera must exist in state because wormholes modify the camera, also camera punch
2023-10-04 20:04:04 -07:00
pub camera:PhysicsCamera,
pub next_mouse:MouseState,//Where is the mouse headed next
2023-10-02 22:45:20 -07:00
pub controls:u32,
pub walk:WalkState,
pub grounded:bool,
//all models
pub models:Vec<ModelPhysics>,
2023-10-05 23:52:04 -07:00
pub bvh:crate::bvh::BvhNode,
2023-10-02 22:45:20 -07:00
2023-10-03 19:42:07 -07:00
pub modes:Vec<crate::model::ModeDescription>,
pub mode_from_mode_id:std::collections::HashMap::<u32,usize>,
2023-10-02 22:45:20 -07:00
//the spawn point is where you spawn when you load into the map.
//This is not the same as Reset which teleports you to Spawn0
2023-09-27 02:12:20 -07:00
pub spawn_point:Planar64Vec3,
2023-09-08 11:33:16 -07:00
}
2023-10-04 20:04:04 -07:00
#[derive(Clone)]
pub struct PhysicsOutputState{
camera:PhysicsCamera,
body:Body,
}
impl PhysicsOutputState{
pub fn adjust_mouse(&self,mouse:&MouseState)->(glam::Vec3,glam::Vec2){
2023-09-27 02:12:20 -07:00
((self.body.extrapolated_position(mouse.time)+self.camera.offset).into(),self.camera.simulate_move_angles(mouse.pos))
2023-10-04 20:04:04 -07:00
}
}
2023-09-08 11:33:16 -07:00
2023-09-18 13:20:51 -07:00
//pretend to be using what we want to eventually do
2023-10-05 20:32:02 -07:00
type TreyMeshFace = crate::aabb::AabbFace;
type TreyMesh = crate::aabb::Aabb;
2023-09-08 15:54:43 -07:00
2023-10-02 22:45:20 -07:00
enum PhysicsCollisionAttributes{
Contact{//track whether you are contacting the object
contacting:crate::model::ContactingAttributes,
general:crate::model::GameMechanicAttributes,
},
Intersect{//track whether you are intersecting the object
intersecting:crate::model::IntersectingAttributes,
general:crate::model::GameMechanicAttributes,
},
}
2023-09-21 00:01:31 -07:00
pub struct ModelPhysics {
2023-09-08 15:54:43 -07:00
//A model is a thing that has a hitbox. can be represented by a list of TreyMesh-es
//in this iteration, all it needs is extents.
mesh: TreyMesh,
2023-09-27 02:12:20 -07:00
transform:crate::integer::Planar64Affine3,
2023-10-02 22:45:20 -07:00
attributes:PhysicsCollisionAttributes,
2023-09-08 15:54:43 -07:00
}
2023-09-21 00:01:31 -07:00
impl ModelPhysics {
2023-09-27 02:12:20 -07:00
fn from_model_transform_attributes(model:&crate::model::IndexedModel,transform:&crate::integer::Planar64Affine3,attributes:PhysicsCollisionAttributes)->Self{
let mut aabb=TreyMesh::default();
for indexed_vertex in &model.unique_vertices {
2023-09-27 02:12:20 -07:00
aabb.grow(transform.transform_point3(model.unique_pos[indexed_vertex.pos as usize]));
}
Self{
mesh:aabb,
2023-10-03 16:34:54 -07:00
attributes,
transform:transform.clone(),
2023-10-03 16:34:54 -07:00
}
}
pub fn from_model(model:&crate::model::IndexedModel,instance:&crate::model::ModelInstance) -> Option<Self> {
match &instance.attributes{
crate::model::CollisionAttributes::Contact{contacting,general}=>Some(ModelPhysics::from_model_transform_attributes(model,&instance.transform,PhysicsCollisionAttributes::Contact{contacting:contacting.clone(),general:general.clone()})),
2023-10-04 14:05:53 -07:00
crate::model::CollisionAttributes::Intersect{intersecting,general}=>Some(ModelPhysics::from_model_transform_attributes(model,&instance.transform,PhysicsCollisionAttributes::Intersect{intersecting:intersecting.clone(),general:general.clone()})),
crate::model::CollisionAttributes::Decoration=>None,
}
2023-09-08 16:14:01 -07:00
}
2023-09-27 02:12:20 -07:00
pub fn unit_vertices(&self) -> [Planar64Vec3;8] {
2023-10-05 20:32:02 -07:00
TreyMesh::unit_vertices()
2023-09-18 13:20:51 -07:00
}
pub fn mesh(&self) -> &TreyMesh {
return &self.mesh;
2023-09-18 13:20:51 -07:00
}
2023-09-27 02:12:20 -07:00
// pub fn face_mesh(&self,face:TreyMeshFace)->TreyMesh{
// self.mesh.face(face)
// }
pub fn face_normal(&self,face:TreyMeshFace) -> Planar64Vec3 {
2023-10-05 20:32:02 -07:00
TreyMesh::normal(face)//this is wrong for scale
2023-09-08 15:54:43 -07:00
}
}
2023-09-18 13:20:51 -07:00
//need non-face (full model) variant for CanCollide false objects
2023-09-18 13:44:43 -07:00
//OR have a separate list from contacts for model intersection
2023-09-18 18:34:48 -07:00
#[derive(Debug,Clone,Eq,Hash,PartialEq)]
2023-09-08 15:54:22 -07:00
pub struct RelativeCollision {
2023-09-18 13:20:51 -07:00
face: TreyMeshFace,//just an id
2023-09-08 15:54:22 -07:00
model: u32,//using id to avoid lifetimes
}
impl RelativeCollision {
2023-10-03 17:20:35 -07:00
pub fn model<'a>(&self,models:&'a Vec<ModelPhysics>)->Option<&'a ModelPhysics>{
models.get(self.model as usize)
}
2023-09-27 02:12:20 -07:00
// pub fn mesh(&self,models:&Vec<ModelPhysics>) -> TreyMesh {
// return self.model(models).unwrap().face_mesh(self.face).clone()
// }
pub fn normal(&self,models:&Vec<ModelPhysics>) -> Planar64Vec3 {
2023-10-03 17:20:35 -07:00
return self.model(models).unwrap().face_normal(self.face)
2023-09-08 15:54:22 -07:00
}
}
2023-09-08 20:14:18 -07:00
impl Body {
2023-09-27 02:12:20 -07:00
pub fn with_pva(position:Planar64Vec3,velocity:Planar64Vec3,acceleration:Planar64Vec3) -> Self {
2023-09-08 20:14:18 -07:00
Self{
2023-09-18 16:03:27 -07:00
position,
velocity,
acceleration,
2023-09-27 02:12:20 -07:00
time:Time::ZERO,
2023-09-08 20:14:18 -07:00
}
}
2023-09-27 02:12:20 -07:00
pub fn extrapolated_position(&self,time:Time)->Planar64Vec3{
let dt=time-self.time;
self.position+self.velocity*dt+self.acceleration*(dt*dt/2)
2023-09-08 20:14:18 -07:00
}
2023-09-27 02:12:20 -07:00
pub fn extrapolated_velocity(&self,time:Time)->Planar64Vec3{
let dt=time-self.time;
self.velocity+self.acceleration*dt
2023-09-18 16:04:18 -07:00
}
2023-09-27 02:12:20 -07:00
pub fn advance_time(&mut self,time:Time){
2023-09-08 20:14:18 -07:00
self.position=self.extrapolated_position(time);
2023-09-18 16:04:18 -07:00
self.velocity=self.extrapolated_velocity(time);
2023-09-08 20:14:18 -07:00
self.time=time;
}
}
2023-10-14 15:41:59 -07:00
impl std::fmt::Display for Body{
fn fmt(&self,f:&mut std::fmt::Formatter<'_>)->std::fmt::Result{
write!(f,"p({}) v({}) a({}) t({})",self.position,self.velocity,self.acceleration,self.time)
}
}
2023-09-08 20:14:18 -07:00
2023-10-04 20:04:04 -07:00
impl Default for PhysicsState{
fn default() -> Self {
Self{
2023-09-27 02:12:20 -07:00
spawn_point:Planar64Vec3::int(0,50,0),
body: Body::with_pva(Planar64Vec3::int(0,50,0),Planar64Vec3::int(0,0,0),Planar64Vec3::int(0,-100,0)),
time: Time::ZERO,
2023-10-04 20:04:04 -07:00
style:StyleModifiers::default(),
grounded: false,
contacts: std::collections::HashMap::new(),
intersects: std::collections::HashMap::new(),
models: Vec::new(),
2023-10-05 23:52:04 -07:00
bvh:crate::bvh::BvhNode::default(),
2023-10-04 20:04:04 -07:00
walk: WalkState::new(),
2023-09-27 02:12:20 -07:00
camera: PhysicsCamera::from_offset(Planar64Vec3::int(0,2,0)),//4.5-2.5=2
2023-10-04 20:04:04 -07:00
next_mouse: MouseState::default(),
controls: 0,
world:WorldState{},
game:GameMechanicsState::default(),
modes:Vec::new(),
mode_from_mode_id:std::collections::HashMap::new(),
}
}
}
2023-09-08 11:33:16 -07:00
impl PhysicsState {
pub fn clear(&mut self){
self.models.clear();
self.modes.clear();
self.contacts.clear();
self.intersects.clear();
}
2023-10-04 20:04:04 -07:00
pub fn into_worker(mut self)->crate::worker::CompatWorker<TimedInstruction<InputInstruction>,PhysicsOutputState,Box<dyn FnMut(TimedInstruction<InputInstruction>)->PhysicsOutputState>>{
2023-10-04 20:04:04 -07:00
let mut mouse_blocking=true;
let mut last_mouse_time=self.next_mouse.time;
let mut timeline=std::collections::VecDeque::new();
crate::worker::CompatWorker::new(self.output(),Box::new(move |ins:TimedInstruction<InputInstruction>|{
2023-10-04 20:04:04 -07:00
if if let Some(phys_input)=match ins.instruction{
InputInstruction::MoveMouse(m)=>{
if mouse_blocking{
//tell the game state which is living in the past about its future
timeline.push_front(TimedInstruction{
time:last_mouse_time,
instruction:PhysicsInputInstruction::SetNextMouse(MouseState{time:ins.time,pos:m}),
});
}else{
//mouse has just started moving again after being still for longer than 10ms.
//replace the entire mouse interpolation state to avoid an intermediate state with identical m0.t m1.t timestamps which will divide by zero
timeline.push_front(TimedInstruction{
time:last_mouse_time,
instruction:PhysicsInputInstruction::ReplaceMouse(
MouseState{time:last_mouse_time,pos:self.next_mouse.pos},
MouseState{time:ins.time,pos:m}
),
});
//delay physics execution until we have an interpolation target
mouse_blocking=true;
}
last_mouse_time=ins.time;
None
},
InputInstruction::MoveForward(s)=>Some(PhysicsInputInstruction::SetMoveForward(s)),
InputInstruction::MoveLeft(s)=>Some(PhysicsInputInstruction::SetMoveLeft(s)),
InputInstruction::MoveBack(s)=>Some(PhysicsInputInstruction::SetMoveBack(s)),
InputInstruction::MoveRight(s)=>Some(PhysicsInputInstruction::SetMoveRight(s)),
InputInstruction::MoveUp(s)=>Some(PhysicsInputInstruction::SetMoveUp(s)),
InputInstruction::MoveDown(s)=>Some(PhysicsInputInstruction::SetMoveDown(s)),
InputInstruction::Jump(s)=>Some(PhysicsInputInstruction::SetJump(s)),
InputInstruction::Zoom(s)=>Some(PhysicsInputInstruction::SetZoom(s)),
InputInstruction::Reset=>Some(PhysicsInputInstruction::Reset),
InputInstruction::Idle=>Some(PhysicsInputInstruction::Idle),
}{
//non-mouse event
timeline.push_back(TimedInstruction{
time:ins.time,
instruction:phys_input,
});
if mouse_blocking{
//assume the mouse has stopped moving after 10ms.
//shitty mice are 125Hz which is 8ms so this should cover that.
//setting this to 100us still doesn't print even though it's 10x lower than the polling rate,
//so mouse events are probably not handled separately from drawing and fire right before it :(
2023-09-27 02:12:20 -07:00
if Time::from_millis(10)<ins.time-self.next_mouse.time{
2023-10-04 20:04:04 -07:00
//push an event to extrapolate no movement from
timeline.push_front(TimedInstruction{
time:last_mouse_time,
instruction:PhysicsInputInstruction::SetNextMouse(MouseState{time:ins.time,pos:self.next_mouse.pos}),
});
last_mouse_time=ins.time;
//stop blocking. the mouse is not moving so the physics does not need to live in the past and wait for interpolation targets.
mouse_blocking=false;
true
}else{
false
}
}else{
//keep this up to date so that it can be used as a known-timestamp
//that the mouse was not moving when the mouse starts moving again
last_mouse_time=ins.time;
true
}
}else{
//mouse event
true
}{
//empty queue
while let Some(instruction)=timeline.pop_front(){
self.run(instruction.time);
self.process_instruction(TimedInstruction{
time:instruction.time,
instruction:PhysicsInstruction::Input(instruction.instruction),
});
}
}
self.output()
}))
2023-10-04 20:04:04 -07:00
}
pub fn output(&self)->PhysicsOutputState{
PhysicsOutputState{
body:self.body.clone(),
camera:self.camera.clone(),
}
}
pub fn generate_models(&mut self,indexed_models:&crate::model::IndexedModelInstances){
let mut starts=Vec::new();
let mut spawns=Vec::new();
let mut ordered_checkpoints=Vec::new();
let mut unordered_checkpoints=Vec::new();
for model in &indexed_models.models{
//make aabb and run vertices to get realistic bounds
for model_instance in &model.instances{
if let Some(model_physics)=ModelPhysics::from_model(model,model_instance){
let model_id=self.models.len() as u32;
self.models.push(model_physics);
for attr in &model_instance.temp_indexing{
match attr{
crate::model::TempIndexedAttributes::Start{mode_id}=>starts.push((*mode_id,model_id)),
crate::model::TempIndexedAttributes::Spawn{mode_id,stage_id}=>spawns.push((*mode_id,model_id,*stage_id)),
crate::model::TempIndexedAttributes::OrderedCheckpoint{mode_id,checkpoint_id}=>ordered_checkpoints.push((*mode_id,model_id,*checkpoint_id)),
crate::model::TempIndexedAttributes::UnorderedCheckpoint{mode_id}=>unordered_checkpoints.push((*mode_id,model_id)),
}
}
}
}
}
2023-10-05 23:52:04 -07:00
self.bvh=crate::bvh::generate_bvh(self.models.iter().map(|m|m.mesh().clone()).collect());
2023-10-04 20:04:04 -07:00
//I don't wanna write structs for temporary structures
//this code builds ModeDescriptions from the unsorted lists at the top of the function
starts.sort_by_key(|tup|tup.0);
let mut eshmep=std::collections::HashMap::new();
let mut modedatas:Vec<(u32,Vec<(u32,u32)>,Vec<(u32,u32)>,Vec<u32>)>=starts.into_iter().enumerate().map(|(i,tup)|{
eshmep.insert(tup.0,i);
(tup.1,Vec::new(),Vec::new(),Vec::new())
}).collect();
for tup in spawns{
if let Some(mode_id)=eshmep.get(&tup.0){
if let Some(modedata)=modedatas.get_mut(*mode_id){
modedata.1.push((tup.2,tup.1));
}
}
}
for tup in ordered_checkpoints{
if let Some(mode_id)=eshmep.get(&tup.0){
if let Some(modedata)=modedatas.get_mut(*mode_id){
modedata.2.push((tup.2,tup.1));
}
}
}
for tup in unordered_checkpoints{
if let Some(mode_id)=eshmep.get(&tup.0){
if let Some(modedata)=modedatas.get_mut(*mode_id){
modedata.3.push(tup.1);
}
}
}
let num_modes=self.modes.len();
for (mode_id,mode) in eshmep{
self.mode_from_mode_id.insert(mode_id,num_modes+mode);
}
self.modes.append(&mut modedatas.into_iter().map(|mut tup|{
tup.1.sort_by_key(|tup|tup.0);
tup.2.sort_by_key(|tup|tup.0);
let mut eshmep1=std::collections::HashMap::new();
let mut eshmep2=std::collections::HashMap::new();
crate::model::ModeDescription{
start:tup.0,
spawns:tup.1.into_iter().enumerate().map(|(i,tup)|{eshmep1.insert(tup.0,i);tup.1}).collect(),
ordered_checkpoints:tup.2.into_iter().enumerate().map(|(i,tup)|{eshmep2.insert(tup.0,i);tup.1}).collect(),
unordered_checkpoints:tup.3,
spawn_from_stage_id:eshmep1,
ordered_checkpoint_from_checkpoint_id:eshmep2,
}
}).collect());
println!("Physics Objects: {}",self.models.len());
}
2023-10-09 19:44:49 -07:00
pub fn load_user_settings(&mut self,user_settings:&crate::settings::UserSettings){
self.camera.sensitivity=user_settings.calculate_sensitivity();
}
pub fn get_mode(&self,mode_id:u32)->Option<&crate::model::ModeDescription>{
if let Some(&mode)=self.mode_from_mode_id.get(&mode_id){
self.modes.get(mode)
}else{
None
}
}
2023-09-08 20:14:18 -07:00
//tickless gaming
2023-09-27 02:12:20 -07:00
pub fn run(&mut self, time_limit:Time){
2023-09-08 20:14:18 -07:00
//prepare is ommitted - everything is done via instructions.
2023-09-18 18:06:03 -07:00
while let Some(instruction) = self.next_instruction(time_limit) {//collect
2023-09-08 20:14:18 -07:00
//process
self.process_instruction(instruction);
//write hash lol
2023-09-08 11:33:16 -07:00
}
}
2023-09-27 02:12:20 -07:00
pub fn advance_time(&mut self, time: Time){
2023-09-08 20:14:18 -07:00
self.body.advance_time(time);
self.time=time;
2023-09-08 11:33:16 -07:00
}
2023-09-08 11:33:20 -07:00
2023-09-19 17:53:29 -07:00
fn set_control(&mut self,control:u32,state:bool){
self.controls=if state{self.controls|control}else{self.controls&!control};
}
fn jump(&mut self){
self.grounded=false;//do I need this?
2023-10-14 14:51:13 -07:00
let mut v=self.body.velocity+self.style.get_jump_power();
2023-09-19 17:53:29 -07:00
self.contact_constrain_velocity(&mut v);
self.body.velocity=v;
}
2023-09-27 02:12:20 -07:00
fn contact_constrain_velocity(&self,velocity:&mut Planar64Vec3){
for (_,contact) in &self.contacts {
2023-09-21 00:01:31 -07:00
let n=contact.normal(&self.models);
let d=velocity.dot(n);
2023-09-27 02:12:20 -07:00
if d<Planar64::ZERO{
(*velocity)-=n*(d/n.dot(n));
}
}
}
2023-09-27 02:12:20 -07:00
fn contact_constrain_acceleration(&self,acceleration:&mut Planar64Vec3){
for (_,contact) in &self.contacts {
2023-09-21 00:01:31 -07:00
let n=contact.normal(&self.models);
let d=acceleration.dot(n);
2023-09-27 02:12:20 -07:00
if d<Planar64::ZERO{
(*acceleration)-=n*(d/n.dot(n));
}
}
}
2023-09-08 17:34:26 -07:00
fn next_strafe_instruction(&self) -> Option<TimedInstruction<PhysicsInstruction>> {
return Some(TimedInstruction{
2023-09-27 02:12:20 -07:00
time:Time::from_nanos(self.style.strafe_tick_rate.rhs_div_int(self.style.strafe_tick_rate.mul_int(self.time.nanos())+1)),
//only poll the physics if there is a before and after mouse event
2023-09-08 17:34:26 -07:00
instruction:PhysicsInstruction::StrafeTick
2023-09-08 11:33:20 -07:00
});
}
2023-09-08 14:11:24 -07:00
//state mutated on collision:
//Accelerator
//stair step-up
//state mutated on instruction
//change fly acceleration (fly_sustain)
//change fly velocity
//generic event emmiters
//PlatformStandTime
//walk/swim/air/ladder sounds
//VState?
//falling under the map
// fn next_respawn_instruction(&self) -> Option<TimedInstruction<PhysicsInstruction>> {
// if self.body.position<self.world.min_y {
// return Some(TimedInstruction{
// time:self.time,
// instruction:PhysicsInstruction::Trigger(None)
// });
// }
// }
// fn next_water_instruction(&self) -> Option<TimedInstruction<PhysicsInstruction>> {
// return Some(TimedInstruction{
// time:(self.time*self.strafe_tick_num/self.strafe_tick_den+1)*self.strafe_tick_den/self.strafe_tick_num,
// //only poll the physics if there is a before and after mouse event
// instruction:PhysicsInstruction::Water
// });
// }
2023-09-19 17:53:29 -07:00
fn refresh_walk_target(&mut self){
//calculate acceleration yada yada
if self.grounded{
let mut v=self.walk.target_velocity;
self.contact_constrain_velocity(&mut v);
let mut target_diff=v-self.body.velocity;
2023-09-27 02:12:20 -07:00
//remove normal component
target_diff-=Planar64Vec3::Y*target_diff.y();
if target_diff==Planar64Vec3::ZERO{
let mut a=Planar64Vec3::ZERO;
2023-09-19 17:53:29 -07:00
self.contact_constrain_acceleration(&mut a);
self.body.acceleration=a;
self.walk.state=WalkEnum::Reached;
}else{
2023-09-27 02:12:20 -07:00
//normal friction acceleration is clippedAcceleration.dot(normal)*friction
let accel=self.style.walk_accel.min(self.style.gravity.dot(Planar64Vec3::NEG_Y)*self.style.friction);
2023-09-19 17:53:29 -07:00
let time_delta=target_diff.length()/accel;
2023-09-27 02:12:20 -07:00
let mut a=target_diff.with_length(accel);
2023-09-19 17:53:29 -07:00
self.contact_constrain_acceleration(&mut a);
self.body.acceleration=a;
2023-09-27 02:12:20 -07:00
self.walk.target_time=self.body.time+Time::from(time_delta);
2023-09-19 17:53:29 -07:00
self.walk.state=WalkEnum::Transient;
}
}else{
self.walk.state=WalkEnum::Reached;//there is no walk target while not grounded
}
}
2023-09-08 17:34:26 -07:00
fn next_walk_instruction(&self) -> Option<TimedInstruction<PhysicsInstruction>> {
2023-09-18 21:10:07 -07:00
//check if you have a valid walk state and create an instruction
if self.grounded{
match self.walk.state{
WalkEnum::Transient=>Some(TimedInstruction{
time:self.walk.target_time,
instruction:PhysicsInstruction::ReachWalkTargetVelocity
}),
WalkEnum::Reached=>None,
}
2023-09-18 21:10:07 -07:00
}else{
return None;
}
2023-09-08 14:11:24 -07:00
}
2023-09-18 13:20:51 -07:00
fn mesh(&self) -> TreyMesh {
2023-09-27 02:12:20 -07:00
let mut aabb=TreyMesh::default();
2023-10-05 20:32:02 -07:00
for vertex in TreyMesh::unit_vertices(){
2023-10-02 22:45:20 -07:00
aabb.grow(self.body.position+self.style.hitbox_halfsize*vertex);
2023-09-18 13:20:51 -07:00
}
aabb
}
2023-09-27 02:12:20 -07:00
fn predict_collision_end(&self,time:Time,time_limit:Time,collision_data:&RelativeCollision) -> Option<TimedInstruction<PhysicsInstruction>> {
//must treat cancollide false objects differently: you may not exit through the same face you entered.
2023-09-18 13:20:51 -07:00
//RelativeCollsion must reference the full model instead of a particular face
//this is Ctrl+C Ctrl+V of predict_collision_start but with v=-v before the calc and t=-t after the calc
//find best t
2023-09-18 18:06:03 -07:00
let mut best_time=time_limit;
let mut exit_face:Option<TreyMeshFace>=None;
2023-09-18 13:20:51 -07:00
let mesh0=self.mesh();
2023-09-21 00:01:31 -07:00
let mesh1=self.models.get(collision_data.model as usize).unwrap().mesh();
2023-09-18 18:06:03 -07:00
let (v,a)=(-self.body.velocity,self.body.acceleration);
2023-09-18 13:20:51 -07:00
//collect x
2023-09-18 18:06:03 -07:00
match collision_data.face {
2023-10-05 20:32:02 -07:00
TreyMeshFace::Top|TreyMeshFace::Back|TreyMeshFace::Bottom|TreyMeshFace::Front=>{
2023-09-27 02:12:20 -07:00
for t in zeroes2(mesh0.max.x()-mesh1.min.x(),v.x(),a.x()/2) {
2023-09-18 18:06:03 -07:00
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
2023-09-27 02:12:20 -07:00
let t_time=self.body.time-Time::from(t);
if time<=t_time&&t_time<best_time&&Planar64::ZERO<v.x()+a.x()*-t{
2023-09-18 18:06:03 -07:00
//collect valid t
best_time=t_time;
exit_face=Some(TreyMeshFace::Left);
2023-09-19 18:14:24 -07:00
break;
2023-09-18 18:06:03 -07:00
}
2023-09-18 13:20:51 -07:00
}
2023-09-27 02:12:20 -07:00
for t in zeroes2(mesh0.min.x()-mesh1.max.x(),v.x(),a.x()/2) {
2023-09-18 18:06:03 -07:00
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
2023-09-27 02:12:20 -07:00
let t_time=self.body.time-Time::from(t);
if time<=t_time&&t_time<best_time&&v.x()+a.x()*-t<Planar64::ZERO{
2023-09-18 18:06:03 -07:00
//collect valid t
best_time=t_time;
exit_face=Some(TreyMeshFace::Right);
2023-09-19 18:14:24 -07:00
break;
2023-09-18 18:06:03 -07:00
}
2023-09-18 13:20:51 -07:00
}
2023-09-18 18:06:03 -07:00
},
2023-10-05 20:32:02 -07:00
TreyMeshFace::Left=>{
2023-09-18 18:06:03 -07:00
//generate event if v.x<0||a.x<0
2023-09-27 02:12:20 -07:00
if -v.x()<Planar64::ZERO{
2023-09-18 18:06:03 -07:00
best_time=time;
exit_face=Some(TreyMeshFace::Left);
}
},
2023-10-05 20:32:02 -07:00
TreyMeshFace::Right=>{
2023-09-18 18:06:03 -07:00
//generate event if 0<v.x||0<a.x
2023-09-27 02:12:20 -07:00
if Planar64::ZERO<(-v.x()){
2023-09-18 18:06:03 -07:00
best_time=time;
exit_face=Some(TreyMeshFace::Right);
}
},
2023-09-18 13:20:51 -07:00
}
//collect y
2023-09-18 18:06:03 -07:00
match collision_data.face {
2023-10-05 20:32:02 -07:00
TreyMeshFace::Left|TreyMeshFace::Back|TreyMeshFace::Right|TreyMeshFace::Front=>{
2023-09-27 02:12:20 -07:00
for t in zeroes2(mesh0.max.y()-mesh1.min.y(),v.y(),a.y()/2) {
2023-09-18 18:06:03 -07:00
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
2023-09-27 02:12:20 -07:00
let t_time=self.body.time-Time::from(t);
if time<=t_time&&t_time<best_time&&Planar64::ZERO<v.y()+a.y()*-t{
2023-09-18 18:06:03 -07:00
//collect valid t
best_time=t_time;
exit_face=Some(TreyMeshFace::Bottom);
2023-09-19 18:14:24 -07:00
break;
2023-09-18 18:06:03 -07:00
}
2023-09-18 13:20:51 -07:00
}
2023-09-27 02:12:20 -07:00
for t in zeroes2(mesh0.min.y()-mesh1.max.y(),v.y(),a.y()/2) {
2023-09-18 18:06:03 -07:00
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
2023-09-27 02:12:20 -07:00
let t_time=self.body.time-Time::from(t);
if time<=t_time&&t_time<best_time&&v.y()+a.y()*-t<Planar64::ZERO{
2023-09-18 18:06:03 -07:00
//collect valid t
best_time=t_time;
exit_face=Some(TreyMeshFace::Top);
2023-09-19 18:14:24 -07:00
break;
2023-09-18 18:06:03 -07:00
}
2023-09-18 13:20:51 -07:00
}
2023-09-18 18:06:03 -07:00
},
2023-10-05 20:32:02 -07:00
TreyMeshFace::Bottom=>{
2023-09-18 18:06:03 -07:00
//generate event if v.y<0||a.y<0
2023-09-27 02:12:20 -07:00
if -v.y()<Planar64::ZERO{
2023-09-18 18:06:03 -07:00
best_time=time;
exit_face=Some(TreyMeshFace::Bottom);
}
},
2023-10-05 20:32:02 -07:00
TreyMeshFace::Top=>{
2023-09-18 18:06:03 -07:00
//generate event if 0<v.y||0<a.y
2023-09-27 02:12:20 -07:00
if Planar64::ZERO<(-v.y()){
2023-09-18 18:06:03 -07:00
best_time=time;
exit_face=Some(TreyMeshFace::Top);
}
},
2023-09-18 13:20:51 -07:00
}
//collect z
2023-09-18 18:06:03 -07:00
match collision_data.face {
2023-10-05 20:32:02 -07:00
TreyMeshFace::Left|TreyMeshFace::Bottom|TreyMeshFace::Right|TreyMeshFace::Top=>{
2023-09-27 02:12:20 -07:00
for t in zeroes2(mesh0.max.z()-mesh1.min.z(),v.z(),a.z()/2) {
2023-09-18 18:06:03 -07:00
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
2023-09-27 02:12:20 -07:00
let t_time=self.body.time-Time::from(t);
if time<=t_time&&t_time<best_time&&Planar64::ZERO<v.z()+a.z()*-t{
2023-09-18 18:06:03 -07:00
//collect valid t
best_time=t_time;
exit_face=Some(TreyMeshFace::Front);
2023-09-19 18:14:24 -07:00
break;
2023-09-18 18:06:03 -07:00
}
2023-09-18 13:20:51 -07:00
}
2023-09-27 02:12:20 -07:00
for t in zeroes2(mesh0.min.z()-mesh1.max.z(),v.z(),a.z()/2) {
2023-09-18 18:06:03 -07:00
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
2023-09-27 02:12:20 -07:00
let t_time=self.body.time-Time::from(t);
if time<=t_time&&t_time<best_time&&v.z()+a.z()*-t<Planar64::ZERO{
2023-09-18 18:06:03 -07:00
//collect valid t
best_time=t_time;
exit_face=Some(TreyMeshFace::Back);
2023-09-19 18:14:24 -07:00
break;
2023-09-18 18:06:03 -07:00
}
2023-09-18 13:20:51 -07:00
}
2023-09-18 18:06:03 -07:00
},
2023-10-05 20:32:02 -07:00
TreyMeshFace::Front=>{
2023-09-18 18:06:03 -07:00
//generate event if v.z<0||a.z<0
2023-09-27 02:12:20 -07:00
if -v.z()<Planar64::ZERO{
2023-09-18 18:06:03 -07:00
best_time=time;
exit_face=Some(TreyMeshFace::Front);
}
},
2023-10-05 20:32:02 -07:00
TreyMeshFace::Back=>{
2023-09-18 18:06:03 -07:00
//generate event if 0<v.z||0<a.z
2023-09-27 02:12:20 -07:00
if Planar64::ZERO<(-v.z()){
2023-09-18 18:06:03 -07:00
best_time=time;
exit_face=Some(TreyMeshFace::Back);
}
},
2023-09-18 13:20:51 -07:00
}
//generate instruction
2023-09-18 18:06:03 -07:00
if let Some(face) = exit_face{
2023-09-18 13:20:51 -07:00
return Some(TimedInstruction {
2023-09-18 18:06:03 -07:00
time: best_time,
instruction: PhysicsInstruction::CollisionEnd(collision_data.clone())
2023-09-18 13:20:51 -07:00
})
}
2023-09-08 15:55:33 -07:00
None
}
2023-09-27 02:12:20 -07:00
fn predict_collision_start(&self,time:Time,time_limit:Time,model_id:u32) -> Option<TimedInstruction<PhysicsInstruction>> {
2023-10-05 20:32:19 -07:00
let mesh0=self.mesh();
let mesh1=self.models.get(model_id as usize).unwrap().mesh();
2023-10-10 16:05:47 -07:00
let (p,v,a,body_time)=(self.body.position,self.body.velocity,self.body.acceleration,self.body.time);
2023-09-18 13:20:51 -07:00
//find best t
2023-09-18 18:06:03 -07:00
let mut best_time=time_limit;
2023-09-18 13:20:51 -07:00
let mut best_face:Option<TreyMeshFace>=None;
//collect x
2023-09-27 02:12:20 -07:00
for t in zeroes2(mesh0.max.x()-mesh1.min.x(),v.x(),a.x()/2) {
2023-09-18 18:50:12 -07:00
//must collide now or in the future
2023-09-18 13:20:51 -07:00
//must beat the current soonest collision time
//must be moving towards surface
2023-09-27 02:12:20 -07:00
let t_time=body_time+Time::from(t);
if time<=t_time&&t_time<best_time&&Planar64::ZERO<v.x()+a.x()*t{
2023-09-18 18:06:03 -07:00
let dp=self.body.extrapolated_position(t_time)-p;
2023-09-18 13:20:51 -07:00
//faces must be overlapping
2023-09-27 02:12:20 -07:00
if mesh1.min.y()<mesh0.max.y()+dp.y()&&mesh0.min.y()+dp.y()<mesh1.max.y()&&mesh1.min.z()<mesh0.max.z()+dp.z()&&mesh0.min.z()+dp.z()<mesh1.max.z() {
2023-09-18 13:20:51 -07:00
//collect valid t
2023-09-18 18:06:03 -07:00
best_time=t_time;
2023-09-18 13:20:51 -07:00
best_face=Some(TreyMeshFace::Left);
2023-09-19 18:14:24 -07:00
break;
2023-09-18 13:20:51 -07:00
}
}
}
2023-09-27 02:12:20 -07:00
for t in zeroes2(mesh0.min.x()-mesh1.max.x(),v.x(),a.x()/2) {
2023-09-18 18:50:12 -07:00
//must collide now or in the future
2023-09-18 13:20:51 -07:00
//must beat the current soonest collision time
//must be moving towards surface
2023-09-27 02:12:20 -07:00
let t_time=body_time+Time::from(t);
if time<=t_time&&t_time<best_time&&v.x()+a.x()*t<Planar64::ZERO{
2023-09-18 18:06:03 -07:00
let dp=self.body.extrapolated_position(t_time)-p;
2023-09-18 13:20:51 -07:00
//faces must be overlapping
2023-09-27 02:12:20 -07:00
if mesh1.min.y()<mesh0.max.y()+dp.y()&&mesh0.min.y()+dp.y()<mesh1.max.y()&&mesh1.min.z()<mesh0.max.z()+dp.z()&&mesh0.min.z()+dp.z()<mesh1.max.z() {
2023-09-18 13:20:51 -07:00
//collect valid t
2023-09-18 18:06:03 -07:00
best_time=t_time;
2023-09-18 13:20:51 -07:00
best_face=Some(TreyMeshFace::Right);
2023-09-19 18:14:24 -07:00
break;
2023-09-18 13:20:51 -07:00
}
}
}
//collect y
2023-09-27 02:12:20 -07:00
for t in zeroes2(mesh0.max.y()-mesh1.min.y(),v.y(),a.y()/2) {
2023-09-18 18:50:12 -07:00
//must collide now or in the future
2023-09-18 13:20:51 -07:00
//must beat the current soonest collision time
//must be moving towards surface
2023-09-27 02:12:20 -07:00
let t_time=body_time+Time::from(t);
if time<=t_time&&t_time<best_time&&Planar64::ZERO<v.y()+a.y()*t{
2023-09-18 18:06:03 -07:00
let dp=self.body.extrapolated_position(t_time)-p;
2023-09-18 13:20:51 -07:00
//faces must be overlapping
2023-09-27 02:12:20 -07:00
if mesh1.min.x()<mesh0.max.x()+dp.x()&&mesh0.min.x()+dp.x()<mesh1.max.x()&&mesh1.min.z()<mesh0.max.z()+dp.z()&&mesh0.min.z()+dp.z()<mesh1.max.z() {
2023-09-18 13:20:51 -07:00
//collect valid t
2023-09-18 18:06:03 -07:00
best_time=t_time;
2023-09-18 13:20:51 -07:00
best_face=Some(TreyMeshFace::Bottom);
2023-09-19 18:14:24 -07:00
break;
2023-09-18 13:20:51 -07:00
}
}
}
2023-09-27 02:12:20 -07:00
for t in zeroes2(mesh0.min.y()-mesh1.max.y(),v.y(),a.y()/2) {
2023-09-18 18:50:12 -07:00
//must collide now or in the future
2023-09-18 13:20:51 -07:00
//must beat the current soonest collision time
//must be moving towards surface
2023-09-27 02:12:20 -07:00
let t_time=body_time+Time::from(t);
if time<=t_time&&t_time<best_time&&v.y()+a.y()*t<Planar64::ZERO{
2023-09-18 18:06:03 -07:00
let dp=self.body.extrapolated_position(t_time)-p;
2023-09-18 13:20:51 -07:00
//faces must be overlapping
2023-09-27 02:12:20 -07:00
if mesh1.min.x()<mesh0.max.x()+dp.x()&&mesh0.min.x()+dp.x()<mesh1.max.x()&&mesh1.min.z()<mesh0.max.z()+dp.z()&&mesh0.min.z()+dp.z()<mesh1.max.z() {
2023-09-18 13:20:51 -07:00
//collect valid t
2023-09-18 18:06:03 -07:00
best_time=t_time;
2023-09-18 13:20:51 -07:00
best_face=Some(TreyMeshFace::Top);
2023-09-19 18:14:24 -07:00
break;
2023-09-18 13:20:51 -07:00
}
}
}
//collect z
2023-09-27 02:12:20 -07:00
for t in zeroes2(mesh0.max.z()-mesh1.min.z(),v.z(),a.z()/2) {
2023-09-18 18:50:12 -07:00
//must collide now or in the future
2023-09-18 13:20:51 -07:00
//must beat the current soonest collision time
//must be moving towards surface
2023-09-27 02:12:20 -07:00
let t_time=body_time+Time::from(t);
if time<=t_time&&t_time<best_time&&Planar64::ZERO<v.z()+a.z()*t{
2023-09-18 18:06:03 -07:00
let dp=self.body.extrapolated_position(t_time)-p;
2023-09-18 13:20:51 -07:00
//faces must be overlapping
2023-09-27 02:12:20 -07:00
if mesh1.min.y()<mesh0.max.y()+dp.y()&&mesh0.min.y()+dp.y()<mesh1.max.y()&&mesh1.min.x()<mesh0.max.x()+dp.x()&&mesh0.min.x()+dp.x()<mesh1.max.x() {
2023-09-18 13:20:51 -07:00
//collect valid t
2023-09-18 18:06:03 -07:00
best_time=t_time;
2023-09-18 13:20:51 -07:00
best_face=Some(TreyMeshFace::Front);
2023-09-19 18:14:24 -07:00
break;
2023-09-18 13:20:51 -07:00
}
}
}
2023-09-27 02:12:20 -07:00
for t in zeroes2(mesh0.min.z()-mesh1.max.z(),v.z(),a.z()/2) {
2023-09-18 18:50:12 -07:00
//must collide now or in the future
2023-09-18 13:20:51 -07:00
//must beat the current soonest collision time
//must be moving towards surface
2023-09-27 02:12:20 -07:00
let t_time=body_time+Time::from(t);
if time<=t_time&&t_time<best_time&&v.z()+a.z()*t<Planar64::ZERO{
2023-09-18 18:06:03 -07:00
let dp=self.body.extrapolated_position(t_time)-p;
2023-09-18 13:20:51 -07:00
//faces must be overlapping
2023-09-27 02:12:20 -07:00
if mesh1.min.y()<mesh0.max.y()+dp.y()&&mesh0.min.y()+dp.y()<mesh1.max.y()&&mesh1.min.x()<mesh0.max.x()+dp.x()&&mesh0.min.x()+dp.x()<mesh1.max.x() {
2023-09-18 13:20:51 -07:00
//collect valid t
2023-09-18 18:06:03 -07:00
best_time=t_time;
2023-09-18 13:20:51 -07:00
best_face=Some(TreyMeshFace::Back);
2023-09-19 18:14:24 -07:00
break;
2023-09-18 13:20:51 -07:00
}
}
}
//generate instruction
if let Some(face) = best_face{
return Some(TimedInstruction {
2023-09-18 18:06:03 -07:00
time: best_time,
2023-09-18 13:20:51 -07:00
instruction: PhysicsInstruction::CollisionStart(RelativeCollision {
face,
model: model_id
})
})
}
2023-09-08 15:55:33 -07:00
None
}
2023-09-08 11:33:20 -07:00
}
2023-09-08 17:34:26 -07:00
impl crate::instruction::InstructionEmitter<PhysicsInstruction> for PhysicsState {
//this little next instruction function can cache its return value and invalidate the cached value by watching the State.
2023-09-27 02:12:20 -07:00
fn next_instruction(&self,time_limit:Time) -> Option<TimedInstruction<PhysicsInstruction>> {
2023-09-08 11:33:20 -07:00
//JUST POLLING!!! NO MUTATION
let mut collector = crate::instruction::InstructionCollector::new(time_limit);
2023-09-08 17:34:26 -07:00
//check for collision stop instructions with curent contacts
for (_,collision_data) in &self.contacts {
2023-09-18 18:06:03 -07:00
collector.collect(self.predict_collision_end(self.time,time_limit,collision_data));
2023-09-08 11:33:20 -07:00
}
// for collision_data in &self.intersects{
// collector.collect(self.predict_collision_end2(self.time,time_limit,collision_data));
// }
2023-09-08 17:34:26 -07:00
//check for collision start instructions (against every part in the game with no optimization!!)
2023-09-27 02:12:20 -07:00
let mut aabb=crate::aabb::Aabb::default();
2023-10-05 23:52:04 -07:00
aabb.grow(self.body.extrapolated_position(self.time));
aabb.grow(self.body.extrapolated_position(time_limit));
aabb.inflate(self.style.hitbox_halfsize);
self.bvh.the_tester(&aabb,&mut |id|{
if !(self.contacts.contains_key(&id)||self.intersects.contains_key(&id)){
collector.collect(self.predict_collision_start(self.time,time_limit,id));
}
2023-10-05 23:52:04 -07:00
});
2023-09-08 14:11:24 -07:00
if self.grounded {
//walk maintenance
2023-09-08 20:12:58 -07:00
collector.collect(self.next_walk_instruction());
2023-09-08 14:11:24 -07:00
}else{
//check to see when the next strafe tick is
2023-09-08 20:12:58 -07:00
collector.collect(self.next_strafe_instruction());
2023-09-08 11:33:20 -07:00
}
2023-09-08 20:12:58 -07:00
collector.instruction()
2023-09-08 11:33:20 -07:00
}
2023-09-08 11:33:16 -07:00
}
2023-09-08 17:15:49 -07:00
2023-09-08 17:34:26 -07:00
impl crate::instruction::InstructionConsumer<PhysicsInstruction> for PhysicsState {
2023-09-08 20:14:18 -07:00
fn process_instruction(&mut self, ins:TimedInstruction<PhysicsInstruction>) {
match &ins.instruction {
2023-10-04 20:04:04 -07:00
PhysicsInstruction::Input(PhysicsInputInstruction::Idle)
|PhysicsInstruction::Input(PhysicsInputInstruction::SetNextMouse(_))
|PhysicsInstruction::Input(PhysicsInputInstruction::ReplaceMouse(_,_))
|PhysicsInstruction::StrafeTick => (),
2023-10-04 23:51:39 -07:00
_=>println!("{}|{:?}",ins.time,ins.instruction),
}
//selectively update body
match &ins.instruction {
2023-10-04 20:04:04 -07:00
//PhysicsInstruction::Input(InputInstruction::MoveMouse(_)) => (),//dodge time for mouse movement
2023-10-04 14:01:06 -07:00
PhysicsInstruction::Input(_)
|PhysicsInstruction::ReachWalkTargetVelocity
|PhysicsInstruction::CollisionStart(_)
|PhysicsInstruction::CollisionEnd(_)
|PhysicsInstruction::StrafeTick => self.advance_time(ins.time),
}
2023-09-08 20:14:18 -07:00
match ins.instruction {
2023-09-18 13:20:51 -07:00
PhysicsInstruction::CollisionStart(c) => {
let model=c.model(&self.models).unwrap();
match &model.attributes{
PhysicsCollisionAttributes::Contact{contacting,general}=>{
match &contacting.surf{
Some(surf)=>println!("I'm surfing!"),
None=>match &c.face {
2023-10-05 20:32:02 -07:00
TreyMeshFace::Top => {
//ground
self.grounded=true;
},
_ => (),
},
}
2023-10-04 20:04:04 -07:00
//check ground
self.contacts.insert(c.model,c);
match &general.teleport_behaviour{
Some(crate::model::TeleportBehaviour::StageElement(stage_element))=>{
if stage_element.force||self.game.stage_id<stage_element.stage_id{
self.game.stage_id=stage_element.stage_id;
}
match stage_element.behaviour{
crate::model::StageElementBehaviour::SpawnAt=>(),
crate::model::StageElementBehaviour::Trigger
|crate::model::StageElementBehaviour::Teleport=>{
//TODO make good
if let Some(mode)=self.get_mode(stage_element.mode_id){
if let Some(&spawn)=mode.get_spawn_model_id(self.game.stage_id){
if let Some(model)=self.models.get(spawn as usize){
2023-09-27 02:12:20 -07:00
self.body.position=model.transform.transform_point3(Planar64Vec3::Y)+Planar64Vec3::Y*(self.style.hitbox_halfsize.y()+Planar64::ONE/16);
//manual clear //for c in self.contacts{process_instruction(CollisionEnd(c))}
self.contacts.clear();
self.intersects.clear();
self.body.acceleration=self.style.gravity;
self.walk.state=WalkEnum::Reached;
self.grounded=false;
}else{println!("bad1");}
}else{println!("bad2");}
}else{println!("bad3");}
},
crate::model::StageElementBehaviour::Platform=>(),
}
},
Some(crate::model::TeleportBehaviour::Wormhole(wormhole))=>{
//telefart
}
None=>(),
}
//flatten v
let mut v=self.body.velocity;
self.contact_constrain_velocity(&mut v);
2023-10-04 20:04:04 -07:00
match &general.booster{
Some(booster)=>{
v+=booster.velocity;
self.contact_constrain_velocity(&mut v);
},
None=>(),
}
self.body.velocity=v;
if self.grounded&&self.style.get_control(StyleModifiers::CONTROL_JUMP,self.controls){
self.jump();
}
self.refresh_walk_target();
},
PhysicsCollisionAttributes::Intersect{intersecting,general}=>{
//I think that setting the velocity to 0 was preventing surface contacts from entering an infinite loop
self.intersects.insert(c.model,c);
match &general.teleport_behaviour{
Some(crate::model::TeleportBehaviour::StageElement(stage_element))=>{
if stage_element.force||self.game.stage_id<stage_element.stage_id{
self.game.stage_id=stage_element.stage_id;
}
match stage_element.behaviour{
crate::model::StageElementBehaviour::SpawnAt=>(),
crate::model::StageElementBehaviour::Trigger
|crate::model::StageElementBehaviour::Teleport=>{
//TODO make good
if let Some(mode)=self.get_mode(stage_element.mode_id){
if let Some(&spawn)=mode.get_spawn_model_id(self.game.stage_id){
if let Some(model)=self.models.get(spawn as usize){
2023-09-27 02:12:20 -07:00
self.body.position=model.transform.transform_point3(Planar64Vec3::Y)+Planar64Vec3::Y*(self.style.hitbox_halfsize.y()+Planar64::ONE/16);
//manual clear //for c in self.contacts{process_instruction(CollisionEnd(c))}
self.contacts.clear();
self.intersects.clear();
self.body.acceleration=self.style.gravity;
self.walk.state=WalkEnum::Reached;
self.grounded=false;
}else{println!("bad1");}
}else{println!("bad2");}
}else{println!("bad3");}
},
crate::model::StageElementBehaviour::Platform=>(),
}
},
Some(crate::model::TeleportBehaviour::Wormhole(wormhole))=>{
//telefart
}
None=>(),
}
},
2023-09-19 17:53:29 -07:00
}
2023-09-18 13:20:51 -07:00
},
PhysicsInstruction::CollisionEnd(c) => {
let model=c.model(&self.models).unwrap();
match &model.attributes{
PhysicsCollisionAttributes::Contact{contacting,general}=>{
self.contacts.remove(&c.model);//remove contact before calling contact_constrain_acceleration
let mut a=self.style.gravity;
self.contact_constrain_acceleration(&mut a);
self.body.acceleration=a;
//check ground
match &c.face {
2023-10-05 20:32:02 -07:00
TreyMeshFace::Top => {
self.grounded=false;
},
_ => (),
}
self.refresh_walk_target();
},
PhysicsCollisionAttributes::Intersect{intersecting,general}=>{
self.intersects.remove(&c.model);
},
}
2023-09-18 13:20:51 -07:00
},
2023-09-08 20:14:18 -07:00
PhysicsInstruction::StrafeTick => {
2023-10-04 20:04:04 -07:00
let camera_mat=self.camera.simulate_move_rotation_y(self.camera.mouse.lerp(&self.next_mouse,self.time).x);
2023-10-03 16:52:45 -07:00
let control_dir=camera_mat*self.style.get_control_dir(self.controls);
2023-09-19 17:53:29 -07:00
let d=self.body.velocity.dot(control_dir);
2023-10-02 22:45:20 -07:00
if d<self.style.mv {
2023-09-27 02:12:20 -07:00
let mut v=self.body.velocity+control_dir*(self.style.mv-d);
self.contact_constrain_velocity(&mut v);
self.body.velocity=v;
2023-09-08 20:14:18 -07:00
}
}
PhysicsInstruction::ReachWalkTargetVelocity => {
//precisely set velocity
2023-09-27 02:12:20 -07:00
let mut a=Planar64Vec3::ZERO;
self.contact_constrain_acceleration(&mut a);
self.body.acceleration=a;
let mut v=self.walk.target_velocity;
self.contact_constrain_velocity(&mut v);
self.body.velocity=v;
self.walk.state=WalkEnum::Reached;
},
2023-09-19 17:53:29 -07:00
PhysicsInstruction::Input(input_instruction) => {
2023-10-01 19:25:16 -07:00
let mut refresh_walk_target=true;
let mut refresh_walk_target_velocity=true;
2023-09-19 17:53:29 -07:00
match input_instruction{
2023-10-04 20:04:04 -07:00
PhysicsInputInstruction::SetNextMouse(m) => {
2023-09-27 02:12:20 -07:00
self.camera.move_mouse(self.next_mouse.pos);
2023-10-04 20:04:04 -07:00
(self.camera.mouse,self.next_mouse)=(self.next_mouse.clone(),m);
},
PhysicsInputInstruction::ReplaceMouse(m0,m1) => {
2023-09-27 02:12:20 -07:00
self.camera.move_mouse(m0.pos);
2023-10-04 20:04:04 -07:00
(self.camera.mouse,self.next_mouse)=(m0,m1);
2023-09-19 17:53:29 -07:00
},
2023-10-04 20:04:04 -07:00
PhysicsInputInstruction::SetMoveForward(s) => self.set_control(StyleModifiers::CONTROL_MOVEFORWARD,s),
PhysicsInputInstruction::SetMoveLeft(s) => self.set_control(StyleModifiers::CONTROL_MOVELEFT,s),
PhysicsInputInstruction::SetMoveBack(s) => self.set_control(StyleModifiers::CONTROL_MOVEBACK,s),
PhysicsInputInstruction::SetMoveRight(s) => self.set_control(StyleModifiers::CONTROL_MOVERIGHT,s),
PhysicsInputInstruction::SetMoveUp(s) => self.set_control(StyleModifiers::CONTROL_MOVEUP,s),
PhysicsInputInstruction::SetMoveDown(s) => self.set_control(StyleModifiers::CONTROL_MOVEDOWN,s),
PhysicsInputInstruction::SetJump(s) => {
2023-10-03 16:52:45 -07:00
self.set_control(StyleModifiers::CONTROL_JUMP,s);
2023-09-19 17:53:29 -07:00
if self.grounded{
self.jump();
}
2023-10-01 19:25:16 -07:00
refresh_walk_target_velocity=false;
2023-09-19 17:53:29 -07:00
},
2023-10-04 20:04:04 -07:00
PhysicsInputInstruction::SetZoom(s) => {
2023-10-03 16:52:45 -07:00
self.set_control(StyleModifiers::CONTROL_ZOOM,s);
2023-10-01 19:25:16 -07:00
refresh_walk_target=false;
2023-09-19 17:53:29 -07:00
},
2023-10-04 20:04:04 -07:00
PhysicsInputInstruction::Reset => {
2023-09-19 17:53:29 -07:00
//temp
self.body.position=self.spawn_point;
2023-09-27 02:12:20 -07:00
self.body.velocity=Planar64Vec3::ZERO;
2023-09-19 17:53:29 -07:00
//manual clear //for c in self.contacts{process_instruction(CollisionEnd(c))}
self.contacts.clear();
2023-10-02 22:45:20 -07:00
self.body.acceleration=self.style.gravity;
self.walk.state=WalkEnum::Reached;
2023-09-19 17:53:29 -07:00
self.grounded=false;
2023-10-01 19:25:16 -07:00
refresh_walk_target=false;
2023-09-19 17:53:29 -07:00
},
2023-10-04 20:04:04 -07:00
PhysicsInputInstruction::Idle => {refresh_walk_target=false;},//literally idle!
2023-09-19 17:53:29 -07:00
}
if refresh_walk_target{
2023-10-01 19:25:16 -07:00
//calculate walk target velocity
if refresh_walk_target_velocity{
2023-10-04 20:04:04 -07:00
let camera_mat=self.camera.simulate_move_rotation_y(self.camera.mouse.lerp(&self.next_mouse,self.time).x);
2023-10-03 16:52:45 -07:00
let control_dir=camera_mat*self.style.get_control_dir(self.controls);
2023-09-27 02:12:20 -07:00
self.walk.target_velocity=control_dir*self.style.walkspeed;
2023-10-01 19:25:16 -07:00
}
2023-09-19 17:53:29 -07:00
self.refresh_walk_target();
2023-09-18 21:10:07 -07:00
}
},
2023-09-08 20:14:18 -07:00
}
2023-09-08 17:15:49 -07:00
}
2023-09-22 19:41:27 -07:00
}