686 lines
22 KiB
Rust
Raw Normal View History

2023-09-18 13:20:51 -07:00
use crate::{instruction::{InstructionEmitter, InstructionConsumer, TimedInstruction}, zeroes::zeroes2};
2023-09-08 12:03:32 -07:00
2023-09-08 17:34:26 -07:00
pub enum PhysicsInstruction {
2023-09-08 17:00:50 -07:00
CollisionStart(RelativeCollision),
CollisionEnd(RelativeCollision),
StrafeTick,
Jump,
2023-09-08 20:14:18 -07:00
SetWalkTargetVelocity(glam::Vec3),
ReachWalkTargetVelocity,
// Water,
// Spawn(
// Option<SpawnId>,
// bool,//true = Trigger; false = teleport
// bool,//true = Force
// )
2023-09-08 17:00:50 -07:00
}
2023-09-08 11:33:16 -07:00
pub struct Body {
2023-09-08 20:14:18 -07:00
position: glam::Vec3,//I64 where 2^32 = 1 u
velocity: glam::Vec3,//I64 where 2^32 = 1 u/s
acceleration: glam::Vec3,//I64 where 2^32 = 1 u/s/s
time: TIME,//nanoseconds x xxxxD!
}
pub enum MoveRestriction {
Air,
Water,
Ground,
Ladder,//multiple ladders how
2023-09-08 11:33:16 -07:00
}
2023-09-10 13:24:47 -07:00
enum MouseInterpolation {
First,//just checks the last value
Lerp,//lerps between
}
enum InputInstruction {
MoveMouse(glam::IVec2),
Jump(bool),
}
2023-09-10 14:13:24 -07:00
struct InputState {
controls: u32,
mouse_interpolation: MouseInterpolation,
time: TIME,
}
impl InputState {
pub fn get_control(&self,control:u32) -> bool {
self.controls&control!=0
}
2023-09-12 00:05:30 -07:00
pub fn process_instruction(&mut self,ins:InputInstruction){
match ins {
InputInstruction::MoveMouse(m) => todo!("set mouse_interpolation"),
InputInstruction::Jump(b) => todo!("how does info about style modifiers get here"),
}
}
2023-09-10 14:13:24 -07:00
}
2023-09-10 13:24:47 -07:00
pub struct MouseInterpolationState {
interpolation: MouseInterpolation,
time0: TIME,
time1: TIME,
mouse0: glam::IVec2,
mouse1: glam::IVec2,
}
impl MouseInterpolationState {
pub fn move_mouse(&mut self,time:TIME,pos:glam::IVec2){
self.time0=self.time1;
self.mouse0=self.mouse1;
self.time1=time;
self.mouse1=pos;
}
pub fn interpolated_position(&self,time:TIME) -> glam::IVec2 {
match self.interpolation {
MouseInterpolation::First => self.mouse0,
MouseInterpolation::Lerp => {
let m0=self.mouse0.as_i64vec2();
let m1=self.mouse1.as_i64vec2();
//these are deltas
let t1t=(self.time1-time) as i64;
let tt0=(time-self.time0) as i64;
let dt=(self.time1-self.time0) as i64;
((m0*t1t+m1*tt0)/dt).as_ivec2()
}
}
}
}
2023-09-08 11:33:16 -07:00
pub struct PhysicsState {
pub body: Body,
2023-09-18 13:20:51 -07:00
pub hitbox_size: glam::Vec3,
2023-09-08 15:54:22 -07:00
pub contacts: Vec<RelativeCollision>,
2023-09-08 20:14:18 -07:00
//temp
2023-09-08 15:55:33 -07:00
pub models_cringe_clone: Vec<Model>,
2023-09-08 20:14:18 -07:00
pub temp_control_dir: glam::Vec3,
2023-09-10 13:24:47 -07:00
//camera must exist in state because wormholes modify the camera, also camera punch
//pub camera: Camera,
//pub mouse_interpolation: MouseInterpolationState,
2023-09-08 11:33:16 -07:00
pub time: TIME,
pub strafe_tick_num: TIME,
pub strafe_tick_den: TIME,
2023-09-08 11:33:16 -07:00
pub tick: u32,
pub mv: f32,
pub walkspeed: f32,
2023-09-08 11:38:34 -07:00
pub friction: f32,
2023-09-08 20:14:18 -07:00
pub walk_target_velocity: glam::Vec3,
2023-09-08 11:38:34 -07:00
pub gravity: glam::Vec3,
pub grounded: bool,
2023-09-08 11:33:20 -07:00
pub jump_trying: bool,
2023-09-08 11:33:16 -07:00
}
2023-09-08 15:54:43 -07:00
#[derive(Clone,Copy)]
2023-09-08 16:14:01 -07:00
pub enum AabbFace{
2023-09-08 15:54:43 -07:00
Right,//+X
Top,
Back,
Left,
Bottom,
Front,
}
2023-09-08 16:14:01 -07:00
pub struct Aabb {
2023-09-08 15:54:43 -07:00
min: glam::Vec3,
max: glam::Vec3,
}
impl Aabb {
// const FACE_DATA: [[f32; 3]; 6] = [
// [0.0f32, 0., 1.],
// [0.0f32, 0., -1.],
// [1.0f32, 0., 0.],
// [-1.0f32, 0., 0.],
// [0.0f32, 1., 0.],
// [0.0f32, -1., 0.],
// ];
2023-09-18 13:20:51 -07:00
const VERTEX_DATA: [glam::Vec3; 8] = [
glam::vec3(1., -1., -1.),
glam::vec3(1., 1., -1.),
glam::vec3(1., 1., 1.),
glam::vec3(1., -1., 1.),
glam::vec3(-1., -1., 1.),
glam::vec3(-1., 1., 1.),
glam::vec3(-1., 1., -1.),
glam::vec3(-1., -1., -1.),
];
2023-09-08 16:14:01 -07:00
const VERTEX_DATA_RIGHT: [glam::Vec3; 4] = [
2023-09-08 15:54:43 -07:00
glam::vec3(1., -1., -1.),
glam::vec3(1., 1., -1.),
glam::vec3(1., 1., 1.),
glam::vec3(1., -1., 1.),
];
2023-09-08 16:14:01 -07:00
const VERTEX_DATA_TOP: [glam::Vec3; 4] = [
2023-09-08 15:54:43 -07:00
glam::vec3(1., 1., -1.),
glam::vec3(-1., 1., -1.),
glam::vec3(-1., 1., 1.),
glam::vec3(1., 1., 1.),
];
2023-09-08 16:14:01 -07:00
const VERTEX_DATA_BACK: [glam::Vec3; 4] = [
2023-09-08 15:54:43 -07:00
glam::vec3(-1., -1., 1.),
glam::vec3(1., -1., 1.),
glam::vec3(1., 1., 1.),
glam::vec3(-1., 1., 1.),
];
2023-09-08 16:14:01 -07:00
const VERTEX_DATA_LEFT: [glam::Vec3; 4] = [
2023-09-08 15:54:43 -07:00
glam::vec3(-1., -1., 1.),
glam::vec3(-1., 1., 1.),
glam::vec3(-1., 1., -1.),
glam::vec3(-1., -1., -1.),
];
2023-09-08 16:14:01 -07:00
const VERTEX_DATA_BOTTOM: [glam::Vec3; 4] = [
2023-09-08 15:54:43 -07:00
glam::vec3(1., -1., 1.),
glam::vec3(-1., -1., 1.),
glam::vec3(-1., -1., -1.),
glam::vec3(1., -1., -1.),
];
2023-09-08 16:14:01 -07:00
const VERTEX_DATA_FRONT: [glam::Vec3; 4] = [
2023-09-08 15:54:43 -07:00
glam::vec3(-1., 1., -1.),
glam::vec3(1., 1., -1.),
glam::vec3(1., -1., -1.),
glam::vec3(-1., -1., -1.),
];
pub fn new() -> Self {
Self {min: glam::Vec3::INFINITY,max: glam::Vec3::NEG_INFINITY}
}
pub fn grow(&mut self, point:glam::Vec3){
self.min=self.min.min(point);
self.max=self.max.max(point);
}
pub fn normal(face:AabbFace) -> glam::Vec3 {
match face {
AabbFace::Right => glam::vec3(1.,0.,0.),
AabbFace::Top => glam::vec3(0.,1.,0.),
AabbFace::Back => glam::vec3(0.,0.,1.),
AabbFace::Left => glam::vec3(-1.,0.,0.),
AabbFace::Bottom => glam::vec3(0.,-1.,0.),
AabbFace::Front => glam::vec3(0.,0.,-1.),
}
}
2023-09-18 13:20:51 -07:00
pub fn unit_vertices() -> [glam::Vec3;8] {
return Self::VERTEX_DATA;
}
pub fn unit_face_vertices(face:AabbFace) -> [glam::Vec3;4] {
2023-09-08 15:54:43 -07:00
match face {
AabbFace::Right => Self::VERTEX_DATA_RIGHT,
AabbFace::Top => Self::VERTEX_DATA_TOP,
AabbFace::Back => Self::VERTEX_DATA_BACK,
AabbFace::Left => Self::VERTEX_DATA_LEFT,
AabbFace::Bottom => Self::VERTEX_DATA_BOTTOM,
AabbFace::Front => Self::VERTEX_DATA_FRONT,
}
}
}
2023-09-18 13:20:51 -07:00
//pretend to be using what we want to eventually do
type TreyMeshFace = AabbFace;
2023-09-08 15:54:43 -07:00
type TreyMesh = Aabb;
pub struct Model {
//A model is a thing that has a hitbox. can be represented by a list of TreyMesh-es
//in this iteration, all it needs is extents.
transform: glam::Mat4,
}
impl Model {
2023-09-08 16:14:01 -07:00
pub fn new(transform:glam::Mat4) -> Self {
Self{transform}
}
2023-09-18 13:20:51 -07:00
pub fn unit_vertices(&self) -> [glam::Vec3;8] {
Aabb::unit_vertices()
}
pub fn mesh(&self) -> TreyMesh {
let mut aabb=Aabb::new();
for &vertex in self.unit_vertices().iter() {
aabb.grow(glam::Vec4Swizzles::xyz(self.transform*vertex.extend(1.0)));
}
return aabb;
}
pub fn unit_face_vertices(&self,face:TreyMeshFace) -> [glam::Vec3;4] {
Aabb::unit_face_vertices(face)
2023-09-08 15:54:43 -07:00
}
2023-09-18 13:20:51 -07:00
pub fn face_mesh(&self,face:TreyMeshFace) -> TreyMesh {
2023-09-08 15:54:43 -07:00
let mut aabb=Aabb::new();
2023-09-18 13:20:51 -07:00
for &vertex in self.unit_face_vertices(face).iter() {
aabb.grow(glam::Vec4Swizzles::xyz(self.transform*vertex.extend(1.0)));
2023-09-08 15:54:43 -07:00
}
return aabb;
}
2023-09-18 13:20:51 -07:00
pub fn face_normal(&self,face:TreyMeshFace) -> glam::Vec3 {
glam::Vec4Swizzles::xyz(self.transform*Aabb::normal(face).extend(0.0))//this is wrong for scale
2023-09-08 15:54:43 -07:00
}
}
2023-09-18 13:20:51 -07:00
//need non-face (full model) variant for CanCollide false objects
2023-09-08 15:54:22 -07:00
pub struct RelativeCollision {
2023-09-18 13:20:51 -07:00
face: TreyMeshFace,//just an id
2023-09-08 15:54:22 -07:00
model: u32,//using id to avoid lifetimes
}
impl RelativeCollision {
pub fn mesh(&self,models:&Vec<Model>) -> TreyMesh {
return models.get(self.model as usize).unwrap().face_mesh(self.face)
}
pub fn normal(&self,models:&Vec<Model>) -> glam::Vec3 {
return models.get(self.model as usize).unwrap().face_normal(self.face)
}
}
2023-09-08 11:33:16 -07:00
pub type TIME = i64;
2023-09-08 20:14:18 -07:00
impl Body {
pub fn with_position(position:glam::Vec3) -> Self {
Self{
position: position,
velocity: glam::Vec3::ZERO,
acceleration: glam::Vec3::ZERO,
time: 0,
}
}
pub fn extrapolated_position(&self,time: TIME)->glam::Vec3{
let dt=(time-self.time) as f64/1_000_000_000f64;
self.position+self.velocity*(dt as f32)+self.acceleration*((0.5*dt*dt) as f32)
}
pub fn advance_time(&mut self, time: TIME){
self.position=self.extrapolated_position(time);
self.time=time;
}
}
2023-09-08 11:33:16 -07:00
impl PhysicsState {
2023-09-08 20:14:18 -07:00
//tickless gaming
pub fn run(&mut self, time: TIME){
//prepare is ommitted - everything is done via instructions.
while let Some(instruction) = self.next_instruction(time) {//collect
2023-09-08 20:14:18 -07:00
//advance
//self.advance_time(instruction.time);
//process
self.process_instruction(instruction);
//write hash lol
2023-09-08 11:33:16 -07:00
}
}
2023-09-08 20:14:18 -07:00
pub fn advance_time(&mut self, time: TIME){
self.body.advance_time(time);
self.time=time;
2023-09-08 11:33:16 -07:00
}
2023-09-08 11:33:20 -07:00
2023-09-08 17:34:26 -07:00
fn next_strafe_instruction(&self) -> Option<TimedInstruction<PhysicsInstruction>> {
return Some(TimedInstruction{
time:(self.time*self.strafe_tick_num/self.strafe_tick_den+1)*self.strafe_tick_den/self.strafe_tick_num,
//only poll the physics if there is a before and after mouse event
2023-09-08 17:34:26 -07:00
instruction:PhysicsInstruction::StrafeTick
2023-09-08 11:33:20 -07:00
});
}
2023-09-08 14:11:24 -07:00
//state mutated on collision:
//Accelerator
//stair step-up
//state mutated on instruction
//change fly acceleration (fly_sustain)
//change fly velocity
//generic event emmiters
//PlatformStandTime
//walk/swim/air/ladder sounds
//VState?
//falling under the map
// fn next_respawn_instruction(&self) -> Option<TimedInstruction<PhysicsInstruction>> {
// if self.body.position<self.world.min_y {
// return Some(TimedInstruction{
// time:self.time,
// instruction:PhysicsInstruction::Trigger(None)
// });
// }
// }
// fn next_water_instruction(&self) -> Option<TimedInstruction<PhysicsInstruction>> {
// return Some(TimedInstruction{
// time:(self.time*self.strafe_tick_num/self.strafe_tick_den+1)*self.strafe_tick_den/self.strafe_tick_num,
// //only poll the physics if there is a before and after mouse event
// instruction:PhysicsInstruction::Water
// });
// }
2023-09-08 17:34:26 -07:00
fn next_walk_instruction(&self) -> Option<TimedInstruction<PhysicsInstruction>> {
//check if you are accelerating towards a walk target velocity and create an instruction
2023-09-08 14:11:24 -07:00
return None;
}
2023-09-18 13:20:51 -07:00
fn mesh(&self) -> TreyMesh {
let mut aabb=Aabb::new();
for vertex in Aabb::unit_vertices(){
aabb.grow(self.body.position+self.hitbox_size*vertex);
}
aabb
}
fn predict_collision_end(&self,model:&Model,time_limit:TIME,model_id:u32) -> Option<TimedInstruction<PhysicsInstruction>> {
//must treat cancollide false objects differently: you may not exit through the same face you entered.
2023-09-18 13:20:51 -07:00
//RelativeCollsion must reference the full model instead of a particular face
//this is Ctrl+C Ctrl+V of predict_collision_start but with v=-v before the calc and t=-t after the calc
//find best t
let mut best_delta_time=time_limit-self.body.time;
let mut best_face:Option<TreyMeshFace>=None;
let mesh0=self.mesh();
let mesh1=model.mesh();
let (p,v,a)=(self.body.position,-self.body.velocity,self.body.acceleration);
//collect x
for &t in zeroes2(mesh0.max.x-mesh1.min.x, v.x, a.x).iter() {
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
let t_time=((-t as f64)*1_000_000_000f64) as TIME;
if 0<=t_time&&t_time<best_delta_time&&0f32<(-v.x+a.x*t){
let dp=self.body.extrapolated_position(self.body.time+t_time)-p;
//faces must be overlapping
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
//collect valid t
best_delta_time=t_time;
best_face=Some(TreyMeshFace::Left);
}
}
}
for &t in zeroes2(mesh0.min.x-mesh1.max.x, v.x, a.x).iter() {
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
let t_time=((-t as f64)*1_000_000_000f64) as TIME;
if 0<=t_time&&t_time<best_delta_time&&(-v.x+a.x*t)<0f32{
let dp=self.body.extrapolated_position(self.body.time+t_time)-p;
//faces must be overlapping
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
//collect valid t
best_delta_time=t_time;
best_face=Some(TreyMeshFace::Right);
}
}
}
//collect y
for &t in zeroes2(mesh0.max.y-mesh1.min.y, v.y, a.y).iter() {
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
let t_time=((-t as f64)*1_000_000_000f64) as TIME;
if 0<=t_time&&t_time<best_delta_time&&0f32<(-v.y+a.y*t){
let dp=self.body.extrapolated_position(self.body.time+t_time)-p;
//faces must be overlapping
if mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
//collect valid t
best_delta_time=t_time;
best_face=Some(TreyMeshFace::Bottom);
}
}
}
for &t in zeroes2(mesh0.min.y-mesh1.max.y, v.y, a.y).iter() {
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
let t_time=((-t as f64)*1_000_000_000f64) as TIME;
if 0<=t_time&&t_time<best_delta_time&&(-v.y+a.y*t)<0f32{
let dp=self.body.extrapolated_position(self.body.time+t_time)-p;
//faces must be overlapping
if mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
//collect valid t
best_delta_time=t_time;
best_face=Some(TreyMeshFace::Top);
}
}
}
//collect z
for &t in zeroes2(mesh0.max.z-mesh1.min.z, v.z, a.z).iter() {
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
let t_time=((-t as f64)*1_000_000_000f64) as TIME;
if 0<=t_time&&t_time<best_delta_time&&0f32<(-v.z+a.z*t){
let dp=self.body.extrapolated_position(self.body.time+t_time)-p;
//faces must be overlapping
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x {
//collect valid t
best_delta_time=t_time;
best_face=Some(TreyMeshFace::Front);
}
}
}
for &t in zeroes2(mesh0.min.z-mesh1.max.z, v.z, a.z).iter() {
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
let t_time=((-t as f64)*1_000_000_000f64) as TIME;
if 0<=t_time&&t_time<best_delta_time&&(-v.z+a.z*t)<0f32{
let dp=self.body.extrapolated_position(self.body.time+t_time)-p;
//faces must be overlapping
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x {
//collect valid t
best_delta_time=t_time;
best_face=Some(TreyMeshFace::Back);
}
}
}
//generate instruction
if let Some(face) = best_face{
return Some(TimedInstruction {
time: self.body.time+best_delta_time,
instruction: PhysicsInstruction::CollisionStart(RelativeCollision {
face,
model: model_id
})
})
}
2023-09-08 15:55:33 -07:00
None
}
2023-09-18 13:20:51 -07:00
fn predict_collision_start(&self,model:&Model,time_limit:TIME,model_id:u32) -> Option<TimedInstruction<PhysicsInstruction>> {
//find best t
let mut best_delta_time=time_limit-self.body.time;
let mut best_face:Option<TreyMeshFace>=None;
let mesh0=self.mesh();
let mesh1=model.mesh();
let (p,v,a)=(self.body.position,self.body.velocity,self.body.acceleration);
//collect x
for &t in zeroes2(mesh0.max.x-mesh1.min.x, v.x, a.x).iter() {
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
let t_time=((t as f64)*1_000_000_000f64) as TIME;
if 0<=t_time&&t_time<best_delta_time&&0f32<v.x+a.x*t{
let dp=self.body.extrapolated_position(self.body.time+t_time)-p;
//faces must be overlapping
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
//collect valid t
best_delta_time=t_time;
best_face=Some(TreyMeshFace::Left);
}
}
}
for &t in zeroes2(mesh0.min.x-mesh1.max.x, v.x, a.x).iter() {
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
let t_time=((t as f64)*1_000_000_000f64) as TIME;
if 0<=t_time&&t_time<best_delta_time&&v.x+a.x*t<0f32{
let dp=self.body.extrapolated_position(self.body.time+t_time)-p;
//faces must be overlapping
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
//collect valid t
best_delta_time=t_time;
best_face=Some(TreyMeshFace::Right);
}
}
}
//collect y
for &t in zeroes2(mesh0.max.y-mesh1.min.y, v.y, a.y).iter() {
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
let t_time=((t as f64)*1_000_000_000f64) as TIME;
if 0<=t_time&&t_time<best_delta_time&&0f32<v.y+a.y*t{
let dp=self.body.extrapolated_position(self.body.time+t_time)-p;
//faces must be overlapping
if mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
//collect valid t
best_delta_time=t_time;
best_face=Some(TreyMeshFace::Bottom);
}
}
}
for &t in zeroes2(mesh0.min.y-mesh1.max.y, v.y, a.y).iter() {
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
let t_time=((t as f64)*1_000_000_000f64) as TIME;
if 0<=t_time&&t_time<best_delta_time&&v.y+a.y*t<0f32{
let dp=self.body.extrapolated_position(self.body.time+t_time)-p;
//faces must be overlapping
if mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
//collect valid t
best_delta_time=t_time;
best_face=Some(TreyMeshFace::Top);
}
}
}
//collect z
for &t in zeroes2(mesh0.max.z-mesh1.min.z, v.z, a.z).iter() {
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
let t_time=((t as f64)*1_000_000_000f64) as TIME;
if 0<=t_time&&t_time<best_delta_time&&0f32<v.z+a.z*t{
let dp=self.body.extrapolated_position(self.body.time+t_time)-p;
//faces must be overlapping
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x {
//collect valid t
best_delta_time=t_time;
best_face=Some(TreyMeshFace::Front);
}
}
}
for &t in zeroes2(mesh0.min.z-mesh1.max.z, v.z, a.z).iter() {
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
let t_time=((t as f64)*1_000_000_000f64) as TIME;
if 0<=t_time&&t_time<best_delta_time&&v.z+a.z*t<0f32{
let dp=self.body.extrapolated_position(self.body.time+t_time)-p;
//faces must be overlapping
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x {
//collect valid t
best_delta_time=t_time;
best_face=Some(TreyMeshFace::Back);
}
}
}
//generate instruction
if let Some(face) = best_face{
return Some(TimedInstruction {
time: self.body.time+best_delta_time,
instruction: PhysicsInstruction::CollisionStart(RelativeCollision {
face,
model: model_id
})
})
}
2023-09-08 15:55:33 -07:00
None
}
2023-09-08 11:33:20 -07:00
}
2023-09-08 17:34:26 -07:00
impl crate::instruction::InstructionEmitter<PhysicsInstruction> for PhysicsState {
//this little next instruction function can cache its return value and invalidate the cached value by watching the State.
fn next_instruction(&self,time_limit:TIME) -> Option<TimedInstruction<PhysicsInstruction>> {
2023-09-08 11:33:20 -07:00
//JUST POLLING!!! NO MUTATION
let mut collector = crate::instruction::InstructionCollector::new(time_limit);
2023-09-08 12:04:30 -07:00
//autohop (already pressing spacebar; the signal to begin trying to jump is different)
2023-09-08 11:33:20 -07:00
if self.grounded&&self.jump_trying {
2023-09-08 17:34:26 -07:00
//scroll will be implemented with InputInstruction::Jump(true) but it blocks setting self.jump_trying=true
2023-09-08 20:12:58 -07:00
collector.collect(Some(TimedInstruction{
2023-09-08 11:33:20 -07:00
time:self.time,
2023-09-08 17:34:26 -07:00
instruction:PhysicsInstruction::Jump
2023-09-08 11:33:20 -07:00
}));
}
2023-09-08 17:34:26 -07:00
//check for collision stop instructions with curent contacts
2023-09-08 11:33:20 -07:00
for collision_data in self.contacts.iter() {
2023-09-18 13:20:51 -07:00
collector.collect(self.predict_collision_end(self.models_cringe_clone.get(collision_data.model as usize).unwrap(),time_limit,collision_data.model));
2023-09-08 11:33:20 -07:00
}
2023-09-08 17:34:26 -07:00
//check for collision start instructions (against every part in the game with no optimization!!)
2023-09-18 13:20:51 -07:00
for (i,model) in self.models_cringe_clone.iter().enumerate() {
collector.collect(self.predict_collision_start(model,time_limit,i as u32));
2023-09-08 15:55:33 -07:00
}
2023-09-08 14:11:24 -07:00
if self.grounded {
//walk maintenance
2023-09-08 20:12:58 -07:00
collector.collect(self.next_walk_instruction());
2023-09-08 14:11:24 -07:00
}else{
//check to see when the next strafe tick is
2023-09-08 20:12:58 -07:00
collector.collect(self.next_strafe_instruction());
2023-09-08 11:33:20 -07:00
}
2023-09-08 20:12:58 -07:00
collector.instruction()
2023-09-08 11:33:20 -07:00
}
2023-09-08 11:33:16 -07:00
}
2023-09-08 17:15:49 -07:00
2023-09-08 17:34:26 -07:00
impl crate::instruction::InstructionConsumer<PhysicsInstruction> for PhysicsState {
2023-09-08 20:14:18 -07:00
fn process_instruction(&mut self, ins:TimedInstruction<PhysicsInstruction>) {
//mutate position and velocity and time
self.advance_time(ins.time);//should this be in run?
match ins.instruction {
2023-09-18 13:20:51 -07:00
PhysicsInstruction::CollisionStart(c) => {
//flatten v
let n=c.normal(&self.models_cringe_clone);
let d=self.body.velocity.dot(n)/n.length_squared();
self.body.velocity-=d*n;
//check ground
match c.face {
AabbFace::Top => {
//ground
self.grounded=true;
self.body.acceleration=glam::Vec3::ZERO;
},
_ => (),
}
},
PhysicsInstruction::CollisionEnd(c) => {
//check ground
match c.face {
AabbFace::Top => {
//ground
self.body.acceleration=self.gravity;
},
_ => (),
}
},
2023-09-08 20:14:18 -07:00
PhysicsInstruction::StrafeTick => {
//let control_dir=self.get_control_dir();//this should respect your mouse interpolation settings
let d=self.body.velocity.dot(self.temp_control_dir);
if d<self.mv {
self.body.velocity+=(self.mv-d)*self.temp_control_dir;
}
}
PhysicsInstruction::Jump => {
self.grounded=false;//do I need this?
self.body.velocity+=glam::Vec3::new(0.0,0.715588/2.0*100.0,0.0);
}
PhysicsInstruction::ReachWalkTargetVelocity => {
//precisely set velocity
self.body.velocity=self.walk_target_velocity;
}
PhysicsInstruction::SetWalkTargetVelocity(v) => {
self.walk_target_velocity=v;
//calculate acceleration yada yada
},
}
2023-09-08 17:15:49 -07:00
}
}