86 Commits

Author SHA1 Message Date
fcf320c3a8 Divide trait wip 2024-09-11 12:59:33 -07:00
44ac6fe4be fixed_wide: no default features 2024-09-11 12:59:22 -07:00
1a24de3cd9 deferred division for vector + matrix 2024-09-11 12:20:17 -07:00
9f77531995 implement Debug + Display 2024-09-11 12:06:58 -07:00
7b78338c76 fix tests :/ 2024-09-10 14:50:35 -07:00
021d7f9d1f implement mul + div only for scalars (otherwise conflicting implementations) 2024-09-10 14:20:07 -07:00
338669b60f implement shift operators 2024-09-10 13:45:12 -07:00
085d9185a9 ratio operators 2024-09-10 13:22:49 -07:00
1fd7a6eafd fixed: inline functions Q_Q 2024-09-10 13:05:10 -07:00
91b96e4b5d move ratio to own crate (again) 2024-09-10 12:09:58 -07:00
fc65d0f1f4 rename fixed_wide_vectors to linear_ops 2024-09-10 11:57:18 -07:00
4eaf8794f6 fix compile without named fields 2024-09-10 11:36:48 -07:00
fa8614891d zeroes function uses type transformation, drops direct ratio dep from zeroes 2024-09-10 11:36:48 -07:00
c20a0a4a89 compare with From types 2024-09-10 11:36:48 -07:00
e66a245c78 delete fixed-wide 2024-09-10 11:36:48 -07:00
eb7eb30814 impl det + adjugate with trait bounds 2024-09-09 19:54:00 -07:00
57c3f2dd9e write m*v test 2024-09-09 19:54:00 -07:00
b772647137 impl Mat*Vec 2024-09-09 19:54:00 -07:00
dd2140d1d2 forgotten inlines 2024-09-09 19:54:00 -07:00
6cbd3446e5 impl matrix multiplication with Mul 2024-09-09 19:54:00 -07:00
b6d260bf2c update tests to use new ideas 2024-09-09 19:54:00 -07:00
53bb1522eb impl dot + cross + length_squared with trait bounds 2024-09-09 19:54:00 -07:00
206e219467 wide-mul crate feature 2024-09-09 19:54:00 -07:00
8ee6204a42 invent wide_div + test 2024-09-09 15:24:49 -07:00
803f1bea9e extract trait impls into named functions + fix spelling 2024-09-09 15:24:49 -07:00
62419e94e1 consistency 2024-09-09 14:14:48 -07:00
d3c4d530b6 refactor macros, move things around 2024-09-09 14:14:48 -07:00
898407a0e9 matrix and vector extend functions 2024-09-06 13:24:03 -07:00
66186c7354 doc 2024-09-06 13:03:55 -07:00
36c769346c use inline const constructor because it's a little bit prettier 2024-09-06 11:44:43 -07:00
5f2bec75f5 enable matrix mul test 2024-09-06 11:38:29 -07:00
7a9aaf9fe0 matrix mul 2024-09-06 11:38:22 -07:00
9ad90cea2e fix tests 2024-09-06 11:25:51 -07:00
f2fec0b3b9 implement a bunch of fixed wide stuff 2024-09-06 11:25:46 -07:00
dae72d73d5 convert to row-major 2024-09-06 10:52:17 -07:00
4a1eff40da matrix multiplication ascii art 2024-09-06 10:44:30 -07:00
d5bd82761a fix dot test 2024-09-06 10:36:34 -07:00
5cad8637cd tweak dot 2024-09-06 10:36:24 -07:00
607706ee2a nope 2024-09-05 17:56:09 -07:00
2312ee27b7 test vector and matrix (TODO: Debug trait) 2024-09-05 17:56:09 -07:00
4d2aa0b2c8 is this better? 2024-09-05 17:44:44 -07:00
34450d6a13 matrix multiplication 2024-09-05 17:37:38 -07:00
1a6ece1312 epic const generic array transpose
verified that this loop unrolls on compiler explorer
2024-09-05 17:36:45 -07:00
e95f675e91 test named fields 2024-09-05 16:56:59 -07:00
504ff37c47 write a test 2024-09-05 16:45:44 -07:00
41cdd03b1b wip fixed wide 2024-09-05 16:32:19 -07:00
e375173625 keep generic operators and only implement i64 convenience operator 2024-09-05 16:18:13 -07:00
488a6b6496 fix vector bool code 2024-09-05 16:08:53 -07:00
5cdd2c3ee1 must be less generic to avoid conflict with convenience operators 2024-09-05 16:05:47 -07:00
a0da6873c1 vector operators 2024-09-05 15:56:44 -07:00
345d5737a2 more generic Neg operator 2024-09-05 15:56:35 -07:00
f4d28dd3c3 use derive macros 2024-09-05 15:43:26 -07:00
c362081003 implement a bunch of stuff 2024-09-05 15:43:26 -07:00
990a923463 fixup tests 2024-09-05 13:53:03 -07:00
56b781fcb8 we build 2024-09-05 13:52:54 -07:00
e026f6efed wip 2024-09-05 13:36:38 -07:00
e475da5fb4 put that back 2024-09-05 13:16:02 -07:00
c3026c67e9 delete everything and start over 2024-09-05 12:49:20 -07:00
103697fbdd matrix: test det + adjugate 2024-09-04 13:55:11 -07:00
cf17460b77 special case 3d vectors and matrices 2024-09-04 13:47:50 -07:00
823a05c101 matrix: directly implement dot product to avoid a copy 2024-09-04 12:11:52 -07:00
e5f95b97ce matrix: macro mat mul 2024-09-04 12:11:52 -07:00
176eb762e3 name macros better 2024-09-03 12:51:19 -07:00
15bd78c0e1 matrix wide dot test 2024-09-03 10:59:47 -07:00
0f9d0c8c39 matrix wide dot 2024-09-03 10:59:18 -07:00
eefbdafc16 move more impls to common 2024-09-03 10:40:43 -07:00
b0ecfeb294 the matrix super macro 2024-09-03 10:10:46 -07:00
48a8271b99 transpose macro_repeated 2024-09-03 10:10:30 -07:00
1604888254 macro macro 2024-09-03 10:01:22 -07:00
4017f33447 delete comment 2024-09-03 09:40:49 -07:00
f0527714db move macro to mod 2024-09-03 09:40:46 -07:00
27d96f9b19 delete tuple impls 2024-09-03 09:30:13 -07:00
a5094fe873 common impls between matrix and vector 2024-09-02 18:54:50 -07:00
1bd45283a9 delete unused test 2024-09-02 18:36:05 -07:00
a6dc0c37ba MACRO MACRO MACRO 2024-09-02 18:35:37 -07:00
83434a89c7 wide_dot 2024-09-02 18:25:21 -07:00
b14c84bdad MACRO MACRO MACRO 2024-09-02 18:19:35 -07:00
e98744871b narrow paste scope 2024-09-02 18:19:35 -07:00
c26ce93fc8 paste 2024-09-02 18:19:35 -07:00
c856509759 remove old comment 2024-09-02 18:19:35 -07:00
5cb98ee29f vectors: no traits 2024-09-02 18:19:35 -07:00
bc29cd9848 move tests 2024-09-02 17:44:04 -07:00
502ab7f33f named function 2024-09-02 17:09:37 -07:00
e0dba8840e ruin everything successfully 2024-09-02 17:03:01 -07:00
4d13b4ada7 paste (this sucks) 2024-09-02 16:35:01 -07:00
2a2e729f59 wip 2024-09-02 16:15:17 -07:00
54 changed files with 1657 additions and 1467 deletions

@ -1,14 +0,0 @@
[package]
name = "deferred_division"
version = "0.1.0"
edition = "2021"
[features]
default=["fixed_wide_traits"]
fixed_wide_traits=["dep:fixed_wide_traits"]
[dependencies]
fixed_wide_traits = { version = "0.1.0", path = "../fixed_wide_traits", optional = true }
[dev-dependencies]
fixed_wide = { version = "0.1.0", path = "../fixed_wide" }

@ -1,8 +0,0 @@
pub mod ratio;
#[cfg(feature="fixed_wide_traits")]
mod wide;
#[cfg(test)]
mod tests;

@ -1,157 +0,0 @@
use std::ops::Mul;
#[derive(Clone,Copy,Debug,Hash)]
pub struct Ratio<Num,Den>{
pub(crate)num:Num,
pub(crate)den:Den,
}
impl<Num,Den> Ratio<Num,Den>{
pub const fn new(num:Num,den:Den)->Self{
Self{num,den}
}
}
impl<Num,Den,Rhs> PartialEq<Rhs> for Ratio<Num,Den>
where
Den:Copy,
Rhs:Mul<Den>+Copy,
Num:PartialEq<<Rhs as Mul<Den>>::Output>
{
fn eq(&self,rhs:&Rhs)->bool{
self.num.eq(&rhs.mul(self.den))
}
}
/*
//You can't do Ratio==Ratio I guess
impl<Num,Den> Eq for Ratio<Num,Den>
where
Num:Mul<Den>,
<Num as Mul<Den>>::Output:PartialEq
{}
*/
// num/den == rhs
// num == rhs * den
impl<Num,Den,Rhs> PartialOrd<Rhs> for Ratio<Num,Den>
where
Den:Copy,
Rhs:Mul<Den>+Copy,
Num:PartialOrd<<Rhs as Mul<Den>>::Output>
{
fn partial_cmp(&self,rhs:&Rhs)->Option<std::cmp::Ordering>{
self.num.partial_cmp(&rhs.mul(self.den))
}
}
/*
impl<Den,Rhs> Ord for Ratio<<Rhs as Mul<Den>>::Output,Den>
where
Rhs:Mul<Den>,
Rhs:Ord,
<Rhs as Mul<Den>>::Output:Ord,
{
fn cmp(&self,other:&Rhs)->std::cmp::Ordering{
self.num.cmp(&other.mul(self.den))
}
}
*/
impl<NewNum,Num:std::ops::Neg<Output=NewNum>,Den> std::ops::Neg for Ratio<Num,Den>{
type Output=Ratio<NewNum,Den>;
fn neg(self)->Self::Output{
Ratio{
num:self.num.neg(),
den:self.den,
}
}
}
// num/den + rhs == new_num/den
// new_num = num + rhs * den
macro_rules! impl_operator {
($struct:ident,$trait:ident,$method:ident)=>{
impl<Num,Den,Rhs> core::ops::$trait<Rhs> for $struct<Num,Den>
where
Den:Copy,
Rhs:Mul<Den>,
Num:core::ops::$trait<<Rhs as Mul<Den>>::Output>,
{
type Output=$struct<<Num as core::ops::$trait<<Rhs as Mul<Den>>::Output>>::Output,Den>;
fn $method(self,rhs:Rhs)->Self::Output{
$struct{
num:self.num.$method(rhs.mul(self.den)),
den:self.den,
}
}
}
};
}
macro_rules! impl_assign_operator{
($struct:ident,$trait:ident,$method:ident)=>{
impl<Num,Den,Rhs> core::ops::$trait<Rhs> for $struct<Num,Den>
where
Den:Copy,
Rhs:Mul<Den>,
Num:core::ops::$trait<<Rhs as Mul<Den>>::Output>,
{
fn $method(&mut self,rhs:Rhs){
self.num.$method(rhs.mul(self.den));
}
}
};
}
// Impl arithmetic operators
impl_assign_operator!(Ratio,AddAssign,add_assign);
impl_operator!(Ratio,Add,add);
impl_assign_operator!(Ratio,SubAssign,sub_assign);
impl_operator!(Ratio,Sub,sub);
// num/den % rhs == new_num/den
// new_num = num % (rhs * den)
impl_assign_operator!(Ratio,RemAssign,rem_assign);
impl_operator!(Ratio,Rem,rem);
//mul and div is special
impl<Num,Den,Rhs> Mul<Rhs> for Ratio<Num,Den>
where
Num:Mul<Rhs>,
{
type Output=Ratio<<Num as Mul<Rhs>>::Output,Den>;
fn mul(self,rhs:Rhs)->Self::Output{
Ratio{
num:self.num.mul(rhs),
den:self.den,
}
}
}
impl<Num,Den,Rhs> core::ops::MulAssign<Rhs> for Ratio<Num,Den>
where
Num:core::ops::MulAssign<Rhs>,
{
fn mul_assign(&mut self,rhs:Rhs){
self.num.mul_assign(rhs);
}
}
impl<Num,Den,Rhs> core::ops::Div<Rhs> for Ratio<Num,Den>
where
Den:Mul<Rhs>,
{
type Output=Ratio<Num,<Den as Mul<Rhs>>::Output>;
fn div(self,rhs:Rhs)->Self::Output{
Ratio{
num:self.num,
den:self.den.mul(rhs),
}
}
}
impl<Num,Den,Rhs> core::ops::DivAssign<Rhs> for Ratio<Num,Den>
where
Den:core::ops::MulAssign<Rhs>,
{
fn div_assign(&mut self,rhs:Rhs){
self.den.mul_assign(rhs);
}
}

@ -1,4 +0,0 @@
mod tests;
#[cfg(feature="fixed_wide_traits")]
mod wide;

@ -1,22 +0,0 @@
use crate::ratio::Ratio;
#[test]
fn ratio(){
let r=Ratio::new(5,3);
let a=r%1;
assert_eq!(a.num,2);
assert_eq!(a.den,3);
let b=r*2;
assert_eq!(b.num,10);
assert_eq!(b.den,3);
let c=r/2;
assert_eq!(c.num,5);
assert_eq!(c.den,6);
}
#[test]
fn add_ratio_cmp(){
let a=Ratio::new(5,3);
let b=Ratio::new(1,3);
assert_eq!(a+b,2);
}

@ -1,15 +0,0 @@
use crate::ratio::Ratio;
use fixed_wide_traits::wide::{WideMul,WideDiv};
use fixed_wide::types::I32F32;
use fixed_wide::types::I64F64;
#[test]
fn ratio(){
let r=Ratio::new(I32F32::from(5),I32F32::from(3));
let a=r.wide_mul(I32F32::from(7)>>2);
assert_eq!(a.num,I64F64::from(7*5)>>2);
assert_eq!(a.den,I32F32::from(3));
let a=r.wide_div(I32F32::from(7)>>2);
assert_eq!(a.num,I32F32::from(5));
assert_eq!(a.den,I64F64::from(3*7)>>2);
}

@ -1,58 +0,0 @@
use std::ops::{Add,Mul};
use crate::ratio::Ratio;
use fixed_wide_traits::wide::{WideMul,WideDiv,WideDot,WideCross};
impl<Num,Den:Copy> Ratio<Num,Den>
{
pub fn rational_add<T>(self,rhs:T)->Ratio<<Num as Add<<Den as Mul<T>>::Output>>::Output,Den>
where
Den:Mul<T>,
Num:Add<<Den as Mul<T>>::Output>,
{
Ratio{
num:self.num+self.den.mul(rhs),
den:self.den,
}
}
pub fn wide_rational_add<T>(self,rhs:T)->Ratio<<Num as Add<<Den as WideMul<T>>::Output>>::Output,Den>
where
Den:WideMul<T>,
Num:Add<<Den as WideMul<T>>::Output>,
{
Ratio{
num:self.num+self.den.wide_mul(rhs),
den:self.den,
}
}
}
macro_rules! impl_mul_operator {
($struct:ident,$trait:ident,$method:ident)=>{
impl<Num,Den,Rhs> $trait<Rhs> for $struct<Num,Den>
where
Num:$trait<Rhs>,
{
type Output=$struct<<Num as $trait<Rhs>>::Output,Den>;
fn $method(self,rhs:Rhs)->Self::Output{
$struct{
num:self.num.$method(rhs),
den:self.den,
}
}
}
}
}
impl_mul_operator!(Ratio,WideMul,wide_mul);
impl_mul_operator!(Ratio,WideDot,wide_dot);
impl_mul_operator!(Ratio,WideCross,wide_cross);
impl<Num,Den,T> WideDiv<T> for Ratio<Num,Den>
where
Den:WideMul<T>,
{
type Output=Ratio<Num,<Den as WideMul<T>>::Output>;
fn wide_div(self,rhs:T)->Ratio<Num,<Den as WideMul<T>>::Output>{
Ratio{
num:self.num,
den:self.den.wide_mul(rhs),
}
}
}

23
fixed_wide/Cargo.lock generated

@ -2,6 +2,12 @@
# It is not intended for manual editing.
version = 3
[[package]]
name = "arrayvec"
version = "0.7.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7c02d123df017efcdfbd739ef81735b36c5ba83ec3c59c80a9d7ecc718f92e50"
[[package]]
name = "bnum"
version = "0.11.0"
@ -12,17 +18,18 @@ checksum = "3e31ea183f6ee62ac8b8a8cf7feddd766317adfb13ff469de57ce033efd6a790"
name = "fixed_wide"
version = "0.1.0"
dependencies = [
"arrayvec",
"bnum",
"fixed_wide_traits",
"typenum",
"paste",
"ratio_ops",
]
[[package]]
name = "fixed_wide_traits"
version = "0.1.0"
name = "paste"
version = "1.0.15"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "57c0d7b74b563b49d38dae00a0c37d4d6de9b432382b2892f0574ddcae73fd0a"
[[package]]
name = "typenum"
version = "1.17.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "42ff0bf0c66b8238c6f3b578df37d0b7848e55df8577b3f74f92a69acceeb825"
name = "ratio_ops"
version = "0.1.0"

@ -4,10 +4,13 @@ version = "0.1.0"
edition = "2021"
[features]
default=["fixed_wide_traits"]
fixed_wide_traits=["dep:fixed_wide_traits"]
default=[]
deferred-division=["dep:ratio_ops"]
wide-mul=[]
zeroes=["dep:arrayvec"]
[dependencies]
bnum = "0.11.0"
typenum = "1.17.0"
fixed_wide_traits = { version = "0.1.0", path = "../fixed_wide_traits", optional = true }
arrayvec = { version = "0.7.6", optional = true }
paste = "1.0.15"
ratio_ops = { path = "../ratio_ops", optional = true }

@ -1,111 +1,199 @@
use bnum::{BInt,cast::As};
use typenum::Unsigned;
#[derive(Clone,Copy,Debug,Hash)]
pub struct Fixed<const CHUNKS:usize,Frac>{
pub(crate)bits:BInt<{CHUNKS}>,
pub(crate)frac:std::marker::PhantomData<Frac>,
/// A Fixed point number for which multiply operations widen the bits in the output. (when the wide-mul feature is enabled)
/// N is the number of u64s to use
/// F is the number of fractional bits (always N*32 lol)
pub struct Fixed<const N:usize,const F:usize>{
pub(crate)bits:BInt<{N}>,
}
impl<const CHUNKS:usize,Frac:Unsigned> Fixed<CHUNKS,Frac>{
pub const MAX:Self=Self::from_bits(BInt::<CHUNKS>::MAX);
pub const MIN:Self=Self::from_bits(BInt::<CHUNKS>::MIN);
pub const ZERO:Self=Self::from_bits(BInt::<CHUNKS>::ZERO);
pub const EPSILON:Self=Self::from_bits(BInt::<CHUNKS>::ONE);
pub const NEG_EPSILON:Self=Self::from_bits(BInt::<CHUNKS>::NEG_ONE);
pub const ONE:Self=Self::from_bits(BInt::<CHUNKS>::ONE.shl(Frac::U32));
pub const TWO:Self=Self::from_bits(BInt::<CHUNKS>::TWO.shl(Frac::U32));
pub const HALF:Self=Self::from_bits(BInt::<CHUNKS>::ONE.shl(Frac::U32-1));
pub const NEG_ONE:Self=Self::from_bits(BInt::<CHUNKS>::NEG_ONE.shl(Frac::U32));
pub const NEG_TWO:Self=Self::from_bits(BInt::<CHUNKS>::NEG_TWO.shl(Frac::U32));
pub const NEG_HALF:Self=Self::from_bits(BInt::<CHUNKS>::NEG_ONE.shl(Frac::U32-1));
impl<const N:usize,const F:usize> Fixed<N,F>{
pub const MAX:Self=Self::from_bits(BInt::<N>::MAX);
pub const MIN:Self=Self::from_bits(BInt::<N>::MIN);
pub const ZERO:Self=Self::from_bits(BInt::<N>::ZERO);
pub const EPSILON:Self=Self::from_bits(BInt::<N>::ONE);
pub const NEG_EPSILON:Self=Self::from_bits(BInt::<N>::NEG_ONE);
pub const ONE:Self=Self::from_bits(BInt::<N>::ONE.shl(F as u32));
pub const TWO:Self=Self::from_bits(BInt::<N>::TWO.shl(F as u32));
pub const HALF:Self=Self::from_bits(BInt::<N>::ONE.shl(F as u32-1));
pub const NEG_ONE:Self=Self::from_bits(BInt::<N>::NEG_ONE.shl(F as u32));
pub const NEG_TWO:Self=Self::from_bits(BInt::<N>::NEG_TWO.shl(F as u32));
pub const NEG_HALF:Self=Self::from_bits(BInt::<N>::NEG_ONE.shl(F as u32-1));
}
impl<const CHUNKS:usize,Frac> Fixed<CHUNKS,Frac>{
impl<const N:usize,const F:usize> Fixed<N,F>{
#[inline]
pub const fn from_bits(bits:BInt::<CHUNKS>)->Self{
pub const fn from_bits(bits:BInt::<N>)->Self{
Self{
bits,
frac:std::marker::PhantomData,
}
}
#[inline]
pub const fn to_bits(self)->BInt<CHUNKS>{
pub const fn to_bits(self)->BInt<N>{
self.bits
}
#[inline]
pub const fn raw_digit(value:i64)->Self{
let mut digits=[0u64;N];
digits[0]=value.abs() as u64;
//sign bit
digits[N-1]|=(value&i64::MIN) as u64;
Self::from_bits(BInt::from_bits(bnum::BUint::from_digits(digits)))
}
}
impl<const F:usize> Fixed<1,F>{
/// My old code called this function everywhere so let's provide it
#[inline]
pub const fn raw(value:i64)->Self{
Self::from_bits(BInt::from_bits(bnum::BUint::from_digit(value as u64)))
}
}
impl<const CHUNKS:usize,Frac:Unsigned,T> From<T> for Fixed<CHUNKS,Frac>
impl<const N:usize,const F:usize,T> From<T> for Fixed<N,F>
where
BInt<CHUNKS>:From<T>
BInt<N>:From<T>
{
#[inline]
fn from(value:T)->Self{
Self::from_bits(BInt::<{CHUNKS}>::from(value)<<Frac::U32)
Self::from_bits(BInt::<{N}>::from(value)<<F as u32)
}
}
impl<const CHUNKS:usize,Frac> PartialEq for Fixed<CHUNKS,Frac>{
impl<const N:usize,const F:usize> PartialEq for Fixed<N,F>{
#[inline]
fn eq(&self,other:&Self)->bool{
self.bits.eq(&other.bits)
}
}
impl<const CHUNKS:usize,Frac> Eq for Fixed<CHUNKS,Frac>{}
impl<const N:usize,const F:usize,T> PartialEq<T> for Fixed<N,F>
where
T:Copy,
BInt::<N>:From<T>,
{
#[inline]
fn eq(&self,&other:&T)->bool{
self.bits.eq(&other.into())
}
}
impl<const N:usize,const F:usize> Eq for Fixed<N,F>{}
impl<const CHUNKS:usize,Frac> PartialOrd for Fixed<CHUNKS,Frac>{
impl<const N:usize,const F:usize> PartialOrd for Fixed<N,F>{
#[inline]
fn partial_cmp(&self,other:&Self)->Option<std::cmp::Ordering>{
self.bits.partial_cmp(&other.bits)
}
}
impl<const CHUNKS:usize,Frac> Ord for Fixed<CHUNKS,Frac>{
impl<const N:usize,const F:usize,T> PartialOrd<T> for Fixed<N,F>
where
T:Copy,
BInt::<N>:From<T>,
{
#[inline]
fn partial_cmp(&self,&other:&T)->Option<std::cmp::Ordering>{
self.bits.partial_cmp(&other.into())
}
}
impl<const N:usize,const F:usize> Ord for Fixed<N,F>{
#[inline]
fn cmp(&self,other:&Self)->std::cmp::Ordering{
self.bits.cmp(&other.bits)
}
}
impl<const CHUNKS:usize,Frac> std::ops::Neg for Fixed<CHUNKS,Frac>{
impl<const N:usize,const F:usize> std::ops::Neg for Fixed<N,F>{
type Output=Self;
#[inline]
fn neg(self)->Self{
Self::from_bits(self.bits.neg())
}
}
impl<const N:usize,const F:usize> std::iter::Sum for Fixed<N,F>{
#[inline]
fn sum<I:Iterator<Item=Self>>(iter:I)->Self{
let mut sum=Self::ZERO;
for elem in iter{
sum+=elem;
}
sum
}
}
macro_rules! impl_into_float {
( $output: ty ) => {
impl<const N:usize,const F:usize> Into<$output> for Fixed<N,F>{
#[inline]
fn into(self)->$output{
let mut total=0.0;
let bits=self.bits.to_bits();
let digits=bits.digits();
for (i,digit) in digits[0..N-1].iter().enumerate(){
// (i*64-F) as i32 will interpret the highest order bit as a sign bit but whatever
total+=(*digit as $output)*(2.0 as $output).powi((i*64-F) as i32);
}
//most significant digit holds the sign bit
//assume we are using a number with at least 1 digit...
total+=((*digits.last().unwrap() as i64).abs() as $output)*(2.0 as $output).powi(((N-1)*64-F) as i32);
if self.bits.is_negative(){
total=-total;
}
total
}
}
}
}
impl_into_float!(f32);
impl_into_float!(f64);
impl<const N:usize,const F:usize> core::fmt::Display for Fixed<N,F>{
#[inline]
fn fmt(&self,f:&mut core::fmt::Formatter)->Result<(),core::fmt::Error>{
let float:f32=(*self).into();
core::write!(f,"{:.3}",float)
}
}
macro_rules! impl_additive_operator {
( $struct: ident, $trait: ident, $method: ident, $output: ty ) => {
impl<const CHUNKS:usize,Frac> core::ops::$trait for $struct<CHUNKS,Frac>{
type Output = $output;
fn $method(self, other: Self) -> Self::Output {
impl<const N:usize,const F:usize> $struct<N,F>{
#[inline]
pub const fn $method(self, other: Self) -> Self {
Self::from_bits(self.bits.$method(other.bits))
}
}
impl<const CHUNKS:usize,Frac:Unsigned,U> core::ops::$trait<U> for $struct<CHUNKS,Frac>
impl<const N:usize,const F:usize> core::ops::$trait for $struct<N,F>{
type Output = $output;
#[inline]
fn $method(self, other: Self) -> Self::Output {
self.$method(other)
}
}
impl<const N:usize,const F:usize,U> core::ops::$trait<U> for $struct<N,F>
where
BInt::<CHUNKS>:From<U>,
BInt::<N>:From<U>,
{
type Output = $output;
#[inline]
fn $method(self, other: U) -> Self::Output {
Self::from_bits(self.bits.$method(BInt::<CHUNKS>::from(other)<<Frac::U32))
Self::from_bits(self.bits.$method(BInt::<N>::from(other).shl(F as u32)))
}
}
};
}
macro_rules! impl_additive_assign_operator {
( $struct: ident, $trait: ident, $method: ident ) => {
impl<const CHUNKS:usize,Frac> core::ops::$trait for $struct<CHUNKS,Frac>{
impl<const N:usize,const F:usize> core::ops::$trait for $struct<N,F>{
#[inline]
fn $method(&mut self, other: Self) {
self.bits.$method(other.bits);
}
}
impl<const CHUNKS:usize,Frac:Unsigned,U> core::ops::$trait<U> for $struct<CHUNKS,Frac>
impl<const N:usize,const F:usize,U> core::ops::$trait<U> for $struct<N,F>
where
BInt::<CHUNKS>:From<U>,
BInt::<N>:From<U>,
{
#[inline]
fn $method(&mut self, other: U) {
self.bits.$method(BInt::<CHUNKS>::from(other)<<Frac::U32);
self.bits.$method(BInt::<N>::from(other).shl(F as u32));
}
}
};
@ -127,137 +215,138 @@ impl_additive_operator!( Fixed, BitOr, bitor, Self );
impl_additive_assign_operator!( Fixed, BitXorAssign, bitxor_assign );
impl_additive_operator!( Fixed, BitXor, bitxor, Self );
macro_rules! impl_multiply_operator_const {
( $width:expr, $struct: ident, $trait: ident, $method: ident, $output: ty ) => {
impl<Frac:Unsigned> core::ops::$trait for $struct<$width,Frac>{
type Output = $output;
// non-wide operators. The result is the same width as the inputs.
// This macro is not used in the default configuration.
#[allow(unused_macros)]
macro_rules! impl_multiplicative_operator_not_const_generic {
( ($struct: ident, $trait: ident, $method: ident, $output: ty ), $width:expr ) => {
impl<const F:usize> core::ops::$trait for $struct<$width,F>{
type Output = $output;
#[inline]
fn $method(self, other: Self) -> Self::Output {
//this can be done better but that is a job for later
paste::item!{
self.[<fixed_ $method>](other)
}
}
}
};
}
macro_rules! impl_multiplicative_assign_operator_not_const_generic {
( ($struct: ident, $trait: ident, $method: ident, $non_assign_method: ident ), $width:expr ) => {
impl<const F:usize> core::ops::$trait for $struct<$width,F>{
#[inline]
fn $method(&mut self, other: Self) {
paste::item!{
*self=self.[<fixed_ $non_assign_method>](other);
}
}
}
};
}
macro_rules! impl_multiply_operator_not_const_generic {
( ($struct: ident, $trait: ident, $method: ident, $output: ty ), $width:expr ) => {
impl<const F:usize> $struct<$width,F>{
paste::item!{
#[inline]
pub fn [<fixed_ $method>](self, other: Self) -> Self {
let lhs=self.bits.as_::<BInt::<{$width*2}>>();
let rhs=other.bits.as_::<BInt::<{$width*2}>>();
Self::from_bits(lhs.mul(rhs).shr(Frac::U32).as_())
Self::from_bits(lhs.mul(rhs).shr(F as u32).as_())
}
}
}
};
#[cfg(not(feature="wide-mul"))]
impl_multiplicative_operator_not_const_generic!(($struct, $trait, $method, $output ), $width);
}
}
macro_rules! impl_multiply_assign_operator_const {
( $width:expr, $struct: ident, $trait: ident, $method: ident ) => {
impl<Frac> core::ops::$trait for $struct<$width,Frac>{
fn $method(&mut self, other: Self) {
self.bits.$method(other.bits);
}
}
};
}
macro_rules! impl_divide_operator_const {
( $width:expr, $struct: ident, $trait: ident, $method: ident, $output: ty ) => {
impl<Frac:Unsigned> core::ops::$trait for $struct<$width,Frac>{
type Output = $output;
fn $method(self, other: Self) -> Self::Output {
//this can be done better but that is a job for later
//this only needs to be $width+Frac::U32/64+1 but MUH CONST GENERICS!!!!!
let lhs=self.bits.as_::<BInt::<{$width*2}>>().shl(Frac::U32);
macro_rules! impl_divide_operator_not_const_generic {
( ($struct: ident, $trait: ident, $method: ident, $output: ty ), $width:expr ) => {
impl<const F:usize> $struct<$width,F>{
paste::item!{
#[inline]
pub fn [<fixed_ $method>](self, other: Self) -> Self {
//this only needs to be $width+F as u32/64+1 but MUH CONST GENERICS!!!!!
let lhs=self.bits.as_::<BInt::<{$width*2}>>().shl(F as u32);
let rhs=other.bits.as_::<BInt::<{$width*2}>>();
Self::from_bits(lhs.div(rhs).as_())
}
}
};
}
macro_rules! impl_divide_assign_operator_const {
( $width:expr, $struct: ident, $trait: ident, $method: ident ) => {
impl<Frac> core::ops::$trait for $struct<$width,Frac>{
fn $method(&mut self, other: Self) {
self.bits.$method(other.bits);
}
}
#[cfg(all(not(feature="wide-mul"),not(feature="deferred-division")))]
impl_multiplicative_operator_not_const_generic!(($struct, $trait, $method, $output ), $width);
};
}
macro_rules! impl_multiplicatave_operator {
macro_rules! impl_multiplicative_operator {
( $struct: ident, $trait: ident, $method: ident, $output: ty ) => {
impl<const CHUNKS:usize,Frac,U> core::ops::$trait<U> for $struct<CHUNKS,Frac>
impl<const N:usize,const F:usize,U> core::ops::$trait<U> for $struct<N,F>
where
BInt::<CHUNKS>:From<U>+core::ops::$trait,
BInt::<N>:From<U>+core::ops::$trait,
{
type Output = $output;
#[inline]
fn $method(self, other: U) -> Self::Output {
Self::from_bits(self.bits.$method(BInt::<CHUNKS>::from(other)))
Self::from_bits(self.bits.$method(BInt::<N>::from(other)))
}
}
};
}
macro_rules! impl_multiplicatave_assign_operator {
macro_rules! impl_multiplicative_assign_operator {
( $struct: ident, $trait: ident, $method: ident ) => {
impl<const CHUNKS:usize,Frac,U> core::ops::$trait<U> for $struct<CHUNKS,Frac>
impl<const N:usize,const F:usize,U> core::ops::$trait<U> for $struct<N,F>
where
BInt::<CHUNKS>:From<U>+core::ops::$trait,
BInt::<N>:From<U>+core::ops::$trait,
{
#[inline]
fn $method(&mut self, other: U) {
self.bits.$method(BInt::<CHUNKS>::from(other));
self.bits.$method(BInt::<N>::from(other));
}
}
};
}
macro_rules! impl_operator_16 {
( $macro: ident, $struct: ident, $trait: ident, $method: ident, $output: ty ) => {
$macro!(1,$struct,$trait,$method,$output);
$macro!(2,$struct,$trait,$method,$output);
$macro!(3,$struct,$trait,$method,$output);
$macro!(4,$struct,$trait,$method,$output);
$macro!(5,$struct,$trait,$method,$output);
$macro!(6,$struct,$trait,$method,$output);
$macro!(7,$struct,$trait,$method,$output);
$macro!(8,$struct,$trait,$method,$output);
$macro!(9,$struct,$trait,$method,$output);
$macro!(10,$struct,$trait,$method,$output);
$macro!(11,$struct,$trait,$method,$output);
$macro!(12,$struct,$trait,$method,$output);
$macro!(13,$struct,$trait,$method,$output);
$macro!(14,$struct,$trait,$method,$output);
$macro!(15,$struct,$trait,$method,$output);
$macro!(16,$struct,$trait,$method,$output);
}
macro_rules! macro_repeated{
(
$macro:ident,
$any:tt,
$($repeated:tt),*
)=>{
$(
$macro!($any, $repeated);
)*
};
}
macro_rules! impl_assign_operator_16 {
( $macro: ident, $struct: ident, $trait: ident, $method: ident ) => {
$macro!(1,$struct,$trait,$method);
$macro!(2,$struct,$trait,$method);
$macro!(3,$struct,$trait,$method);
$macro!(4,$struct,$trait,$method);
$macro!(5,$struct,$trait,$method);
$macro!(6,$struct,$trait,$method);
$macro!(7,$struct,$trait,$method);
$macro!(8,$struct,$trait,$method);
$macro!(9,$struct,$trait,$method);
$macro!(10,$struct,$trait,$method);
$macro!(11,$struct,$trait,$method);
$macro!(12,$struct,$trait,$method);
$macro!(13,$struct,$trait,$method);
$macro!(14,$struct,$trait,$method);
$macro!(15,$struct,$trait,$method);
$macro!(16,$struct,$trait,$method);
macro_rules! macro_16 {
( $macro: ident, $any:tt ) => {
macro_repeated!($macro,$any,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16);
}
}
impl_assign_operator_16!( impl_multiply_assign_operator_const, Fixed, MulAssign, mul_assign );
impl_operator_16!( impl_multiply_operator_const, Fixed, Mul, mul, Self );
impl_assign_operator_16!( impl_divide_assign_operator_const, Fixed, DivAssign, div_assign );
impl_operator_16!( impl_divide_operator_const, Fixed, Div, div, Self );
impl_multiplicatave_assign_operator!( Fixed, MulAssign, mul_assign );
impl_multiplicatave_operator!( Fixed, Mul, mul, Self );
impl_multiplicatave_assign_operator!( Fixed, DivAssign, div_assign );
impl_multiplicatave_operator!( Fixed, Div, div, Self );
macro_16!( impl_multiplicative_assign_operator_not_const_generic, (Fixed, MulAssign, mul_assign, mul) );
macro_16!( impl_multiply_operator_not_const_generic, (Fixed, Mul, mul, Self) );
macro_16!( impl_multiplicative_assign_operator_not_const_generic, (Fixed, DivAssign, div_assign, div) );
macro_16!( impl_divide_operator_not_const_generic, (Fixed, Div, div, Self) );
impl_multiplicative_assign_operator!( Fixed, MulAssign, mul_assign );
impl_multiplicative_operator!( Fixed, Mul, mul, Self );
impl_multiplicative_assign_operator!( Fixed, DivAssign, div_assign );
impl_multiplicative_operator!( Fixed, Div, div, Self );
#[cfg(feature="deferred-division")]
impl<const LHS_N:usize,const LHS_F:usize,const RHS_N:usize,const RHS_F:usize> core::ops::Div<Fixed<RHS_N,RHS_F>> for Fixed<LHS_N,LHS_F>{
type Output=ratio_ops::ratio::Ratio<Fixed<LHS_N,LHS_F>,Fixed<RHS_N,RHS_F>>;
#[inline]
fn div(self, other: Fixed<RHS_N,RHS_F>)->Self::Output{
ratio_ops::ratio::Ratio::new(self,other)
}
}
macro_rules! impl_shift_operator {
( $struct: ident, $trait: ident, $method: ident, $output: ty ) => {
impl<const CHUNKS:usize,Frac> core::ops::$trait<u32> for $struct<CHUNKS,Frac>{
impl<const N:usize,const F:usize> core::ops::$trait<u32> for $struct<N,F>{
type Output = $output;
#[inline]
fn $method(self, other: u32) -> Self::Output {
Self::from_bits(self.bits.$method(other))
}
@ -266,7 +355,8 @@ macro_rules! impl_shift_operator {
}
macro_rules! impl_shift_assign_operator {
( $struct: ident, $trait: ident, $method: ident ) => {
impl<const CHUNKS:usize,Frac> core::ops::$trait<u32> for $struct<CHUNKS,Frac>{
impl<const N:usize,const F:usize> core::ops::$trait<u32> for $struct<N,F>{
#[inline]
fn $method(&mut self, other: u32) {
self.bits.$method(other);
}
@ -277,3 +367,152 @@ impl_shift_assign_operator!( Fixed, ShlAssign, shl_assign );
impl_shift_operator!( Fixed, Shl, shl, Self );
impl_shift_assign_operator!( Fixed, ShrAssign, shr_assign );
impl_shift_operator!( Fixed, Shr, shr, Self );
// wide operators. The result width is the sum of the input widths, i.e. none of the multiplication
macro_rules! impl_wide_operators{
($lhs:expr,$rhs:expr)=>{
impl core::ops::Mul<Fixed<$rhs,{$rhs*32}>> for Fixed<$lhs,{$lhs*32}>{
type Output=Fixed<{$lhs+$rhs},{($lhs+$rhs)*32}>;
#[inline]
fn mul(self, other: Fixed<$rhs,{$rhs*32}>)->Self::Output{
paste::item!{
self.[<wide_mul_ $lhs _ $rhs>](other)
}
}
}
#[cfg(not(feature="deferred-division"))]
impl core::ops::Div<Fixed<$rhs,{$rhs*32}>> for Fixed<$lhs,{$lhs*32}>{
type Output=Fixed<{$lhs+$rhs},{($lhs+$rhs)*32}>;
#[inline]
fn div(self, other: Fixed<$rhs,{$rhs*32}>)->Self::Output{
paste::item!{
self.[<wide_div_ $lhs _ $rhs>](other)
}
}
}
}
}
// WIDE MUL: multiply into a wider type
// let a = I32F32::ONE;
// let b:I64F64 = a.wide_mul(a);
macro_rules! impl_wide_not_const_generic{
(
(),
($lhs:expr,$rhs:expr)
)=>{
impl Fixed<$lhs,{$lhs*32}>
{
paste::item!{
#[inline]
pub fn [<wide_mul_ $lhs _ $rhs>](self,rhs:Fixed<$rhs,{$rhs*32}>)->Fixed<{$lhs+$rhs},{($lhs+$rhs)*32}>{
let lhs=self.bits.as_::<BInt<{$lhs+$rhs}>>();
let rhs=rhs.bits.as_::<BInt<{$lhs+$rhs}>>();
Fixed::from_bits(lhs*rhs)
}
/// This operation cannot represent the fraction exactly,
/// but it shapes the output to have precision for the
/// largest and smallest possible fractions.
#[inline]
pub fn [<wide_div_ $lhs _ $rhs>](self,rhs:Fixed<$rhs,{$rhs*32}>)->Fixed<{$lhs+$rhs},{($lhs+$rhs)*32}>{
// (lhs/2^LHS_FRAC)/(rhs/2^RHS_FRAC)
let lhs=self.bits.as_::<BInt<{$lhs+$rhs}>>().shl($rhs*64);
let rhs=rhs.bits.as_::<BInt<{$lhs+$rhs}>>();
Fixed::from_bits(lhs/rhs)
}
}
}
#[cfg(feature="wide-mul")]
impl_wide_operators!($lhs,$rhs);
};
}
//const generics sidestepped wahoo
macro_repeated!(
impl_wide_not_const_generic,(),
(1,1),(2,1),(3,1),(4,1),(5,1),(6,1),(7,1),(8,1),(9,1),(10,1),(11,1),(12,1),(13,1),(14,1),(15,1),
(1,2),(2,2),(3,2),(4,2),(5,2),(6,2),(7,2),(8,2),(9,2),(10,2),(11,2),(12,2),(13,2),(14,2),
(1,3),(2,3),(3,3),(4,3),(5,3),(6,3),(7,3),(8,3),(9,3),(10,3),(11,3),(12,3),(13,3),
(1,4),(2,4),(3,4),(4,4),(5,4),(6,4),(7,4),(8,4),(9,4),(10,4),(11,4),(12,4),
(1,5),(2,5),(3,5),(4,5),(5,5),(6,5),(7,5),(8,5),(9,5),(10,5),(11,5),
(1,6),(2,6),(3,6),(4,6),(5,6),(6,6),(7,6),(8,6),(9,6),(10,6),
(1,7),(2,7),(3,7),(4,7),(5,7),(6,7),(7,7),(8,7),(9,7),
(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8),(8,8),
(1,9),(2,9),(3,9),(4,9),(5,9),(6,9),(7,9),
(1,10),(2,10),(3,10),(4,10),(5,10),(6,10),
(1,11),(2,11),(3,11),(4,11),(5,11),
(1,12),(2,12),(3,12),(4,12),
(1,13),(2,13),(3,13),
(1,14),(2,14),
(1,15)
);
impl<const SRC:usize,const F:usize> Fixed<SRC,F>{
#[inline]
pub fn resize_into<const DST:usize>(self)->Fixed<DST,F>{
Fixed::from_bits(self.bits.as_::<BInt<DST>>())
}
}
macro_rules! impl_not_const_generic{
($n:expr)=>{
impl Fixed<{$n*2},{$n*2*32}>{
#[inline]
pub fn halve_precision(self)->Fixed<$n,{$n*32}>{
Fixed::from_bits(bnum::cast::As::as_(self.bits.shr($n*32)))
}
}
impl Fixed<$n,{$n*32}>{
paste::item!{
#[inline]
pub fn sqrt_unchecked(self)->Self{
//1<<max_shift must be the minimum power of two which when squared is greater than self
//calculating max_shift:
//1. count "used" bits to the left of the decimal, not including the sign bit (so -1)
//2. divide by 2 via >>1 (sqrt-ish)
//3. add on fractional offset
//Voila
let used_bits=self.bits.bits() as i32-1-($n*32) as i32;
let max_shift=((used_bits>>1)+($n*32) as i32) as u32;
let mut result=Self::ZERO;
//multiply by one to make the types match (hack)
//TODO: use resize method
let wide_self:<Self as core::ops::Mul>::Output=self*Self::ONE;
//descend down the bits and check if flipping each bit would push the square over the input value
for shift in (0..=max_shift).rev(){
let new_result=result|Self::from_bits(BInt::from_bits(bnum::BUint::power_of_two(shift)));
if new_result*new_result<=wide_self{
result=new_result;
}
}
result
}
}
#[inline]
pub fn sqrt(self)->Self{
if self<Self::ZERO{
panic!("Square root less than zero")
}else{
self.sqrt_unchecked()
}
}
#[inline]
pub fn sqrt_checked(self)->Option<Self>{
if self<Self::ZERO{
None
}else{
Some(self.sqrt_unchecked())
}
}
}
}
}
impl_not_const_generic!(1);
impl_not_const_generic!(2);
impl_not_const_generic!(3);
impl_not_const_generic!(4);
impl_not_const_generic!(5);
impl_not_const_generic!(6);
impl_not_const_generic!(7);
impl_not_const_generic!(8);

@ -1,88 +0,0 @@
use bnum::BInt;
use bnum::cast::As;
use typenum::{Sum,Unsigned};
use crate::fixed::Fixed;
use fixed_wide_traits::wide::WideMul;
macro_rules! impl_wide_mul {
($lhs: expr,$rhs: expr) => {
impl<A,B> WideMul<Fixed<$rhs,B>> for Fixed<$lhs,A>
where
A:std::ops::Add<B>,
B:Unsigned,
{
type Output=Fixed<{$lhs+$rhs},Sum<A,B>>;
fn wide_mul(self,rhs:Fixed<$rhs,B>)->Self::Output{
Fixed::from_bits(self.bits.as_::<BInt<{$lhs+$rhs}>>()*rhs.bits.as_::<BInt<{$lhs+$rhs}>>())
}
}
};
}
macro_rules! impl_wide_mul_all {
($(($x:expr, $y:expr)),*) => {
$(
impl_wide_mul!($x, $y);
)*
};
}
//const generics sidestepped wahoo
impl_wide_mul_all!(
(1,1),(2,1),(3,1),(4,1),(5,1),(6,1),(7,1),(8,1),
(1,2),(2,2),(3,2),(4,2),(5,2),(6,2),(7,2),(8,2),
(1,3),(2,3),(3,3),(4,3),(5,3),(6,3),(7,3),(8,3),
(1,4),(2,4),(3,4),(4,4),(5,4),(6,4),(7,4),(8,4),
(1,5),(2,5),(3,5),(4,5),(5,5),(6,5),(7,5),(8,5),
(1,6),(2,6),(3,6),(4,6),(5,6),(6,6),(7,6),(8,6),
(1,7),(2,7),(3,7),(4,7),(5,7),(6,7),(7,7),(8,7),
(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8),(8,8)
);
impl<const SRC:usize,Frac> Fixed<SRC,Frac>{
pub fn widen<const DST:usize>(self)->Fixed<DST,Frac>{
Fixed::from_bits(self.bits.as_::<BInt<DST>>())
}
}
impl<const CHUNKS:usize,Frac:Unsigned> Fixed<CHUNKS,Frac>
where
Fixed::<CHUNKS,Frac>:WideMul,
<Fixed::<CHUNKS,Frac> as WideMul>::Output:Ord,
{
pub fn sqrt_unchecked(self)->Self{
//1<<max_shift must be the minimum power of two which when squared is greater than self
//calculating max_shift:
//1. count "used" bits to the left of the decimal, not including the sign bit (so -1)
//2. divide by 2 via >>1 (sqrt-ish)
//3. add on fractional offset
//Voila
let used_bits=self.bits.bits() as i32-1-Frac::I32;
let max_shift=((used_bits>>1)+Frac::I32) as u32;
let mut result=Self::ZERO;
//multiply by one to make the types match (hack)
let wide_self=self.wide_mul(Fixed::<CHUNKS,Frac>::ONE);
//descend down the bits and check if flipping each bit would push the square over the input value
for shift in (0..=max_shift).rev(){
let new_result=result|Fixed::<CHUNKS,Frac>::from_bits(BInt::from_bits(bnum::BUint::power_of_two(shift)));
if new_result.wide_mul(new_result)<=wide_self{
result=new_result;
}
}
result
}
pub fn sqrt(self)->Self{
if self<Self::ZERO{
panic!("Square root less than zero")
}else{
self.sqrt_unchecked()
}
}
pub fn sqrt_checked(self)->Option<Self>{
if self<Self::ZERO{
None
}else{
Some(self.sqrt_unchecked())
}
}
}

@ -1,14 +1,8 @@
pub mod fixed;
pub mod types;
pub mod typenum{
pub use typenum::Unsigned;
}
#[cfg(feature="fixed_wide_traits")]
mod fixed_wide_traits;
#[cfg(feature="fixed_wide_traits")]
pub use ::fixed_wide_traits::wide;
#[cfg(feature="zeroes")]
pub mod zeroes;
#[cfg(test)]
mod tests;

@ -1,13 +1,51 @@
use fixed_wide_traits::wide::WideMul;
use crate::types::I32F32;
use crate::types::I256F256;
#[test]
fn you_can_add_numbers(){
let a=I256F256::from((3i128*2).pow(4));
assert_eq!(a+a,I256F256::from((3i128*2).pow(4)*2))
}
#[test]
fn you_can_shr_numbers(){
let a=I32F32::from(4);
assert_eq!(a>>1,I32F32::from(2))
}
#[test]
fn test_wide_mul(){
let a=I32F32::ONE;
let aa=a.wide_mul(a);
let aa=a.wide_mul_1_1(a);
assert_eq!(aa,crate::types::I64F64::ONE);
}
#[test]
fn test_wide_div(){
let a=I32F32::ONE*4;
let b=I32F32::ONE*2;
let wide_a=a.wide_mul_1_1(I32F32::ONE);
let wide_b=b.wide_mul_1_1(I32F32::ONE);
let ab=a.wide_div_1_1(b);
assert_eq!(ab,crate::types::I64F64::ONE*2);
let wab=wide_a.wide_div_2_1(b);
assert_eq!(wab,crate::fixed::Fixed::<3,96>::ONE*2);
let awb=a.wide_div_1_2(wide_b);
assert_eq!(awb,crate::fixed::Fixed::<3,96>::ONE*2);
}
#[test]
fn test_wide_mul_repeated() {
let a=I32F32::from(2);
let b=I32F32::from(3);
let w1=a.wide_mul_1_1(b);
let w2=w1.wide_mul_2_2(w1);
let w3=w2.wide_mul_4_4(w2);
assert_eq!(w3,I256F256::from((3i128*2).pow(4)));
}
#[test]
fn test_bint(){
let a=I32F32::ONE;
@ -27,7 +65,7 @@ fn test_sqrt_zero(){
#[test]
fn test_sqrt_low(){
let a=I32F32::HALF;
let b=a*a;
let b=a.fixed_mul(a);
assert_eq!(b.sqrt(),a);
}
fn find_equiv_sqrt_via_f64(n:I32F32)->I32F32{
@ -40,10 +78,10 @@ fn find_equiv_sqrt_via_f64(n:I32F32)->I32F32{
let r=I32F32::from_bits(bnum::BInt::<1>::from(i));
//mimic the behaviour of the algorithm,
//return the result if it truncates to the exact answer
if (r+I32F32::EPSILON).wide_mul(r+I32F32::EPSILON)==n.wide_mul(I32F32::ONE){
if (r+I32F32::EPSILON).wide_mul_1_1(r+I32F32::EPSILON)==n.wide_mul_1_1(I32F32::ONE){
return r+I32F32::EPSILON;
}
if (r-I32F32::EPSILON).wide_mul(r-I32F32::EPSILON)==n.wide_mul(I32F32::ONE){
if (r-I32F32::EPSILON).wide_mul_1_1(r-I32F32::EPSILON)==n.wide_mul_1_1(I32F32::ONE){
return r-I32F32::EPSILON;
}
return r;

@ -1,4 +1,4 @@
pub type I32F32=crate::fixed::Fixed<1,typenum::consts::U32>;
pub type I64F64=crate::fixed::Fixed<2,typenum::consts::U64>;
pub type I128F128=crate::fixed::Fixed<4,typenum::consts::U128>;
pub type I256F256=crate::fixed::Fixed<8,typenum::consts::U256>;
pub type I32F32=crate::fixed::Fixed<1,32>;
pub type I64F64=crate::fixed::Fixed<2,64>;
pub type I128F128=crate::fixed::Fixed<4,128>;
pub type I256F256=crate::fixed::Fixed<8,256>;

54
fixed_wide/src/zeroes.rs Normal file

@ -0,0 +1,54 @@
use crate::fixed::Fixed;
use arrayvec::ArrayVec;
use std::cmp::Ordering;
macro_rules! impl_zeroes{
($n:expr)=>{
impl Fixed<$n,{$n*32}>{
#[inline]
pub fn zeroes2(a0:Self,a1:Self,a2:Self)->ArrayVec<<Self as core::ops::Div>::Output,2>{
let a2pos=match a2.cmp(&Self::ZERO){
Ordering::Greater=>true,
Ordering::Equal=>return ArrayVec::from_iter(Self::zeroes1(a0,a1).into_iter()),
Ordering::Less=>true,
};
paste::item!{
let radicand=a1*a1-a2*a0*4;
}
match radicand.cmp(&<Self as core::ops::Mul>::Output::ZERO){
Ordering::Greater=>{
//TODO: use resize method
let planar_radicand:Self=radicand.sqrt().halve_precision();
//sort roots ascending and avoid taking the difference of large numbers
let zeroes=match (a2pos,Self::ZERO<a1){
(true, true )=>[(-a1-planar_radicand)/(a2*2),(a0*2)/(-a1-planar_radicand)],
(true, false)=>[(a0*2)/(-a1+planar_radicand),(-a1+planar_radicand)/(a2*2)],
(false,true )=>[(a0*2)/(-a1-planar_radicand),(-a1-planar_radicand)/(a2*2)],
(false,false)=>[(-a1+planar_radicand)/(a2*2),(a0*2)/(-a1+planar_radicand)],
};
ArrayVec::from_iter(zeroes)
},
Ordering::Equal=>ArrayVec::from_iter([(a1)/(a2*-2)]),
Ordering::Less=>ArrayVec::new_const(),
}
}
#[inline]
pub fn zeroes1(a0:Self,a1:Self)->ArrayVec<<Self as core::ops::Div>::Output,1>{
if a1==Self::ZERO{
ArrayVec::new_const()
}else{
ArrayVec::from_iter([(-a0)/(a1)])
}
}
}
};
}
impl_zeroes!(1);
impl_zeroes!(2);
impl_zeroes!(3);
impl_zeroes!(4);
//sqrt doubles twice!
//impl_zeroes!(5);
//impl_zeroes!(6);
//impl_zeroes!(7);
//impl_zeroes!(8);

@ -1,63 +0,0 @@
# This file is automatically @generated by Cargo.
# It is not intended for manual editing.
version = 3
[[package]]
name = "az"
version = "1.2.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7b7e4c2464d97fe331d41de9d5db0def0a96f4d823b8b32a2efd503578988973"
[[package]]
name = "bytemuck"
version = "1.17.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "6fd4c6dcc3b0aea2f5c0b4b82c2b15fe39ddbc76041a310848f4706edf76bb31"
[[package]]
name = "cfg-if"
version = "1.0.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "baf1de4339761588bc0619e3cbc0120ee582ebb74b53b4efbf79117bd2da40fd"
[[package]]
name = "crunchy"
version = "0.2.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7a81dae078cea95a014a339291cec439d2f232ebe854a9d672b796c6afafa9b7"
[[package]]
name = "fixed"
version = "1.28.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "85c6e0b89bf864acd20590dbdbad56f69aeb898abfc9443008fd7bd48b2cc85a"
dependencies = [
"az",
"bytemuck",
"half",
"typenum",
]
[[package]]
name = "fixed_wide_traits"
version = "0.1.0"
dependencies = [
"fixed",
"typenum",
]
[[package]]
name = "half"
version = "2.4.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "6dd08c532ae367adf81c312a4580bc67f1d0fe8bc9c460520283f4c0ff277888"
dependencies = [
"cfg-if",
"crunchy",
]
[[package]]
name = "typenum"
version = "1.17.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "42ff0bf0c66b8238c6f3b578df37d0b7848e55df8577b3f74f92a69acceeb825"

@ -1,10 +0,0 @@
[package]
name = "fixed_wide_traits"
version = "0.1.0"
edition = "2021"
[dependencies]
[dev-dependencies]
fixed = "1.28.0"
typenum = "1.17.0"

@ -1,2 +0,0 @@
pub mod wide;
pub mod narrow;

@ -1,57 +0,0 @@
pub trait Narrow{
type Output;
fn narrow(self)->Self::Output;
}
#[derive(Debug)]
pub enum Error{
Overflow,
Underflow,
}
impl std::fmt::Display for Error{
fn fmt(&self,f:&mut std::fmt::Formatter<'_>)->std::fmt::Result{
write!(f,"{self:?}")
}
}
impl std::error::Error for Error{}
pub trait TryNarrow{
type Output;
fn try_narrow(self)->Result<Self::Output,Error>;
}
#[cfg(test)]
mod tests {
use super::*;
//TODO: use num_traits to do a blanket implementation (self<T::MIN as U)
impl TryNarrow for i16{
type Output=i8;
fn try_narrow(self)->Result<Self::Output,Error>{
if self<i8::MIN as i16{
return Err(Error::Underflow);
}
if (i8::MAX as i16)<self{
return Err(Error::Overflow);
}
Ok(self as i8)
}
}
#[test]
fn test_i16_i8(){
assert!(matches!(257i16.try_narrow(),Err(Error::Overflow)));
assert!(matches!(64i16.try_narrow(),Ok(64i8)));
assert!(matches!((-257i16).try_narrow(),Err(Error::Underflow)));
}
impl Narrow for fixed::FixedI16<typenum::consts::U8>{
type Output=i8;
fn narrow(self)->Self::Output{
(self.to_bits()>>8) as i8
}
}
#[test]
fn test_fixed_i16_i8(){
let a=fixed::FixedI16::<typenum::consts::U8>::from(5)/2;
assert_eq!(a.narrow(),2);
}
}

@ -1,16 +0,0 @@
pub trait WideMul<Rhs=Self>{
type Output;
fn wide_mul(self,rhs:Rhs)->Self::Output;
}
pub trait WideDiv<Rhs=Self>{
type Output;
fn wide_div(self,rhs:Rhs)->Self::Output;
}
pub trait WideDot<Rhs=Self>{
type Output;
fn wide_dot(self,rhs:Rhs)->Self::Output;
}
pub trait WideCross<Rhs=Self>{
type Output;
fn wide_cross(self,rhs:Rhs)->Self::Output;
}

@ -1 +0,0 @@
/target

@ -1,36 +0,0 @@
# This file is automatically @generated by Cargo.
# It is not intended for manual editing.
version = 3
[[package]]
name = "bnum"
version = "0.11.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3e31ea183f6ee62ac8b8a8cf7feddd766317adfb13ff469de57ce033efd6a790"
[[package]]
name = "fixed_wide"
version = "0.1.0"
dependencies = [
"bnum",
"fixed_wide_traits",
"typenum",
]
[[package]]
name = "fixed_wide_traits"
version = "0.1.0"
[[package]]
name = "fixed_wide_vectors"
version = "0.1.0"
dependencies = [
"fixed_wide",
"fixed_wide_traits",
]
[[package]]
name = "typenum"
version = "1.17.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "42ff0bf0c66b8238c6f3b578df37d0b7848e55df8577b3f74f92a69acceeb825"

@ -1,14 +0,0 @@
[package]
name = "fixed_wide_vectors"
version = "0.1.0"
edition = "2021"
[features]
default=["fixed_wide_traits"]
fixed_wide_traits=["dep:fixed_wide_traits"]
[dependencies]
fixed_wide_traits = { version = "0.1.0", path = "../fixed_wide_traits", optional = true }
[dev-dependencies]
fixed_wide = { version = "0.1.0", path = "../fixed_wide" }

@ -1,14 +0,0 @@
mod macros;
mod vector;
mod matrix;
pub use vector::Vector2;
pub use vector::Vector3;
pub use vector::Vector4;
pub use matrix::Matrix2;
pub use matrix::Matrix3;
pub use matrix::Matrix4;
#[cfg(test)]
mod tests;

@ -1,162 +0,0 @@
// Stolen from https://github.com/c1m50c/fixed-vectors (MIT license)
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix {
(
($struct_outer: ident { $($field_outer: ident), + }, $vector_outer: ident { $($vector_field_outer: ident), + }, $size_outer: expr),
($struct_inner: ident { $($field_inner: ident), + }, $matrix_inner: ident { $($matrix_field_inner: ident), + }, $size_inner: expr),
( $($generic_outer: tt), + )
) => {
impl<T> $struct_outer<$struct_inner<T>> {
#[inline(always)]
pub fn to_array_2d(self) -> [[T; $size_inner]; $size_outer] {
[ $(self.$field_outer.to_array()), + ]
}
#[inline(always)]
pub fn to_tuple_2d(self) -> ( $($generic_outer), + ) {
( $(self.$field_outer.to_tuple()), + )
}
#[inline]
pub fn map_2d<F, U>(self, f: F) -> $struct_outer<$struct_inner<U>>
where
F: Fn(T) -> U
{
$crate::matrix_map2d_outer!{f,self,($struct_outer { $($field_outer), + }),($struct_inner { $($field_inner), + })}
}
#[inline]
pub fn transpose(self) -> $matrix_inner<$vector_outer<T>>{
$crate::matrix_transpose_outer!{self,
($matrix_inner { $($matrix_field_inner), + }),($struct_inner { $($field_inner), + }),
($vector_outer { $($vector_field_outer), + }),($struct_outer { $($field_outer), + })
}
}
}
impl<T: Copy> $struct_outer<$struct_inner<T>> {
#[inline(always)]
pub const fn from_value_2d(value: T) -> Self {
Self {
$( $field_outer: $struct_inner::from_value(value) ), +
}
}
//TODO: diagonal
}
// Impl floating-point based methods
//#[cfg(feature="fixed_wide_traits")]
//$crate::impl_wide_matrix_operations!( ($struct_outer { $($field_outer), + }, $size_outer), ($struct_inner, $size_inner), $fields_inner );
};
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! matrix_map2d_outer {
( $f:ident, $value:ident, ($struct_outer: ident { $($field_outer: ident), + }), $unparsed_inner:tt ) => {
$struct_outer {
$(
$field_outer: $crate::matrix_map2d_inner!{$f,$value,$field_outer,$unparsed_inner}
), +
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! matrix_map2d_inner {
( $f:ident, $value:ident, $field_outer:ident, ($struct_inner: ident { $($field_inner: ident), + }) ) => {
$struct_inner {
$(
$field_inner: $f($value.$field_outer.$field_inner)
), +
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! matrix_transpose_outer {
(
$value:ident,
($struct_outer: ident { $($field_outer: ident), + }),
($old_outer: ident { $($old_field_outer: ident), + }),
$fields_inner:tt,
$old_fields_inner:tt
) => {
$struct_outer {
$(
$field_outer: $crate::matrix_transpose_inner!{$value,$old_field_outer,$fields_inner,$old_fields_inner}
), +
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! matrix_transpose_inner {
( $value:ident, $field_outer:ident,
($struct_inner: ident { $($field_inner: ident), + }),
($old_struct_inner: ident { $($old_field_inner: ident), + })
) => {
$struct_inner {
$(
$field_inner: $value.$old_field_inner.$field_outer
), +
}
}
}
/*
macro_rules! nested {
(($($f:ident),*) $args:tt) => {
$(nested!(@call $f $args);)*
};
(@call $f:ident ($($arg:expr),*)) => {
$f($($arg),*);
};
}
nested! {
(show1, show2)
(a, b, c)
}
*/
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix_operator {
( $struct: ident { $($field: ident), + }, $trait: ident, $method: ident, $output: ty ) => {
impl<T:core::ops::$trait<Output=T>> core::ops::$trait for $struct<T> {
type Output = $output;
fn $method(self, other: Self) -> Self::Output {
Self {
$( $field: self.$field.$method(other.$field) ), +
}
}
}
impl<T:core::ops::$trait<Output=T>+Copy> core::ops::$trait<T> for $struct<T>{
type Output = $output;
fn $method(self, other: T) -> Self::Output {
$struct {
$( $field: self.$field.$method(other) ), +
}
}
}
};
( $struct: ident { $($field: ident), + }, $trait: ident, $method: ident ) => {
impl<T: core::ops::$trait> core::ops::$trait for $struct<T> {
fn $method(&mut self, other: Self) {
$( self.$field.$method(other.$field) ); +
}
}
impl<T: core::ops::$trait + Copy> core::ops::$trait<T> for $struct<T> {
fn $method(&mut self, other: T) {
$( self.$field.$method(other) ); +
}
}
};
}

@ -1,5 +0,0 @@
#[cfg(feature="fixed_wide_traits")]
pub mod wide;
pub mod vector;
pub mod matrix;

@ -1,304 +0,0 @@
// Stolen from https://github.com/c1m50c/fixed-vectors (MIT license)
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector {
( $struct: ident { $($field: ident), + }, ( $($generic: ident), + ), $size: expr ) => {
impl<T> $struct<T> {
/// Constructs a new vector with the specified values for each field.
///
/// # Example
///
/// ```
/// use fixed_wide_vectors::Vector2;
///
/// let vec2 = Vector2::new(0, 0);
///
/// assert_eq!(vec2.x, 0);
/// assert_eq!(vec2.y, 0);
/// ```
#[inline(always)]
pub const fn new( $($field: T), + ) -> Self {
Self {
$( $field ), +
}
}
/// Consumes the vector and returns its values as an array.
///
/// # Example
///
/// ```
/// use fixed_wide_vectors::Vector2;
///
/// let vec2 = Vector2::new(0, 0);
/// let array = vec2.to_array();
///
/// assert_eq!(array, [0, 0]);
/// ```
#[inline(always)]
pub fn to_array(self) -> [T; $size] {
[ $(self.$field), + ]
}
/// Consumes the vector and returns its values as a tuple.
///
/// # Example
///
/// ```
/// use fixed_wide_vectors::Vector2;
///
/// let vec2 = Vector2::new(0, 0);
/// let tuple = vec2.to_tuple();
///
/// assert_eq!(tuple, (0, 0));
/// ```
#[inline(always)]
pub fn to_tuple(self) -> ( $($generic), + ) {
( $(self.$field), + )
}
/// Consumes the vector and returns a new vector with the given function applied on each field.
///
/// # Example
///
/// ```
/// use fixed_wide_vectors::Vector2;
///
/// let vec2 = Vector2::new(1, 2)
/// .map(|i| i * 2);
///
/// assert_eq!(vec2, Vector2::new(2, 4));
/// ```
#[inline]
pub fn map<F, U>(self, f: F) -> $struct<U>
where
F: Fn(T) -> U
{
$struct {
$( $field: f(self.$field) ), +
}
}
}
impl<T: Copy> $struct<T> {
/// Constructs a vector using the given `value` as the value for all of its fields.
///
/// # Example
///
/// ```
/// use fixed_wide_vectors::Vector2;
///
/// let vec2 = Vector2::from_value(0);
///
/// assert_eq!(vec2, Vector2::new(0, 0));
/// ```
#[inline(always)]
pub const fn from_value(value: T) -> Self {
Self {
$( $field: value ), +
}
}
}
impl<T> From<[T; $size]> for $struct<T> {
fn from(from: [T; $size]) -> Self {
let mut iterator = from.into_iter();
Self {
// SAFETY: We know the size of `from` so `iterator.next()` is always `Some(..)`
$( $field: unsafe { iterator.next().unwrap_unchecked() } ), +
}
}
}
impl<T> From<($($generic), +)> for $struct<T> {
fn from(from: ($($generic), +)) -> Self {
let ( $($field), + ) = from;
Self {
$( $field ), +
}
}
}
impl<T: core::fmt::Debug> core::fmt::Debug for $struct<T> {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
let identifier = core::stringify!($struct);
f.debug_struct(identifier)
$( .field( core::stringify!($field), &self.$field ) ) +
.finish()
}
}
impl<T: PartialEq> PartialEq for $struct<T> {
fn eq(&self, other: &Self) -> bool {
$( self.$field == other.$field ) && +
}
}
impl<T: Eq> Eq for $struct<T> { }
impl<T: core::hash::Hash> core::hash::Hash for $struct<T> {
fn hash<H: core::hash::Hasher>(&self, state: &mut H) {
$( self.$field.hash(state); ) +
}
}
impl<T: Clone> Clone for $struct<T> {
fn clone(&self) -> Self {
Self {
$( $field: self.$field.clone() ), +
}
}
}
impl<T: Copy> Copy for $struct<T> { }
impl<T: Default> Default for $struct<T> {
fn default() -> Self {
Self {
$( $field: T::default() ), +
}
}
}
impl<T: Ord> $struct<T> {
pub fn min(self, rhs: Self) -> $struct<T> {
$struct{
$( $field: self.$field.min(rhs.$field) ), +
}
}
pub fn max(self, rhs: Self) -> $struct<T> {
$struct{
$( $field: self.$field.max(rhs.$field) ), +
}
}
pub fn cmp(self, rhs: Self) -> $struct<core::cmp::Ordering> {
$struct{
$( $field: self.$field.cmp(&rhs.$field) ), +
}
}
pub fn lt(self, rhs: Self) -> $struct<bool> {
$struct{
$( $field: self.$field.lt(&rhs.$field) ), +
}
}
pub fn gt(self, rhs: Self) -> $struct<bool> {
$struct{
$( $field: self.$field.gt(&rhs.$field) ), +
}
}
pub fn ge(self, rhs: Self) -> $struct<bool> {
$struct{
$( $field: self.$field.ge(&rhs.$field) ), +
}
}
pub fn le(self, rhs: Self) -> $struct<bool> {
$struct{
$( $field: self.$field.le(&rhs.$field) ), +
}
}
}
impl $struct<bool>{
pub fn all(&self)->bool{
const ALL:[bool;$size]=[true;$size];
core::matches!(self.to_array(),ALL)
}
pub fn any(&self)->bool{
$( self.$field )|| +
}
}
impl<T: core::ops::Neg<Output = T>> core::ops::Neg for $struct<T> {
type Output = Self;
fn neg(self) -> Self::Output {
Self {
$( $field: -self.$field ), +
}
}
}
// Impl arithmetic pperators
$crate::impl_vector_operator!( $struct { $($field), + }, AddAssign, add_assign );
$crate::impl_vector_operator!( $struct { $($field), + }, Add, add, Self );
$crate::impl_vector_operator!( $struct { $($field), + }, SubAssign, sub_assign );
$crate::impl_vector_operator!( $struct { $($field), + }, Sub, sub, Self );
$crate::impl_vector_operator!( $struct { $($field), + }, MulAssign, mul_assign );
$crate::impl_vector_operator!( $struct { $($field), + }, Mul, mul, Self );
$crate::impl_vector_operator!( $struct { $($field), + }, DivAssign, div_assign );
$crate::impl_vector_operator!( $struct { $($field), + }, Div, div, Self );
$crate::impl_vector_operator!( $struct { $($field), + }, RemAssign, rem_assign );
$crate::impl_vector_operator!( $struct { $($field), + }, Rem, rem, Self );
// Impl bitwise operators
$crate::impl_vector_operator!( $struct { $($field), + }, BitAndAssign, bitand_assign );
$crate::impl_vector_operator!( $struct { $($field), + }, BitAnd, bitand, Self );
$crate::impl_vector_operator!( $struct { $($field), + }, BitOrAssign, bitor_assign );
$crate::impl_vector_operator!( $struct { $($field), + }, BitOr, bitor, Self );
$crate::impl_vector_operator!( $struct { $($field), + }, BitXorAssign, bitxor_assign );
$crate::impl_vector_operator!( $struct { $($field), + }, BitXor, bitxor, Self );
// Impl floating-point based methods
#[cfg(feature="fixed_wide_traits")]
$crate::impl_wide_vector_operations!( $struct { $($field), + }, $size );
};
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_extend {
( $struct: ident { $($field: ident), + }, $struct_extended: ident, $field_extended: ident ) => {
impl<T> $struct<T> {
#[inline(always)]
pub fn extend(self,value:T) -> $struct_extended<T> {
$struct_extended {
$( $field:self.$field, ) +
$field_extended:value
}
}
}
};
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_operator {
( $struct: ident { $($field: ident), + }, $trait: ident, $method: ident, $output: ty ) => {
impl<T:core::ops::$trait<Output=T>> core::ops::$trait for $struct<T> {
type Output = $output;
fn $method(self, other: Self) -> Self::Output {
Self {
$( $field: self.$field.$method(other.$field) ), +
}
}
}
impl<T:core::ops::$trait<Output=T>+Copy> core::ops::$trait<T> for $struct<T>{
type Output = $output;
fn $method(self, other: T) -> Self::Output {
$struct {
$( $field: self.$field.$method(other) ), +
}
}
}
};
( $struct: ident { $($field: ident), + }, $trait: ident, $method: ident ) => {
impl<T: core::ops::$trait> core::ops::$trait for $struct<T> {
fn $method(&mut self, other: Self) {
$( self.$field.$method(other.$field) ); +
}
}
impl<T: core::ops::$trait + Copy> core::ops::$trait<T> for $struct<T> {
fn $method(&mut self, other: T) {
$( self.$field.$method(other) ); +
}
}
};
}

@ -1,43 +0,0 @@
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_wide_vector_operations {
( $struct: ident { $($field: ident), + }, $size: expr ) => {
impl<U,T:Copy+fixed_wide_traits::wide::WideMul<Output=U>> fixed_wide_traits::wide::WideMul for $struct<T> {
type Output=$struct<U>;
#[inline]
fn wide_mul(self, rhs: Self) -> Self::Output {
$struct{
$( $field: self.$field.wide_mul(rhs.$field) ), +
}
}
}
impl<V:core::ops::Add<Output=V>,U,T:fixed_wide_traits::wide::WideMul<U,Output=V>> fixed_wide_traits::wide::WideDot<$struct<U>> for $struct<T> {
type Output=V;
#[inline]
fn wide_dot(self, rhs: $struct<U>) -> Self::Output {
$crate::sum_repeating!(
$( + (self.$field.wide_mul(rhs.$field)) ) +
)
}
}
impl<U:std::ops::Add<Output=U>,T:Copy+fixed_wide_traits::wide::WideMul<Output=U>> $struct<T> {
#[inline]
pub fn wide_length_squared(&self) -> U {
$crate::sum_repeating!(
$( + self.$field.wide_mul(self.$field) ) +
)
}
}
};
}
// HACK: Allows us to sum repeating tokens in macros.
// See: https://stackoverflow.com/a/60187870/17452730
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! sum_repeating {
( + $($item: tt) * ) => {
$($item) *
};
}

@ -1,30 +0,0 @@
use crate::{Vector2,Vector3,Vector4};
pub struct Matrix2<T> {
pub x_axis: T,
pub y_axis: T,
}
pub struct Matrix3<T> {
pub x_axis: T,
pub y_axis: T,
pub z_axis: T,
}
pub struct Matrix4<T> {
pub x_axis: T,
pub y_axis: T,
pub z_axis: T,
pub w_axis: T,
}
crate::impl_extend!(Matrix2 { x_axis, y_axis }, Matrix3, z_axis);
crate::impl_extend!(Matrix3 { x_axis, y_axis, z_axis }, Matrix4, w_axis);
crate::impl_matrix!((Matrix2 { x_axis, y_axis }, Vector2 { x, y }, 2), (Vector2 { x, y }, Matrix2 { x_axis, y_axis }, 2), ((T, T), (T, T)) );
crate::impl_matrix!((Matrix2 { x_axis, y_axis }, Vector2 { x, y }, 2), (Vector3 { x, y, z }, Matrix3 { x_axis, y_axis, z_axis }, 3), ((T, T, T), (T, T, T)) );
crate::impl_matrix!((Matrix2 { x_axis, y_axis }, Vector2 { x, y }, 2), (Vector4 { x, y, z, w }, Matrix4 { x_axis, y_axis, z_axis, w_axis }, 4), ((T, T, T, T), (T, T, T, T)) );
crate::impl_matrix!((Matrix3 { x_axis, y_axis, z_axis }, Vector3 { x, y, z }, 3), (Vector2 { x, y }, Matrix2 { x_axis, y_axis }, 2), ((T, T), (T, T), (T, T)) );
crate::impl_matrix!((Matrix3 { x_axis, y_axis, z_axis }, Vector3 { x, y, z }, 3), (Vector3 { x, y, z }, Matrix3 { x_axis, y_axis, z_axis }, 3), ((T, T, T), (T, T, T), (T, T, T)) );
crate::impl_matrix!((Matrix3 { x_axis, y_axis, z_axis }, Vector3 { x, y, z }, 3), (Vector4 { x, y, z, w }, Matrix4 { x_axis, y_axis, z_axis, w_axis }, 4), ((T, T, T, T), (T, T, T, T), (T, T, T, T)) );
crate::impl_matrix!((Matrix4 { x_axis, y_axis, z_axis, w_axis }, Vector4 { x, y, z, w }, 4), (Vector2 { x, y }, Matrix2 { x_axis, y_axis }, 2), ((T, T), (T, T), (T, T), (T, T)) );
crate::impl_matrix!((Matrix4 { x_axis, y_axis, z_axis, w_axis }, Vector4 { x, y, z, w }, 4), (Vector3 { x, y, z }, Matrix3 { x_axis, y_axis, z_axis }, 3), ((T, T, T), (T, T, T), (T, T, T), (T, T, T)) );
crate::impl_matrix!((Matrix4 { x_axis, y_axis, z_axis, w_axis }, Vector4 { x, y, z, w }, 4), (Vector4 { x, y, z, w }, Matrix4 { x_axis, y_axis, z_axis, w_axis }, 4), ((T, T, T, T), (T, T, T, T), (T, T, T, T), (T, T, T, T)) );

@ -1,68 +0,0 @@
use fixed_wide_traits::wide::WideMul;
use fixed_wide_traits::wide::WideDot;
use crate::{Vector2,Vector3,Matrix3};
type Planar64=fixed_wide::types::I32F32;
type Planar64Wide1=fixed_wide::types::I64F64;
//type Planar64Wide2=fixed_wide::types::I128F128;
type Planar64Wide3=fixed_wide::types::I256F256;
#[test]
fn wide_int64() {
let a=Planar64::from(2);
let b=Planar64::from(3);
let w1=a.wide_mul(b);
let w2=w1.wide_mul(w1);
let w3=w2.wide_mul(w2);
assert_eq!(w3,Planar64Wide3::from((3i128*2).pow(4)));
}
#[test]
fn wide_vec3(){
let v=Vector3::from_value(Planar64::from(3));
let v1=v.wide_mul(v);
let v2=v1.wide_mul(v1);
let v3=v2.wide_mul(v2);
assert_eq!(v3,Vector3::from_value(Planar64Wide3::from(3i128.pow(8))));
}
#[test]
fn wide_vec3_dot(){
let v=Vector3::from_value(Planar64::from(3));
let v1=v.wide_mul(v);
let v2=v1.wide_mul(v1);
let v3=v2.wide_dot(v2);
assert_eq!(v3,Planar64Wide3::from(3i128.pow(8)*3));
}
#[test]
fn wide_vec3_length_squared(){
let v=Vector3::from_value(Planar64::from(3));
let v1=v.wide_mul(v);
let v2=v1.wide_mul(v1);
let v3=v2.wide_length_squared();
assert_eq!(v3,Planar64Wide3::from(3i128.pow(8)*3));
}
#[test]
fn wide_vec_of_vec_dot(){
let vv=Vector3::<Vector2<_>>::from_value_2d(Planar64::from(3));
// do the dot product of the inner vectors multiplied component wise
// this lowers the rank of the data structure and is kind of a weird operation lol
let vv_dot=vv.wide_dot(vv);
assert_eq!(vv_dot,Vector2::from_value(Planar64Wide1::from(3i128.pow(3))));
}
#[test]
fn wide_matrix_dot(){
let m=Matrix3::<Vector3<_>>::from_value_2d(Planar64::from(3));
//normal matrix product
todo!()
//let m_dot=m.wide_dot(m);
//assert_eq!(m_dot,Matrix3::<Vector3<_>>::from_value_2d(Planar64Wide1::from(3i128.pow(2))));
}

@ -1,5 +0,0 @@
mod tests;
#[cfg(feature="fixed_wide_traits")]
mod fixed_wide_traits;

@ -1,16 +0,0 @@
type Planar64=fixed_wide::types::I32F32;
//type Planar64Wide1=fixed::types::I64F64;
//type Planar64Wide2=fixed_wide::types::I128F128;
type Planar64Wide3=fixed_wide::types::I256F256;
#[test]
fn you_can_add_numbers(){
let a=Planar64Wide3::from((3i128*2).pow(4));
assert_eq!(a+a,Planar64Wide3::from((3i128*2).pow(4)*2))
}
#[test]
fn you_can_shr_numbers(){
let a=Planar64::from(4);
assert_eq!(a>>1,Planar64::from(2))
}

@ -1,81 +0,0 @@
// Stolen from https://github.com/c1m50c/fixed-vectors (MIT license)
/// Vector for holding two-dimensional values.
///
/// # Example
///
/// ```
/// use fixed_wide_vectors::Vector2;
///
/// let mut vec2 = Vector2::new(1, 2);
/// vec2 += Vector2::new(1, 2);
///
/// assert_eq!(vec2.x, 2);
/// assert_eq!(vec2.y, 4);
/// ```
pub struct Vector2<T> {
pub x: T,
pub y: T,
}
/// Vector for holding three-dimensional values.
///
/// # Example
///
/// ```
/// use fixed_wide_vectors::Vector3;
///
/// let mut vec3 = Vector3::new(1, 2, 3);
/// vec3 += Vector3::new(1, 2, 3);
///
/// assert_eq!(vec3.x, 2);
/// assert_eq!(vec3.y, 4);
/// assert_eq!(vec3.z, 6);
/// ```
pub struct Vector3<T> {
pub x: T,
pub y: T,
pub z: T,
}
/// Vector for holding four-dimensional values.
///
/// # Example
///
/// ```
/// use fixed_wide_vectors::Vector4;
///
/// let mut vec4 = Vector4::new(1, 2, 3, 4);
/// vec4 += Vector4::new(1, 2, 3, 4);
///
/// assert_eq!(vec4.x, 2);
/// assert_eq!(vec4.y, 4);
/// assert_eq!(vec4.z, 6);
/// assert_eq!(vec4.w, 8);
/// ```
pub struct Vector4<T> {
pub x: T,
pub y: T,
pub z: T,
pub w: T,
}
crate::impl_vector!(Vector2 { x, y }, (T, T), 2);
crate::impl_vector!(Vector3 { x, y, z }, (T, T, T), 3);
crate::impl_vector!(Vector4 { x, y, z, w }, (T, T, T, T), 4);
crate::impl_extend!(Vector2 { x, y }, Vector3, z);
crate::impl_extend!(Vector3 { x, y, z }, Vector4, w);
crate::impl_matrix!((Vector2 { x, y }, Vector2 { x, y }, 2), (Vector2 { x, y }, Vector2 { x, y }, 2), ((T, T), (T, T)) );
crate::impl_matrix!((Vector2 { x, y }, Vector2 { x, y }, 2), (Vector3 { x, y, z }, Vector3 { x, y, z }, 3), ((T, T, T), (T, T, T)) );
crate::impl_matrix!((Vector2 { x, y }, Vector2 { x, y }, 2), (Vector4 { x, y, z, w }, Vector4 { x, y, z, w }, 4), ((T, T, T, T), (T, T, T, T)) );
crate::impl_matrix!((Vector3 { x, y, z }, Vector3 { x, y, z }, 3), (Vector2 { x, y }, Vector2 { x, y }, 2), ((T, T), (T, T), (T, T)) );
crate::impl_matrix!((Vector3 { x, y, z }, Vector3 { x, y, z }, 3), (Vector3 { x, y, z }, Vector3 { x, y, z }, 3), ((T, T, T), (T, T, T), (T, T, T)) );
crate::impl_matrix!((Vector3 { x, y, z }, Vector3 { x, y, z }, 3), (Vector4 { x, y, z, w }, Vector4 { x, y, z, w }, 4), ((T, T, T, T), (T, T, T, T), (T, T, T, T)) );
crate::impl_matrix!((Vector4 { x, y, z, w }, Vector4 { x, y, z, w }, 4), (Vector2 { x, y }, Vector2 { x, y }, 2), ((T, T), (T, T), (T, T), (T, T)) );
crate::impl_matrix!((Vector4 { x, y, z, w }, Vector4 { x, y, z, w }, 4), (Vector3 { x, y, z }, Vector3 { x, y, z }, 3), ((T, T, T), (T, T, T), (T, T, T), (T, T, T)) );
crate::impl_matrix!((Vector4 { x, y, z, w }, Vector4 { x, y, z, w }, 4), (Vector4 { x, y, z, w }, Vector4 { x, y, z, w }, 4), ((T, T, T, T), (T, T, T, T), (T, T, T, T), (T, T, T, T)) );

@ -8,29 +8,28 @@ version = "0.11.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3e31ea183f6ee62ac8b8a8cf7feddd766317adfb13ff469de57ce033efd6a790"
[[package]]
name = "deferred_division"
version = "0.1.0"
dependencies = [
"fixed_wide",
"fixed_wide_traits",
]
[[package]]
name = "fixed_wide"
version = "0.1.0"
dependencies = [
"bnum",
"fixed_wide_traits",
"typenum",
"paste",
]
[[package]]
name = "fixed_wide_traits"
name = "linear_ops"
version = "0.1.0"
dependencies = [
"fixed_wide",
"ratio_ops",
]
[[package]]
name = "typenum"
version = "1.17.0"
name = "paste"
version = "1.0.15"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "42ff0bf0c66b8238c6f3b578df37d0b7848e55df8577b3f74f92a69acceeb825"
checksum = "57c0d7b74b563b49d38dae00a0c37d4d6de9b432382b2892f0574ddcae73fd0a"
[[package]]
name = "ratio_ops"
version = "0.1.0"

15
linear_ops/Cargo.toml Normal file

@ -0,0 +1,15 @@
[package]
name = "linear_ops"
version = "0.1.0"
edition = "2021"
[features]
default=["named-fields"]
named-fields=[]
deferred-division=["dep:ratio_ops"]
[dependencies]
ratio_ops = { path = "../ratio_ops", optional = true }
[dev-dependencies]
fixed_wide = { version = "0.1.0", path = "../fixed_wide", features = ["wide-mul"] }

10
linear_ops/src/lib.rs Normal file

@ -0,0 +1,10 @@
mod macros;
pub mod types;
pub mod vector;
pub mod matrix;
#[cfg(feature="named-fields")]
mod named;
#[cfg(test)]
mod tests;

@ -0,0 +1 @@

@ -0,0 +1,258 @@
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix {
() => {
impl<const X:usize,const Y:usize,T> Matrix<X,Y,T>{
#[inline(always)]
pub const fn new(array:[[T;X];Y])->Self{
Self{array}
}
#[inline(always)]
pub fn to_array(self)->[[T;X];Y]{
self.array
}
#[inline]
pub fn map<F,U>(self,f:F)->Matrix<X,Y,U>
where
F:Fn(T)->U
{
Matrix::new(
self.array.map(|inner|inner.map(&f)),
)
}
#[inline]
pub fn transpose(self)->Matrix<Y,X,T>{
//how did I think of this
let mut array_of_iterators=self.array.map(|axis|axis.into_iter());
Matrix::new(
core::array::from_fn(|_|
array_of_iterators.each_mut().map(|iter|
iter.next().unwrap()
)
)
)
}
#[inline]
// MatY<VecX>.MatX<VecZ> = MatY<VecZ>
pub fn dot<const Z:usize,U,V>(self,rhs:Matrix<Z,X,U>)->Matrix<Z,Y,V>
where
T:core::ops::Mul<U,Output=V>+Copy,
V:core::iter::Sum,
U:Copy,
{
let mut array_of_iterators=rhs.array.map(|axis|axis.into_iter().cycle());
Matrix::new(
self.array.map(|axis|
core::array::from_fn(|_|
// axis dot product with transposed rhs array
axis.iter().zip(
array_of_iterators.iter_mut()
).map(|(&lhs_value,rhs_iter)|
lhs_value*rhs_iter.next().unwrap()
).sum()
)
)
)
}
#[inline]
// MatY<VecX>.VecX = VecY
pub fn transform_vector<U,V>(self,rhs:Vector<X,U>)->Vector<Y,V>
where
T:core::ops::Mul<U,Output=V>,
V:core::iter::Sum,
U:Copy,
{
Vector::new(
self.array.map(|axis|
Vector::new(axis).dot(rhs)
)
)
}
}
impl<const X:usize,const Y:usize,T> Matrix<X,Y,T>
where
T:Copy
{
#[inline(always)]
pub const fn from_value(value:T)->Self{
Self::new([[value;X];Y])
}
}
impl<const X:usize,const Y:usize,T:Default> Default for Matrix<X,Y,T>{
#[inline]
fn default()->Self{
Self::new(
core::array::from_fn(|_|core::array::from_fn(|_|Default::default()))
)
}
}
impl<const X:usize,const Y:usize,T:core::fmt::Display> core::fmt::Display for Matrix<X,Y,T>{
#[inline]
fn fmt(&self,f:&mut core::fmt::Formatter)->Result<(),core::fmt::Error>{
for row in &self.array[0..Y]{
core::write!(f,"\n")?;
for elem in &row[0..X-1]{
core::write!(f,"{}, ",elem)?;
}
// assume we will be using matrices of size 1x1 or greater
core::write!(f,"{}",row.last().unwrap())?;
}
Ok(())
}
}
impl<const X:usize,const Y:usize,const Z:usize,T,U,V> core::ops::Mul<Matrix<Z,X,U>> for Matrix<X,Y,T>
where
T:core::ops::Mul<U,Output=V>+Copy,
V:core::iter::Sum,
U:Copy,
{
type Output=Matrix<Z,Y,V>;
#[inline]
fn mul(self,rhs:Matrix<Z,X,U>)->Self::Output{
self.dot(rhs)
}
}
impl<const X:usize,const Y:usize,T,U,V> core::ops::Mul<Vector<X,U>> for Matrix<X,Y,T>
where
T:core::ops::Mul<U,Output=V>,
V:core::iter::Sum,
U:Copy,
{
type Output=Vector<Y,V>;
#[inline]
fn mul(self,rhs:Vector<X,U>)->Self::Output{
self.transform_vector(rhs)
}
}
#[cfg(feature="deferred-division")]
$crate::impl_matrix_deferred_division!();
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix_deferred_division {
() => {
impl<const X:usize,const Y:usize,T:ratio_ops::ratio::Divide<U,Output=V>,U:Copy,V> ratio_ops::ratio::Divide<U> for Matrix<X,Y,T>{
type Output=Matrix<X,Y,V>;
#[inline]
fn divide(self,rhs:U)->Self::Output{
self.map(|t|t.divide(rhs))
}
}
impl<const X:usize,const Y:usize,T,U> core::ops::Div<U> for Matrix<X,Y,T>{
type Output=ratio_ops::ratio::Ratio<Matrix<X,Y,T>,U>;
#[inline]
fn div(self,rhs:U)->Self::Output{
ratio_ops::ratio::Ratio::new(self,rhs)
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix_extend {
( $x: expr, $y: expr ) => {
impl<T> Matrix<$x,$y,T>{
#[inline]
pub fn extend_row(self,value:Vector<$x,T>)->Matrix<$x,{$y+1},T>{
let mut iter=self.array.into_iter().chain(core::iter::once(value.array));
Matrix::new(
core::array::from_fn(|_|iter.next().unwrap()),
)
}
#[inline]
pub fn extend_column(self,value:Vector<$y,T>)->Matrix<{$x+1},$y,T>{
let mut iter_rows=value.array.into_iter();
Matrix::new(
self.array.map(|axis|{
let mut elements_iter=axis.into_iter().chain(core::iter::once(iter_rows.next().unwrap()));
core::array::from_fn(|_|elements_iter.next().unwrap())
})
)
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix_named_fields_shape {
(
($struct_outer:ident, $size_outer: expr),
($size_inner: expr)
) => {
impl<T> core::ops::Deref for Matrix<$size_outer,$size_inner,T>{
type Target=$struct_outer<Vector<$size_inner,T>>;
#[inline]
fn deref(&self)->&Self::Target{
unsafe{core::mem::transmute(&self.array)}
}
}
impl<T> core::ops::DerefMut for Matrix<$size_outer,$size_inner,T>{
#[inline]
fn deref_mut(&mut self)->&mut Self::Target{
unsafe{core::mem::transmute(&mut self.array)}
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix_named_fields_shape_shim {
(
($($vector_info:tt),+),
$matrix_info:tt
) => {
$crate::macro_repeated!(impl_matrix_named_fields_shape,$matrix_info,$($vector_info),+);
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix_named_fields {
(
($($matrix_info:tt),+),
$vector_infos:tt
) => {
$crate::macro_repeated!(impl_matrix_named_fields_shape_shim,$vector_infos,$($matrix_info),+);
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix_3x3 {
()=>{
impl<T,T2,T3> Matrix<3,3,T>
where
//cross
T:core::ops::Mul<T,Output=T2>+Copy,
T2:core::ops::Sub,
//dot
T:core::ops::Mul<<T2 as core::ops::Sub>::Output,Output=T3>,
T3:core::iter::Sum,
{
pub fn det(self)->T3{
self.x_axis.dot(self.y_axis.cross(self.z_axis))
}
}
impl<T,T2> Matrix<3,3,T>
where
T:core::ops::Mul<T,Output=T2>+Copy,
T2:core::ops::Sub,
{
pub fn adjugate(self)->Matrix<3,3,<T2 as core::ops::Sub>::Output>{
Matrix::new([
[self.y_axis.y*self.z_axis.z-self.y_axis.z*self.z_axis.y,self.x_axis.z*self.z_axis.y-self.x_axis.y*self.z_axis.z,self.x_axis.y*self.y_axis.z-self.x_axis.z*self.y_axis.y],
[self.y_axis.z*self.z_axis.x-self.y_axis.x*self.z_axis.z,self.x_axis.x*self.z_axis.z-self.x_axis.z*self.z_axis.x,self.x_axis.z*self.y_axis.x-self.x_axis.x*self.y_axis.z],
[self.y_axis.x*self.z_axis.y-self.y_axis.y*self.z_axis.x,self.x_axis.y*self.z_axis.x-self.x_axis.x*self.z_axis.y,self.x_axis.x*self.y_axis.y-self.x_axis.y*self.y_axis.x],
])
}
}
}
}

@ -0,0 +1,17 @@
pub mod common;
pub mod vector;
pub mod matrix;
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! macro_repeated{
(
$macro:ident,
$any:tt,
$($repeated:tt),*
)=>{
$(
$crate::$macro!($any, $repeated);
)*
};
}

@ -0,0 +1,353 @@
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector {
() => {
impl<const N:usize,T> Vector<N,T>{
#[inline(always)]
pub const fn new(array:[T;N])->Self{
Self{array}
}
#[inline(always)]
pub fn to_array(self)->[T;N]{
self.array
}
#[inline]
pub fn map<F,U>(self,f:F)->Vector<N,U>
where
F:Fn(T)->U
{
Vector::new(
self.array.map(f)
)
}
#[inline]
pub fn map_zip<F,U,V>(self,other:Vector<N,U>,f:F)->Vector<N,V>
where
F:Fn((T,U))->V,
{
let mut iter=self.array.into_iter().zip(other.array);
Vector::new(
core::array::from_fn(|_|f(iter.next().unwrap())),
)
}
}
impl<const N:usize,T:Copy> Vector<N,T>{
#[inline(always)]
pub const fn from_value(value:T)->Self{
Self::new([value;N])
}
}
impl<const N:usize,T:Default> Default for Vector<N,T>{
#[inline]
fn default()->Self{
Self::new(
core::array::from_fn(|_|Default::default())
)
}
}
impl<const N:usize,T:core::fmt::Display> core::fmt::Display for Vector<N,T>{
#[inline]
fn fmt(&self,f:&mut core::fmt::Formatter)->Result<(),core::fmt::Error>{
for elem in &self.array[0..N-1]{
core::write!(f,"{}, ",elem)?;
}
// assume we will be using vectors of length 1 or greater
core::write!(f,"{}",self.array.last().unwrap())
}
}
impl<const N:usize,T:Ord> Vector<N,T>{
#[inline]
pub fn min(self,rhs:Self)->Self{
self.map_zip(rhs,|(a,b)|a.min(b))
}
#[inline]
pub fn max(self,rhs:Self)->Self{
self.map_zip(rhs,|(a,b)|a.max(b))
}
#[inline]
pub fn cmp(self,rhs:Self)->Vector<N,core::cmp::Ordering>{
self.map_zip(rhs,|(a,b)|a.cmp(&b))
}
#[inline]
pub fn lt(self,rhs:Self)->Vector<N,bool>{
self.map_zip(rhs,|(a,b)|a.lt(&b))
}
#[inline]
pub fn gt(self,rhs:Self)->Vector<N,bool>{
self.map_zip(rhs,|(a,b)|a.gt(&b))
}
#[inline]
pub fn ge(self,rhs:Self)->Vector<N,bool>{
self.map_zip(rhs,|(a,b)|a.ge(&b))
}
#[inline]
pub fn le(self,rhs:Self)->Vector<N,bool>{
self.map_zip(rhs,|(a,b)|a.le(&b))
}
}
impl<const N:usize> Vector<N,bool>{
#[inline]
pub fn all(&self)->bool{
self.array==[true;N]
}
#[inline]
pub fn any(&self)->bool{
self.array!=[false;N]
}
}
impl<const N:usize,T:core::ops::Neg<Output=V>,V> core::ops::Neg for Vector<N,T>{
type Output=Vector<N,V>;
#[inline]
fn neg(self)->Self::Output{
Vector::new(
self.array.map(|t|-t)
)
}
}
impl<const N:usize,T> Vector<N,T>
{
#[inline]
pub fn dot<U,V>(self,rhs:Vector<N,U>)->V
where
T:core::ops::Mul<U,Output=V>,
V:core::iter::Sum,
{
self.array.into_iter().zip(rhs.array).map(|(a,b)|a*b).sum()
}
}
impl<const N:usize,T,V> Vector<N,T>
where
T:core::ops::Mul<Output=V>+Copy,
V:core::iter::Sum,
{
#[inline]
pub fn length_squared(self)->V{
self.array.into_iter().map(|t|t*t).sum()
}
}
// Impl arithmetic operators
$crate::impl_vector_assign_operator!(AddAssign, add_assign );
$crate::impl_vector_operator!(Add, add );
$crate::impl_vector_assign_operator!(SubAssign, sub_assign );
$crate::impl_vector_operator!(Sub, sub );
$crate::impl_vector_assign_operator!(RemAssign, rem_assign );
$crate::impl_vector_operator!(Rem, rem );
// mul and div are special, usually you multiply by a scalar
// and implementing both vec*vec and vec*scalar is conflicting implementations Q_Q
$crate::impl_vector_assign_operator_scalar!(MulAssign, mul_assign );
$crate::impl_vector_operator_scalar!(Mul, mul );
$crate::impl_vector_assign_operator_scalar!(DivAssign, div_assign );
#[cfg(not(feature="deferred-division"))]
$crate::impl_vector_operator_scalar!(Div, div );
#[cfg(feature="deferred-division")]
$crate::impl_vector_deferred_division!();
// Impl bitwise operators
$crate::impl_vector_assign_operator!(BitAndAssign, bitand_assign );
$crate::impl_vector_operator!(BitAnd, bitand );
$crate::impl_vector_assign_operator!(BitOrAssign, bitor_assign );
$crate::impl_vector_operator!(BitOr, bitor );
$crate::impl_vector_assign_operator!(BitXorAssign, bitxor_assign );
$crate::impl_vector_operator!(BitXor, bitxor );
// Impl shift operators
$crate::impl_vector_shift_assign_operator!(ShlAssign, shl_assign);
$crate::impl_vector_shift_operator!(Shl, shl);
$crate::impl_vector_shift_assign_operator!(ShrAssign, shr_assign);
$crate::impl_vector_shift_operator!(Shr, shr);
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_deferred_division {
() => {
impl<const N:usize,T:ratio_ops::ratio::Divide<U,Output=V>,U:Copy,V> ratio_ops::ratio::Divide<U> for Vector<N,T>{
type Output=Vector<N,V>;
#[inline]
fn divide(self,rhs:U)->Self::Output{
self.map(|t|t.divide(rhs))
}
}
impl<const N:usize,T,U> core::ops::Div<U> for Vector<N,T>{
type Output=ratio_ops::ratio::Ratio<Vector<N,T>,U>;
#[inline]
fn div(self,rhs:U)->Self::Output{
ratio_ops::ratio::Ratio::new(self,rhs)
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_operator_scalar {
($trait: ident, $method: ident ) => {
impl<const N:usize,T:core::ops::$trait<U,Output=V>,U:Copy,V> core::ops::$trait<U> for Vector<N,T>{
type Output=Vector<N,V>;
#[inline]
fn $method(self,rhs:U)->Self::Output{
self.map(|t|t.$method(rhs))
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_operator {
($trait: ident, $method: ident ) => {
impl<const N:usize,T:core::ops::$trait<U,Output=V>,U,V> core::ops::$trait<Vector<N,U>> for Vector<N,T>{
type Output=Vector<N,V>;
#[inline]
fn $method(self,rhs:Vector<N,U>)->Self::Output{
self.map_zip(rhs,|(a,b)|a.$method(b))
}
}
impl<const N:usize,T:core::ops::$trait<i64,Output=T>> core::ops::$trait<i64> for Vector<N,T>{
type Output=Self;
#[inline]
fn $method(self,rhs:i64)->Self::Output{
self.map(|t|t.$method(rhs))
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_assign_operator_scalar {
($trait: ident, $method: ident ) => {
impl<const N:usize,T:core::ops::$trait<U>,U:Copy> core::ops::$trait<U> for Vector<N,T>{
#[inline]
fn $method(&mut self,rhs:U){
self.array.iter_mut()
.for_each(|t|t.$method(rhs))
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_assign_operator {
($trait: ident, $method: ident ) => {
impl<const N:usize,T:core::ops::$trait<U>,U> core::ops::$trait<Vector<N,U>> for Vector<N,T>{
#[inline]
fn $method(&mut self,rhs:Vector<N,U>){
self.array.iter_mut().zip(rhs.array)
.for_each(|(a,b)|a.$method(b))
}
}
impl<const N:usize,T:core::ops::$trait<i64>> core::ops::$trait<i64> for Vector<N,T>{
#[inline]
fn $method(&mut self,rhs:i64){
self.array.iter_mut()
.for_each(|t|t.$method(rhs))
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_shift_operator {
($trait: ident, $method: ident ) => {
impl<const N:usize,T:core::ops::$trait<U,Output=V>,U,V> core::ops::$trait<Vector<N,U>> for Vector<N,T>{
type Output=Vector<N,V>;
#[inline]
fn $method(self,rhs:Vector<N,U>)->Self::Output{
self.map_zip(rhs,|(a,b)|a.$method(b))
}
}
impl<const N:usize,T:core::ops::$trait<u32,Output=V>,V> core::ops::$trait<u32> for Vector<N,T>{
type Output=Vector<N,V>;
#[inline]
fn $method(self,rhs:u32)->Self::Output{
self.map(|t|t.$method(rhs))
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_shift_assign_operator {
($trait: ident, $method: ident ) => {
impl<const N:usize,T:core::ops::$trait<U>,U> core::ops::$trait<Vector<N,U>> for Vector<N,T>{
#[inline]
fn $method(&mut self,rhs:Vector<N,U>){
self.array.iter_mut().zip(rhs.array)
.for_each(|(a,b)|a.$method(b))
}
}
impl<const N:usize,T:core::ops::$trait<u32>> core::ops::$trait<u32> for Vector<N,T>{
#[inline]
fn $method(&mut self,rhs:u32){
self.array.iter_mut()
.for_each(|t|t.$method(rhs))
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_extend {
( $size: expr ) => {
impl<T> Vector<$size,T>{
#[inline]
pub fn extend(self,value:T)->Vector<{$size+1},T>{
let mut iter=self.array.into_iter().chain(core::iter::once(value));
Vector::new(
core::array::from_fn(|_|iter.next().unwrap()),
)
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_named_fields {
( $struct:ident, $size: expr ) => {
impl<T> core::ops::Deref for Vector<$size,T>{
type Target=$struct<T>;
#[inline]
fn deref(&self)->&Self::Target{
unsafe{core::mem::transmute(&self.array)}
}
}
impl<T> core::ops::DerefMut for Vector<$size,T>{
#[inline]
fn deref_mut(&mut self)->&mut Self::Target{
unsafe{core::mem::transmute(&mut self.array)}
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_3 {
()=>{
impl<T> Vector<3,T>
{
#[inline]
pub fn cross<U,V>(self,rhs:Vector<3,U>)->Vector<3,<V as core::ops::Sub>::Output>
where
T:core::ops::Mul<U,Output=V>+Copy,
U:Copy,
V:core::ops::Sub,
{
Vector::new([
self.y*rhs.z-self.z*rhs.y,
self.z*rhs.x-self.x*rhs.z,
self.x*rhs.y-self.y*rhs.x,
])
}
}
}
}

17
linear_ops/src/matrix.rs Normal file

@ -0,0 +1,17 @@
use crate::vector::Vector;
#[derive(Clone,Copy,Debug,Hash,Eq,PartialEq)]
pub struct Matrix<const X:usize,const Y:usize,T>{
pub(crate) array:[[T;X];Y],
}
crate::impl_matrix!();
crate::impl_matrix_extend!(2,2);
crate::impl_matrix_extend!(2,3);
crate::impl_matrix_extend!(3,2);
crate::impl_matrix_extend!(3,3);
//Special case 3x3 matrix operations because I cba to write macros for the arbitrary cases
#[cfg(feature="named-fields")]
crate::impl_matrix_3x3!();

59
linear_ops/src/named.rs Normal file

@ -0,0 +1,59 @@
use crate::vector::Vector;
use crate::matrix::Matrix;
#[repr(C)]
pub struct Vector2<T> {
pub x: T,
pub y: T,
}
#[repr(C)]
pub struct Vector3<T> {
pub x: T,
pub y: T,
pub z: T,
}
#[repr(C)]
pub struct Vector4<T> {
pub x: T,
pub y: T,
pub z: T,
pub w: T,
}
crate::impl_vector_named_fields!(Vector2, 2);
crate::impl_vector_named_fields!(Vector3, 3);
crate::impl_vector_named_fields!(Vector4, 4);
#[repr(C)]
pub struct Matrix2<T> {
pub x_axis: T,
pub y_axis: T,
}
#[repr(C)]
pub struct Matrix3<T> {
pub x_axis: T,
pub y_axis: T,
pub z_axis: T,
}
#[repr(C)]
pub struct Matrix4<T> {
pub x_axis: T,
pub y_axis: T,
pub z_axis: T,
pub w_axis: T,
}
crate::impl_matrix_named_fields!(
//outer struct
(
(Matrix2, 2),
(Matrix3, 3),
(Matrix4, 4)
),
//inner struct
(
(2),
(3),
(4)
)
);

@ -0,0 +1,96 @@
use crate::types::{Matrix3,Matrix2x3,Matrix4x3,Matrix2x4,Vector3};
type Planar64=fixed_wide::types::I32F32;
type Planar64Wide1=fixed_wide::types::I64F64;
//type Planar64Wide2=fixed_wide::types::I128F128;
type Planar64Wide3=fixed_wide::types::I256F256;
#[test]
fn wide_vec3(){
let v=Vector3::from_value(Planar64::from(3));
let v1=v*v.x;
let v2=v1*v1.y;
let v3=v2*v2.z;
assert_eq!(v3.array,Vector3::from_value(Planar64Wide3::from(3i128.pow(8))).array);
}
#[test]
fn wide_vec3_dot(){
let v=Vector3::from_value(Planar64::from(3));
let v1=v*v.x;
let v2=v1*v1.y;
let v3=v2.dot(v2);
assert_eq!(v3,Planar64Wide3::from(3i128.pow(8)*3));
}
#[test]
fn wide_vec3_length_squared(){
let v=Vector3::from_value(Planar64::from(3));
let v1=v*v.x;
let v2=v1*v1.y;
let v3=v2.length_squared();
assert_eq!(v3,Planar64Wide3::from(3i128.pow(8)*3));
}
#[test]
fn wide_matrix_dot(){
let lhs=Matrix4x3::new([
[Planar64::from(1),Planar64::from(2),Planar64::from(3),Planar64::from(4)],
[Planar64::from(5),Planar64::from(6),Planar64::from(7),Planar64::from(8)],
[Planar64::from(9),Planar64::from(10),Planar64::from(11),Planar64::from(12)],
]);
let rhs=Matrix2x4::new([
[Planar64::from(1),Planar64::from(2)],
[Planar64::from(3),Planar64::from(4)],
[Planar64::from(5),Planar64::from(6)],
[Planar64::from(7),Planar64::from(8)],
]);
// Mat3<Vec4>.dot(Mat4<Vec2>) -> Mat3<Vec2>
let m_dot=lhs*rhs;
//In[1]:= {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}} . {{1, 2}, {3, 4}, {5, 6}, {7, 8}}
//Out[1]= {{50, 60}, {114, 140}, {178, 220}}
assert_eq!(
m_dot.array,
Matrix2x3::new([
[Planar64Wide1::from(50),Planar64Wide1::from(60)],
[Planar64Wide1::from(114),Planar64Wide1::from(140)],
[Planar64Wide1::from(178),Planar64Wide1::from(220)],
]).array
);
}
#[test]
#[cfg(feature="named-fields")]
fn wide_matrix_det(){
let m=Matrix3::new([
[Planar64::from(1),Planar64::from(2),Planar64::from(3)],
[Planar64::from(4),Planar64::from(5),Planar64::from(7)],
[Planar64::from(6),Planar64::from(8),Planar64::from(9)],
]);
// In[2]:= Det[{{1, 2, 3}, {4, 5, 7}, {6, 8, 9}}]
// Out[2]= 7
assert_eq!(m.det(),fixed_wide::fixed::Fixed::<3,96>::from(7));
}
#[test]
#[cfg(feature="named-fields")]
fn wide_matrix_adjugate(){
let m=Matrix3::new([
[Planar64::from(1),Planar64::from(2),Planar64::from(3)],
[Planar64::from(4),Planar64::from(5),Planar64::from(7)],
[Planar64::from(6),Planar64::from(8),Planar64::from(9)],
]);
// In[6]:= Adjugate[{{1, 2, 3}, {4, 5, 7}, {6, 8, 9}}]
// Out[6]= {{-11, 6, -1}, {6, -9, 5}, {2, 4, -3}}
assert_eq!(
m.adjugate().array,
Matrix3::new([
[Planar64Wide1::from(-11),Planar64Wide1::from(6),Planar64Wide1::from(-1)],
[Planar64Wide1::from(6),Planar64Wide1::from(-9),Planar64Wide1::from(5)],
[Planar64Wide1::from(2),Planar64Wide1::from(4),Planar64Wide1::from(-3)],
]).array
);
}

@ -0,0 +1,6 @@
mod tests;
#[cfg(feature="named-fields")]
mod named;
mod fixed_wide;

@ -0,0 +1,30 @@
use crate::types::{Vector3,Matrix3};
#[test]
fn test_vector(){
let mut v=Vector3::new([1,2,3]);
assert_eq!(v.x,1);
assert_eq!(v.y,2);
assert_eq!(v.z,3);
v.x=5;
assert_eq!(v.x,5);
v.y*=v.x;
assert_eq!(v.y,10);
}
#[test]
fn test_matrix(){
let mut v=Matrix3::from_value(2);
assert_eq!(v.x_axis.x,2);
assert_eq!(v.y_axis.y,2);
assert_eq!(v.z_axis.z,2);
v.x_axis.x=5;
assert_eq!(v.x_axis.x,5);
v.y_axis.z*=v.x_axis.x;
assert_eq!(v.y_axis.z,10);
}

@ -0,0 +1,59 @@
use crate::types::{Vector2,Vector3,Matrix4x3,Matrix2x4,Matrix2x3,Matrix3x2};
#[test]
fn test_bool(){
assert_eq!(Vector3::new([false,false,false]).any(),false);
assert_eq!(Vector3::new([false,false,true]).any(),true);
assert_eq!(Vector3::new([false,false,true]).all(),false);
assert_eq!(Vector3::new([true,true,true]).all(),true);
}
#[test]
fn test_length_squared(){
assert_eq!(Vector3::new([1,2,3]).length_squared(),14);
}
#[test]
fn test_arithmetic(){
let a=Vector3::new([1,2,3]);
assert_eq!((a+a*2).array,Vector3::new([1*3,2*3,3*3]).array);
}
#[test]
fn matrix_transform_vector(){
let m=Matrix3x2::new([
[1,2,3],
[4,5,6],
]);
let v=Vector3::new([1,2,3]);
let transformed=m*v;
assert_eq!(transformed.array,Vector2::new([14,32]).array);
}
#[test]
fn matrix_dot(){
let rhs=Matrix2x4::new([
[ 1.0, 2.0],
[ 3.0, 4.0],
[ 5.0, 6.0],
[ 7.0, 8.0],
]); // | | |
let lhs=Matrix4x3::new([ // | | |
[1.0, 2.0, 3.0, 4.0],// [ 50.0, 60.0],
[5.0, 6.0, 7.0, 8.0],// [114.0,140.0],
[9.0,10.0,11.0,12.0],// [178.0,220.0],
]);
// Mat3<Vec4>.dot(Mat4<Vec2>) -> Mat3<Vec2>
let m_dot=lhs*rhs;
//In[1]:= {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}} . {{1, 2}, {3, 4}, {5, 6}, {7, 8}}
//Out[1]= {{50, 60}, {114, 140}, {178, 220}}
assert_eq!(
m_dot.array,
Matrix2x3::new([
[50.0,60.0],
[114.0,140.0],
[178.0,220.0],
]).array
);
}

18
linear_ops/src/types.rs Normal file

@ -0,0 +1,18 @@
use crate::vector::Vector;
use crate::matrix::Matrix;
pub type Vector2<T>=Vector<2,T>;
pub type Vector3<T>=Vector<3,T>;
pub type Vector4<T>=Vector<4,T>;
pub type Matrix2<T>=Matrix<2,2,T>;
pub type Matrix2x3<T>=Matrix<2,3,T>;
pub type Matrix2x4<T>=Matrix<2,4,T>;
pub type Matrix3x2<T>=Matrix<3,2,T>;
pub type Matrix3<T>=Matrix<3,3,T>;
pub type Matrix3x4<T>=Matrix<3,4,T>;
pub type Matrix4x2<T>=Matrix<4,2,T>;
pub type Matrix4x3<T>=Matrix<4,3,T>;
pub type Matrix4<T>=Matrix<4,4,T>;

19
linear_ops/src/vector.rs Normal file

@ -0,0 +1,19 @@
/// An array-backed vector type. Named fields are made accessible via the Deref/DerefMut traits which are implmented for 2-4 dimensions.
/// let mut v = Vector::new([1.0,2.0,3.0]);
/// v.x += v.z;
/// println!("v.x={}",v.x);
#[derive(Clone,Copy,Debug,Hash,Eq,PartialEq)]
pub struct Vector<const N:usize,T>{
pub(crate) array:[T;N],
}
crate::impl_vector!();
// Needs const generics for generic case
crate::impl_vector_extend!(2);
crate::impl_vector_extend!(3);
//cross product
#[cfg(feature="named-fields")]
crate::impl_vector_3!();

7
ratio_ops/Cargo.lock generated Normal file

@ -0,0 +1,7 @@
# This file is automatically @generated by Cargo.
# It is not intended for manual editing.
version = 3
[[package]]
name = "ratio_ops"
version = "0.1.0"

6
ratio_ops/Cargo.toml Normal file

@ -0,0 +1,6 @@
[package]
name = "ratio_ops"
version = "0.1.0"
edition = "2021"
[dependencies]

1
ratio_ops/src/lib.rs Normal file

@ -0,0 +1 @@
pub mod ratio;

177
ratio_ops/src/ratio.rs Normal file

@ -0,0 +1,177 @@
#[derive(Clone,Copy,Debug,Hash)]
pub struct Ratio<Num,Den>{
pub num:Num,
pub den:Den,
}
impl<Num,Den> Ratio<Num,Den>{
#[inline(always)]
pub const fn new(num:Num,den:Den)->Self{
Self{num,den}
}
}
/// The actual divide implementation, Div is replaced with a Ratio constructor
pub trait Divide<Rhs=Self>{
type Output;
fn divide(self,rhs:Rhs)->Self::Output;
}
impl<Num,Den> Ratio<Num,Den>
where
Num:Divide<Den>,
{
#[inline]
pub fn divide(self)-><Num as Divide<Den>>::Output{
self.num.divide(self.den)
}
}
//take care to use the ratio methods to avoid nested ratios
impl<LhsNum,LhsDen> Ratio<LhsNum,LhsDen>{
#[inline]
pub fn mul_ratio<RhsNum,RhsDen>(self,rhs:Ratio<RhsNum,RhsDen>)->Ratio<<LhsNum as core::ops::Mul<RhsNum>>::Output,<LhsDen as core::ops::Mul<RhsDen>>::Output>
where
LhsNum:core::ops::Mul<RhsNum>,
LhsDen:core::ops::Mul<RhsDen>,
{
Ratio::new(self.num*rhs.num,self.den*rhs.den)
}
#[inline]
pub fn div_ratio<RhsNum,RhsDen>(self,rhs:Ratio<RhsNum,RhsDen>)->Ratio<<LhsNum as core::ops::Mul<RhsDen>>::Output,<LhsDen as core::ops::Mul<RhsNum>>::Output>
where
LhsNum:core::ops::Mul<RhsDen>,
LhsDen:core::ops::Mul<RhsNum>,
{
Ratio::new(self.num*rhs.den,self.den*rhs.num)
}
}
macro_rules! impl_ratio_method {
($trait:ident, $method:ident, $ratio_method:ident) => {
impl<LhsNum,LhsDen> Ratio<LhsNum,LhsDen>{
#[inline]
pub fn $ratio_method<RhsNum,RhsDen,LhsCrossMul,RhsCrossMul>(self,rhs:Ratio<RhsNum,RhsDen>)->Ratio<<LhsCrossMul as core::ops::$trait<RhsCrossMul>>::Output,<LhsDen as core::ops::Mul<RhsDen>>::Output>
where
LhsNum:core::ops::Mul<RhsDen,Output=LhsCrossMul>,
LhsDen:core::ops::Mul<RhsNum,Output=RhsCrossMul>,
LhsDen:core::ops::Mul<RhsDen>,
LhsDen:Copy,
RhsDen:Copy,
LhsCrossMul:core::ops::$trait<RhsCrossMul>,
{
Ratio::new((self.num*rhs.den).$method(self.den*rhs.num),self.den*rhs.den)
}
}
};
}
impl_ratio_method!(Add,add,add_ratio);
impl_ratio_method!(Sub,sub,sub_ratio);
impl_ratio_method!(Rem,rem,rem_ratio);
/* generic rhs mul is not possible!
impl<Lhs,RhsNum,RhsDen> core::ops::Mul<Ratio<RhsNum,RhsDen>> for Lhs
where
Lhs:core::ops::Mul<RhsNum>,
{
type Output=Ratio<<Lhs as core::ops::Mul<RhsNum>>::Output,RhsDen>;
#[inline]
fn mul(self,rhs:Ratio<RhsNum,RhsDen>)->Self::Output{
Ratio::new(self*rhs.num,rhs.den)
}
}
*/
//operators
impl<LhsNum,LhsDen> core::ops::Neg for Ratio<LhsNum,LhsDen>
where
LhsNum:core::ops::Neg,
{
type Output=Ratio<<LhsNum as core::ops::Neg>::Output,LhsDen>;
#[inline]
fn neg(self)->Self::Output{
Ratio::new(-self.num,self.den)
}
}
impl<LhsNum,LhsDen,Rhs> core::ops::Mul<Rhs> for Ratio<LhsNum,LhsDen>
where
LhsNum:core::ops::Mul<Rhs>,
{
type Output=Ratio<<LhsNum as core::ops::Mul<Rhs>>::Output,LhsDen>;
#[inline]
fn mul(self,rhs:Rhs)->Self::Output{
Ratio::new(self.num*rhs,self.den)
}
}
impl<LhsNum,LhsDen,Rhs> core::ops::Div<Rhs> for Ratio<LhsNum,LhsDen>
where
LhsDen:core::ops::Mul<Rhs>,
{
type Output=Ratio<LhsNum,<LhsDen as core::ops::Mul<Rhs>>::Output>;
#[inline]
fn div(self,rhs:Rhs)->Self::Output{
Ratio::new(self.num,self.den*rhs)
}
}
macro_rules! impl_ratio_operator {
($trait:ident, $method:ident) => {
impl<LhsNum,LhsDen,Rhs,Intermediate> core::ops::$trait<Rhs> for Ratio<LhsNum,LhsDen>
where
LhsNum:core::ops::$trait<Intermediate>,
LhsDen:Copy,
Rhs:core::ops::Mul<LhsDen,Output=Intermediate>,
{
type Output=Ratio<<LhsNum as core::ops::$trait<Intermediate>>::Output,LhsDen>;
#[inline]
fn $method(self,rhs:Rhs)->Self::Output{
Ratio::new(self.num.$method(rhs*self.den),self.den)
}
}
};
}
impl_ratio_operator!(Add,add);
impl_ratio_operator!(Sub,sub);
impl_ratio_operator!(Rem,rem);
//assign operators
impl<LhsNum,LhsDen,Rhs> core::ops::MulAssign<Rhs> for Ratio<LhsNum,LhsDen>
where
LhsNum:core::ops::MulAssign<Rhs>,
{
#[inline]
fn mul_assign(&mut self,rhs:Rhs){
self.num*=rhs;
}
}
impl<LhsNum,LhsDen,Rhs> core::ops::DivAssign<Rhs> for Ratio<LhsNum,LhsDen>
where
LhsDen:core::ops::MulAssign<Rhs>,
{
#[inline]
fn div_assign(&mut self,rhs:Rhs){
self.den*=rhs;
}
}
macro_rules! impl_ratio_assign_operator {
($trait:ident, $method:ident) => {
impl<LhsNum,LhsDen,Rhs> core::ops::$trait<Rhs> for Ratio<LhsNum,LhsDen>
where
LhsNum:core::ops::$trait,
LhsDen:Copy,
Rhs:core::ops::Mul<LhsDen,Output=LhsNum>,
{
#[inline]
fn $method(&mut self,rhs:Rhs){
self.num.$method(rhs*self.den)
}
}
};
}
impl_ratio_assign_operator!(AddAssign,add_assign);
impl_ratio_assign_operator!(SubAssign,sub_assign);
impl_ratio_assign_operator!(RemAssign,rem_assign);