7 Commits

Author SHA1 Message Date
14cec421e0 fix test 2024-09-09 15:33:10 -07:00
fb9228b7fd silence warning 2024-09-09 15:33:07 -07:00
3f0900b0ec ratio stuff 2024-09-09 15:25:01 -07:00
658c73a033 div op 2024-09-09 15:25:01 -07:00
b98eba27e5 wide operators 2024-09-09 15:25:01 -07:00
503f5b6d22 comment impl zones 2024-09-09 15:25:01 -07:00
f22cd653df wide-mul is a crate feature
here goes another bottom-up rewrite
2024-09-09 15:25:01 -07:00
29 changed files with 307 additions and 640 deletions

5
fixed_wide/Cargo.lock generated
View File

@@ -21,7 +21,6 @@ dependencies = [
"arrayvec",
"bnum",
"paste",
"ratio_ops",
]
[[package]]
@@ -29,7 +28,3 @@ name = "paste"
version = "1.0.15"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "57c0d7b74b563b49d38dae00a0c37d4d6de9b432382b2892f0574ddcae73fd0a"
[[package]]
name = "ratio_ops"
version = "0.1.0"

View File

@@ -4,13 +4,12 @@ version = "0.1.0"
edition = "2021"
[features]
default=[]
deferred-division=["dep:ratio_ops"]
default=["zeroes","wide-mul"]
ratio=[]
wide-mul=[]
zeroes=["dep:arrayvec"]
zeroes=["ratio","dep:arrayvec"]
[dependencies]
bnum = "0.11.0"
arrayvec = { version = "0.7.6", optional = true }
paste = "1.0.15"
ratio_ops = { path = "../ratio_ops", optional = true }

View File

@@ -33,17 +33,6 @@ impl<const N:usize,const F:usize> Fixed<N,F>{
self.bits
}
#[inline]
pub const fn raw_digit(value:i64)->Self{
let mut digits=[0u64;N];
digits[0]=value.abs() as u64;
//sign bit
digits[N-1]|=(value&i64::MIN) as u64;
Self::from_bits(BInt::from_bits(bnum::BUint::from_digits(digits)))
}
}
impl<const F:usize> Fixed<1,F>{
/// My old code called this function everywhere so let's provide it
#[inline]
pub const fn raw(value:i64)->Self{
Self::from_bits(BInt::from_bits(bnum::BUint::from_digit(value as u64)))
}
@@ -53,48 +42,24 @@ impl<const N:usize,const F:usize,T> From<T> for Fixed<N,F>
where
BInt<N>:From<T>
{
#[inline]
fn from(value:T)->Self{
Self::from_bits(BInt::<{N}>::from(value)<<F as u32)
}
}
impl<const N:usize,const F:usize> PartialEq for Fixed<N,F>{
#[inline]
fn eq(&self,other:&Self)->bool{
self.bits.eq(&other.bits)
}
}
impl<const N:usize,const F:usize,T> PartialEq<T> for Fixed<N,F>
where
T:Copy,
BInt::<N>:From<T>,
{
#[inline]
fn eq(&self,&other:&T)->bool{
self.bits.eq(&other.into())
}
}
impl<const N:usize,const F:usize> Eq for Fixed<N,F>{}
impl<const N:usize,const F:usize> PartialOrd for Fixed<N,F>{
#[inline]
fn partial_cmp(&self,other:&Self)->Option<std::cmp::Ordering>{
self.bits.partial_cmp(&other.bits)
}
}
impl<const N:usize,const F:usize,T> PartialOrd<T> for Fixed<N,F>
where
T:Copy,
BInt::<N>:From<T>,
{
#[inline]
fn partial_cmp(&self,&other:&T)->Option<std::cmp::Ordering>{
self.bits.partial_cmp(&other.into())
}
}
impl<const N:usize,const F:usize> Ord for Fixed<N,F>{
#[inline]
fn cmp(&self,other:&Self)->std::cmp::Ordering{
self.bits.cmp(&other.bits)
}
@@ -102,13 +67,11 @@ impl<const N:usize,const F:usize> Ord for Fixed<N,F>{
impl<const N:usize,const F:usize> std::ops::Neg for Fixed<N,F>{
type Output=Self;
#[inline]
fn neg(self)->Self{
Self::from_bits(self.bits.neg())
}
}
impl<const N:usize,const F:usize> std::iter::Sum for Fixed<N,F>{
#[inline]
fn sum<I:Iterator<Item=Self>>(iter:I)->Self{
let mut sum=Self::ZERO;
for elem in iter{
@@ -118,40 +81,6 @@ impl<const N:usize,const F:usize> std::iter::Sum for Fixed<N,F>{
}
}
macro_rules! impl_into_float {
( $output: ty ) => {
impl<const N:usize,const F:usize> Into<$output> for Fixed<N,F>{
#[inline]
fn into(self)->$output{
let mut total=0.0;
let bits=self.bits.to_bits();
let digits=bits.digits();
for (i,digit) in digits[0..N-1].iter().enumerate(){
// (i*64-F) as i32 will interpret the highest order bit as a sign bit but whatever
total+=(*digit as $output)*(2.0 as $output).powi((i*64-F) as i32);
}
//most significant digit holds the sign bit
//assume we are using a number with at least 1 digit...
total+=((*digits.last().unwrap() as i64).abs() as $output)*(2.0 as $output).powi(((N-1)*64-F) as i32);
if self.bits.is_negative(){
total=-total;
}
total
}
}
}
}
impl_into_float!(f32);
impl_into_float!(f64);
impl<const N:usize,const F:usize> core::fmt::Display for Fixed<N,F>{
#[inline]
fn fmt(&self,f:&mut core::fmt::Formatter)->Result<(),core::fmt::Error>{
let float:f32=(*self).into();
core::write!(f,"{:.3}",float)
}
}
macro_rules! impl_additive_operator {
( $struct: ident, $trait: ident, $method: ident, $output: ty ) => {
impl<const N:usize,const F:usize> $struct<N,F>{
@@ -162,7 +91,6 @@ macro_rules! impl_additive_operator {
}
impl<const N:usize,const F:usize> core::ops::$trait for $struct<N,F>{
type Output = $output;
#[inline]
fn $method(self, other: Self) -> Self::Output {
self.$method(other)
}
@@ -172,7 +100,6 @@ macro_rules! impl_additive_operator {
BInt::<N>:From<U>,
{
type Output = $output;
#[inline]
fn $method(self, other: U) -> Self::Output {
Self::from_bits(self.bits.$method(BInt::<N>::from(other).shl(F as u32)))
}
@@ -182,7 +109,6 @@ macro_rules! impl_additive_operator {
macro_rules! impl_additive_assign_operator {
( $struct: ident, $trait: ident, $method: ident ) => {
impl<const N:usize,const F:usize> core::ops::$trait for $struct<N,F>{
#[inline]
fn $method(&mut self, other: Self) {
self.bits.$method(other.bits);
}
@@ -191,7 +117,6 @@ macro_rules! impl_additive_assign_operator {
where
BInt::<N>:From<U>,
{
#[inline]
fn $method(&mut self, other: U) {
self.bits.$method(BInt::<N>::from(other).shl(F as u32));
}
@@ -223,7 +148,6 @@ macro_rules! impl_multiplicative_operator_not_const_generic {
( ($struct: ident, $trait: ident, $method: ident, $output: ty ), $width:expr ) => {
impl<const F:usize> core::ops::$trait for $struct<$width,F>{
type Output = $output;
#[inline]
fn $method(self, other: Self) -> Self::Output {
paste::item!{
self.[<fixed_ $method>](other)
@@ -235,7 +159,6 @@ macro_rules! impl_multiplicative_operator_not_const_generic {
macro_rules! impl_multiplicative_assign_operator_not_const_generic {
( ($struct: ident, $trait: ident, $method: ident, $non_assign_method: ident ), $width:expr ) => {
impl<const F:usize> core::ops::$trait for $struct<$width,F>{
#[inline]
fn $method(&mut self, other: Self) {
paste::item!{
*self=self.[<fixed_ $non_assign_method>](other);
@@ -274,7 +197,7 @@ macro_rules! impl_divide_operator_not_const_generic {
}
}
}
#[cfg(all(not(feature="wide-mul"),not(feature="deferred-division")))]
#[cfg(all(not(feature="wide-mul"),not(feature="ratio")))]
impl_multiplicative_operator_not_const_generic!(($struct, $trait, $method, $output ), $width);
};
}
@@ -286,7 +209,7 @@ macro_rules! impl_multiplicative_operator {
BInt::<N>:From<U>+core::ops::$trait,
{
type Output = $output;
#[inline]
fn $method(self, other: U) -> Self::Output {
Self::from_bits(self.bits.$method(BInt::<N>::from(other)))
}
@@ -299,7 +222,6 @@ macro_rules! impl_multiplicative_assign_operator {
where
BInt::<N>:From<U>+core::ops::$trait,
{
#[inline]
fn $method(&mut self, other: U) {
self.bits.$method(BInt::<N>::from(other));
}
@@ -333,20 +255,21 @@ impl_multiplicative_assign_operator!( Fixed, MulAssign, mul_assign );
impl_multiplicative_operator!( Fixed, Mul, mul, Self );
impl_multiplicative_assign_operator!( Fixed, DivAssign, div_assign );
impl_multiplicative_operator!( Fixed, Div, div, Self );
#[cfg(feature="deferred-division")]
#[cfg(feature="ratio")]
impl<const LHS_N:usize,const LHS_F:usize,const RHS_N:usize,const RHS_F:usize> core::ops::Div<Fixed<RHS_N,RHS_F>> for Fixed<LHS_N,LHS_F>{
type Output=ratio_ops::ratio::Ratio<Fixed<LHS_N,LHS_F>,Fixed<RHS_N,RHS_F>>;
#[inline]
type Output=crate::ratio::Ratio<Fixed<LHS_N,LHS_F>,Fixed<RHS_N,RHS_F>>;
fn div(self, other: Fixed<RHS_N,RHS_F>)->Self::Output{
ratio_ops::ratio::Ratio::new(self,other)
crate::ratio::Ratio::new(self,other)
}
}
// wide operators. The result width is the sum of the input widths, i.e. none of the multiplication
macro_rules! impl_shift_operator {
( $struct: ident, $trait: ident, $method: ident, $output: ty ) => {
impl<const N:usize,const F:usize> core::ops::$trait<u32> for $struct<N,F>{
type Output = $output;
#[inline]
fn $method(self, other: u32) -> Self::Output {
Self::from_bits(self.bits.$method(other))
}
@@ -356,7 +279,6 @@ macro_rules! impl_shift_operator {
macro_rules! impl_shift_assign_operator {
( $struct: ident, $trait: ident, $method: ident ) => {
impl<const N:usize,const F:usize> core::ops::$trait<u32> for $struct<N,F>{
#[inline]
fn $method(&mut self, other: u32) {
self.bits.$method(other);
}
@@ -368,23 +290,19 @@ impl_shift_operator!( Fixed, Shl, shl, Self );
impl_shift_assign_operator!( Fixed, ShrAssign, shr_assign );
impl_shift_operator!( Fixed, Shr, shr, Self );
// wide operators. The result width is the sum of the input widths, i.e. none of the multiplication
macro_rules! impl_wide_operators{
($lhs:expr,$rhs:expr)=>{
impl core::ops::Mul<Fixed<$rhs,{$rhs*32}>> for Fixed<$lhs,{$lhs*32}>{
type Output=Fixed<{$lhs+$rhs},{($lhs+$rhs)*32}>;
#[inline]
fn mul(self, other: Fixed<$rhs,{$rhs*32}>)->Self::Output{
paste::item!{
self.[<wide_mul_ $lhs _ $rhs>](other)
}
}
}
#[cfg(not(feature="deferred-division"))]
#[cfg(not(feature="ratio"))]
impl core::ops::Div<Fixed<$rhs,{$rhs*32}>> for Fixed<$lhs,{$lhs*32}>{
type Output=Fixed<{$lhs+$rhs},{($lhs+$rhs)*32}>;
#[inline]
fn div(self, other: Fixed<$rhs,{$rhs*32}>)->Self::Output{
paste::item!{
self.[<wide_div_ $lhs _ $rhs>](other)
@@ -405,7 +323,6 @@ macro_rules! impl_wide_not_const_generic{
impl Fixed<$lhs,{$lhs*32}>
{
paste::item!{
#[inline]
pub fn [<wide_mul_ $lhs _ $rhs>](self,rhs:Fixed<$rhs,{$rhs*32}>)->Fixed<{$lhs+$rhs},{($lhs+$rhs)*32}>{
let lhs=self.bits.as_::<BInt<{$lhs+$rhs}>>();
let rhs=rhs.bits.as_::<BInt<{$lhs+$rhs}>>();
@@ -414,7 +331,6 @@ macro_rules! impl_wide_not_const_generic{
/// This operation cannot represent the fraction exactly,
/// but it shapes the output to have precision for the
/// largest and smallest possible fractions.
#[inline]
pub fn [<wide_div_ $lhs _ $rhs>](self,rhs:Fixed<$rhs,{$rhs*32}>)->Fixed<{$lhs+$rhs},{($lhs+$rhs)*32}>{
// (lhs/2^LHS_FRAC)/(rhs/2^RHS_FRAC)
let lhs=self.bits.as_::<BInt<{$lhs+$rhs}>>().shl($rhs*64);
@@ -448,7 +364,6 @@ macro_repeated!(
(1,15)
);
impl<const SRC:usize,const F:usize> Fixed<SRC,F>{
#[inline]
pub fn resize_into<const DST:usize>(self)->Fixed<DST,F>{
Fixed::from_bits(self.bits.as_::<BInt<DST>>())
}
@@ -457,14 +372,12 @@ impl<const SRC:usize,const F:usize> Fixed<SRC,F>{
macro_rules! impl_not_const_generic{
($n:expr)=>{
impl Fixed<{$n*2},{$n*2*32}>{
#[inline]
pub fn halve_precision(self)->Fixed<$n,{$n*32}>{
Fixed::from_bits(bnum::cast::As::as_(self.bits.shr($n*32)))
}
}
impl Fixed<$n,{$n*32}>{
paste::item!{
#[inline]
pub fn sqrt_unchecked(self)->Self{
//1<<max_shift must be the minimum power of two which when squared is greater than self
//calculating max_shift:
@@ -477,19 +390,17 @@ macro_rules! impl_not_const_generic{
let mut result=Self::ZERO;
//multiply by one to make the types match (hack)
//TODO: use resize method
let wide_self:<Self as core::ops::Mul>::Output=self*Self::ONE;
let wide_self=self.[<wide_mul_ $n _ $n>](Self::ONE);
//descend down the bits and check if flipping each bit would push the square over the input value
for shift in (0..=max_shift).rev(){
let new_result=result|Self::from_bits(BInt::from_bits(bnum::BUint::power_of_two(shift)));
if new_result*new_result<=wide_self{
if new_result.[<wide_mul_ $n _ $n>](new_result)<=wide_self{
result=new_result;
}
}
result
}
}
#[inline]
pub fn sqrt(self)->Self{
if self<Self::ZERO{
panic!("Square root less than zero")
@@ -497,7 +408,6 @@ macro_rules! impl_not_const_generic{
self.sqrt_unchecked()
}
}
#[inline]
pub fn sqrt_checked(self)->Option<Self>{
if self<Self::ZERO{
None

View File

@@ -3,6 +3,8 @@ pub mod types;
#[cfg(feature="zeroes")]
pub mod zeroes;
#[cfg(feature="ratio")]
pub mod ratio;
#[cfg(test)]
mod tests;

10
fixed_wide/src/ratio.rs Normal file
View File

@@ -0,0 +1,10 @@
#[derive(Clone,Copy,Debug,Hash)]
pub struct Ratio<Num,Den>{
pub(crate)num:Num,
pub(crate)den:Den,
}
impl<Num,Den> Ratio<Num,Den>{
pub const fn new(num:Num,den:Den)->Self{
Self{num,den}
}
}

View File

@@ -1,4 +1,5 @@
use crate::fixed::Fixed;
use crate::ratio::Ratio;
use arrayvec::ArrayVec;
use std::cmp::Ordering;
@@ -6,38 +7,36 @@ macro_rules! impl_zeroes{
($n:expr)=>{
impl Fixed<$n,{$n*32}>{
#[inline]
pub fn zeroes2(a0:Self,a1:Self,a2:Self)->ArrayVec<<Self as core::ops::Div>::Output,2>{
pub fn zeroes2(a0:Self,a1:Self,a2:Self)->ArrayVec<Ratio<Self,Self>,2>{
let a2pos=match a2.cmp(&Self::ZERO){
Ordering::Greater=>true,
Ordering::Equal=>return ArrayVec::from_iter(Self::zeroes1(a0,a1).into_iter()),
Ordering::Less=>true,
};
paste::item!{
let radicand=a1*a1-a2*a0*4;
let radicand=a1.[<wide_mul_ $n _ $n>](a1)-a2.[<wide_mul_ $n _ $n>](a0)*4;
}
match radicand.cmp(&<Self as core::ops::Mul>::Output::ZERO){
match radicand.cmp(&Fixed::<{$n*2},{$n*2*32}>::ZERO){
Ordering::Greater=>{
//TODO: use resize method
let planar_radicand:Self=radicand.sqrt().halve_precision();
let planar_radicand=radicand.sqrt().halve_precision();
//sort roots ascending and avoid taking the difference of large numbers
let zeroes=match (a2pos,Self::ZERO<a1){
(true, true )=>[(-a1-planar_radicand)/(a2*2),(a0*2)/(-a1-planar_radicand)],
(true, false)=>[(a0*2)/(-a1+planar_radicand),(-a1+planar_radicand)/(a2*2)],
(false,true )=>[(a0*2)/(-a1-planar_radicand),(-a1-planar_radicand)/(a2*2)],
(false,false)=>[(-a1+planar_radicand)/(a2*2),(a0*2)/(-a1+planar_radicand)],
};
ArrayVec::from_iter(zeroes)
match (a2pos,Self::ZERO<a1){
(true, true )=>[Ratio::new(-a1-planar_radicand,a2*2),Ratio::new(a0*2,-a1-planar_radicand)].into(),
(true, false)=>[Ratio::new(a0*2,-a1+planar_radicand),Ratio::new(-a1+planar_radicand,a2*2)].into(),
(false,true )=>[Ratio::new(a0*2,-a1-planar_radicand),Ratio::new(-a1-planar_radicand,a2*2)].into(),
(false,false)=>[Ratio::new(-a1+planar_radicand,a2*2),Ratio::new(a0*2,-a1+planar_radicand)].into(),
}
},
Ordering::Equal=>ArrayVec::from_iter([(a1)/(a2*-2)]),
Ordering::Equal=>ArrayVec::from_iter([Ratio::new(a1,a2*-2)]),
Ordering::Less=>ArrayVec::new_const(),
}
}
#[inline]
pub fn zeroes1(a0:Self,a1:Self)->ArrayVec<<Self as core::ops::Div>::Output,1>{
pub fn zeroes1(a0:Self,a1:Self)->ArrayVec<Ratio<Self,Self>,1>{
if a1==Self::ZERO{
ArrayVec::new_const()
}else{
ArrayVec::from_iter([(-a0)/(a1)])
ArrayVec::from_iter([Ratio::new(-a0,a1)])
}
}
}

View File

@@ -2,6 +2,12 @@
# It is not intended for manual editing.
version = 3
[[package]]
name = "arrayvec"
version = "0.7.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7c02d123df017efcdfbd739ef81735b36c5ba83ec3c59c80a9d7ecc718f92e50"
[[package]]
name = "bnum"
version = "0.11.0"
@@ -12,16 +18,17 @@ checksum = "3e31ea183f6ee62ac8b8a8cf7feddd766317adfb13ff469de57ce033efd6a790"
name = "fixed_wide"
version = "0.1.0"
dependencies = [
"arrayvec",
"bnum",
"paste",
]
[[package]]
name = "linear_ops"
name = "fixed_wide_vectors"
version = "0.1.0"
dependencies = [
"fixed_wide",
"ratio_ops",
"paste",
]
[[package]]
@@ -29,7 +36,3 @@ name = "paste"
version = "1.0.15"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "57c0d7b74b563b49d38dae00a0c37d4d6de9b432382b2892f0574ddcae73fd0a"
[[package]]
name = "ratio_ops"
version = "0.1.0"

View File

@@ -0,0 +1,13 @@
[package]
name = "fixed_wide_vectors"
version = "0.1.0"
edition = "2021"
[features]
default=["fixed_wide","named-fields"]
named-fields=[]
fixed_wide=["dep:fixed_wide","dep:paste"]
[dependencies]
fixed_wide = { version = "0.1.0", path = "../fixed_wide", optional = true }
paste = { version = "1.0.15", optional = true }

View File

@@ -0,0 +1,212 @@
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_wide_vector_operations_2arg_not_const_generic {
(
(),
($lhs:expr, $rhs:expr)
) => {
impl<const N:usize> Vector<N,fixed_wide::fixed::Fixed<{$lhs},{$lhs*32}>>{
paste::item!{
#[inline]
pub fn [<wide_mul_ $lhs _ $rhs>](self,rhs:Vector<N,fixed_wide::fixed::Fixed<{$rhs},{$rhs*32}>>)->Vector<N,fixed_wide::fixed::Fixed<{$lhs+$rhs},{($lhs+$rhs)*32}>>{
self.map_zip(rhs,|(a,b)|a.[<wide_mul_ $lhs _ $rhs>](b))
}
#[inline]
pub fn [<wide_dot_ $lhs _ $rhs>](self,rhs:Vector<N,fixed_wide::fixed::Fixed<{$rhs},{$rhs*32}>>)->fixed_wide::fixed::Fixed<{$lhs+$rhs},{($lhs+$rhs)*32}>{
self.array.into_iter().zip(rhs.array).map(|(a,b)|a.[<wide_mul_ $lhs _ $rhs>](b)).sum()
}
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_wide_vector_operations_1arg_not_const_generic {
(
(),
$n:expr
) => {
impl<const N:usize> Vector<N,fixed_wide::fixed::Fixed<{$n},{$n*32}>>{
paste::item!{
#[inline]
pub fn wide_length_squared(&self)->fixed_wide::fixed::Fixed<{$n*2},{$n*2*32}>{
self.array.into_iter().map(|t|t.[<wide_mul_ $n _ $n>](t)).sum()
}
}
}
};
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! do_macro_8x8{
(
$macro:ident,
$any:tt
)=>{
$crate::macro_repeated!($macro, $any,
(1,1),(2,1),(3,1),(4,1),(5,1),(6,1),(7,1),(8,1),
(1,2),(2,2),(3,2),(4,2),(5,2),(6,2),(7,2),(8,2),
(1,3),(2,3),(3,3),(4,3),(5,3),(6,3),(7,3),(8,3),
(1,4),(2,4),(3,4),(4,4),(5,4),(6,4),(7,4),(8,4),
(1,5),(2,5),(3,5),(4,5),(5,5),(6,5),(7,5),(8,5),
(1,6),(2,6),(3,6),(4,6),(5,6),(6,6),(7,6),(8,6),
(1,7),(2,7),(3,7),(4,7),(5,7),(6,7),(7,7),(8,7),
(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8),(8,8)
);
};
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! do_macro_8{
(
$macro:ident,
$any:tt
)=>{
$crate::macro_repeated!($macro, $any, 1,2,3,4,5,6,7,8);
};
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_wide_vector_operations {
() => {
$crate::do_macro_8!(impl_wide_vector_operations_1arg_not_const_generic,());
$crate::do_macro_8x8!(impl_wide_vector_operations_2arg_not_const_generic,());
};
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_3_wide_cross {
(
(),
($lhs:expr, $rhs:expr)
)=>{
impl Vector<3,fixed_wide::fixed::Fixed<{$lhs},{$lhs*32}>>{
paste::item!{
#[inline]
pub fn [<wide_cross_ $lhs _ $rhs>](self,rhs:Vector<3,fixed_wide::fixed::Fixed<{$rhs},{$rhs*32}>>)->Vector<3,fixed_wide::fixed::Fixed<{$lhs+$rhs},{($lhs+$rhs)*32}>>{
Vector::new([
self.y.[<wide_mul_ $lhs _ $rhs>](rhs.z)-self.z.[<wide_mul_ $lhs _ $rhs>](rhs.y),
self.z.[<wide_mul_ $lhs _ $rhs>](rhs.x)-self.x.[<wide_mul_ $lhs _ $rhs>](rhs.z),
self.x.[<wide_mul_ $lhs _ $rhs>](rhs.y)-self.y.[<wide_mul_ $lhs _ $rhs>](rhs.x),
])
}
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_wide_3 {
()=>{
$crate::do_macro_8x8!(impl_vector_3_wide_cross,());
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! do_macro_4_dumb{
(
$macro:ident,
$any:tt
)=>{
$crate::macro_repeated!($macro, $any, (1,2),(2,4),(3,6),(4,8));
};
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix_wide_dot {
(
(),
($lhs: expr, $rhs: expr)
) => {
impl<const X:usize,const Y:usize> Matrix<X,Y,fixed_wide::fixed::Fixed<{$lhs},{$lhs*32}>>{
paste::item!{
#[inline]
pub fn [<wide_dot_ $lhs _ $rhs>]<const Z:usize>(self,rhs:Matrix<Z,X,fixed_wide::fixed::Fixed<{$rhs},{$rhs*32}>>)->Matrix<Z,Y,fixed_wide::fixed::Fixed<{$lhs+$rhs},{($lhs+$rhs)*32}>>{
let mut array_of_iterators=rhs.array.map(|axis|axis.into_iter().cycle());
Matrix::new(
self.array.map(|axis|
core::array::from_fn(|_|
// axis dot product with transposed rhs array
axis.iter().zip(
array_of_iterators.iter_mut()
).map(|(&lhs_value,rhs_iter)|
lhs_value.[<wide_mul_ $lhs _ $rhs>](rhs_iter.next().unwrap())
).sum()
)
)
)
}
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix_wide_dot_8x8 {
() => {
$crate::do_macro_8x8!(impl_matrix_wide_dot,());
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix_wide_3x3_det_not_const_generic {
(
$n: expr,
$_2n: expr
)=>{
impl Matrix<3,3,fixed_wide::fixed::Fixed<$n,{$n*32}>>{
paste::item!{
pub fn [<wide_det_3x3_ $n>](self)->fixed_wide::fixed::Fixed<{$n*3},{$n*3*32}>{
//[<wide_dot_ $n _ $n*2>] will not compile, so the doubles are hardcoded above
self.x_axis.[<wide_dot_ $n _ $_2n>](self.y_axis.[<wide_cross_ $n _ $n>](self.z_axis))
}
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix_wide_3x3_det_not_const_generic_shim {
(
(),($n: expr,$_2n: expr)
)=>{
$crate::impl_matrix_wide_3x3_det_not_const_generic!($n,$_2n);
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix_wide_3x3_adjugate_not_const_generic {
(
(),
$n: expr
)=>{
impl Matrix<3,3,fixed_wide::fixed::Fixed<$n,{$n*32}>>{
paste::item!{
pub fn [<wide_adjugate_3x3_ $n>](self)->Matrix<3,3,fixed_wide::fixed::Fixed<{$n*2},{$n*2*32}>>{
Matrix::new([
[self.y_axis.y.[<wide_mul_ $n _ $n>](self.z_axis.z)-self.y_axis.z.[<wide_mul_ $n _ $n>](self.z_axis.y),self.x_axis.z.[<wide_mul_ $n _ $n>](self.z_axis.y)-self.x_axis.y.[<wide_mul_ $n _ $n>](self.z_axis.z),self.x_axis.y.[<wide_mul_ $n _ $n>](self.y_axis.z)-self.x_axis.z.[<wide_mul_ $n _ $n>](self.y_axis.y)],
[self.y_axis.z.[<wide_mul_ $n _ $n>](self.z_axis.x)-self.y_axis.x.[<wide_mul_ $n _ $n>](self.z_axis.z),self.x_axis.x.[<wide_mul_ $n _ $n>](self.z_axis.z)-self.x_axis.z.[<wide_mul_ $n _ $n>](self.z_axis.x),self.x_axis.z.[<wide_mul_ $n _ $n>](self.y_axis.x)-self.x_axis.x.[<wide_mul_ $n _ $n>](self.y_axis.z)],
[self.y_axis.x.[<wide_mul_ $n _ $n>](self.z_axis.y)-self.y_axis.y.[<wide_mul_ $n _ $n>](self.z_axis.x),self.x_axis.y.[<wide_mul_ $n _ $n>](self.z_axis.x)-self.x_axis.x.[<wide_mul_ $n _ $n>](self.z_axis.y),self.x_axis.x.[<wide_mul_ $n _ $n>](self.y_axis.y)-self.x_axis.y.[<wide_mul_ $n _ $n>](self.y_axis.x)],
])
}
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix_wide_3x3 {
()=>{
$crate::do_macro_4_dumb!(impl_matrix_wide_3x3_det_not_const_generic_shim,());
$crate::do_macro_8!(impl_matrix_wide_3x3_adjugate_not_const_generic,());
}
}

View File

@@ -54,102 +54,25 @@ macro_rules! impl_matrix {
)
)
}
#[inline]
// MatY<VecX>.VecX = VecY
pub fn transform_vector<U,V>(self,rhs:Vector<X,U>)->Vector<Y,V>
where
T:core::ops::Mul<U,Output=V>,
V:core::iter::Sum,
U:Copy,
{
Vector::new(
self.array.map(|axis|
Vector::new(axis).dot(rhs)
)
)
}
}
impl<const X:usize,const Y:usize,T> Matrix<X,Y,T>
where
T:Copy
{
#[inline(always)]
pub const fn from_value(value:T)->Self{
Self::new([[value;X];Y])
}
}
impl<const X:usize,const Y:usize,T:Default> Default for Matrix<X,Y,T>{
#[inline]
fn default()->Self{
Self::new(
core::array::from_fn(|_|core::array::from_fn(|_|Default::default()))
)
}
}
impl<const X:usize,const Y:usize,T:core::fmt::Display> core::fmt::Display for Matrix<X,Y,T>{
#[inline]
fn fmt(&self,f:&mut core::fmt::Formatter)->Result<(),core::fmt::Error>{
for row in &self.array[0..Y]{
core::write!(f,"\n")?;
for elem in &row[0..X-1]{
core::write!(f,"{}, ",elem)?;
}
// assume we will be using matrices of size 1x1 or greater
core::write!(f,"{}",row.last().unwrap())?;
}
Ok(())
}
}
impl<const X:usize,const Y:usize,const Z:usize,T,U,V> core::ops::Mul<Matrix<Z,X,U>> for Matrix<X,Y,T>
where
T:core::ops::Mul<U,Output=V>+Copy,
V:core::iter::Sum,
U:Copy,
{
type Output=Matrix<Z,Y,V>;
#[inline]
fn mul(self,rhs:Matrix<Z,X,U>)->Self::Output{
self.dot(rhs)
}
}
impl<const X:usize,const Y:usize,T,U,V> core::ops::Mul<Vector<X,U>> for Matrix<X,Y,T>
where
T:core::ops::Mul<U,Output=V>,
V:core::iter::Sum,
U:Copy,
{
type Output=Vector<Y,V>;
#[inline]
fn mul(self,rhs:Vector<X,U>)->Self::Output{
self.transform_vector(rhs)
}
}
#[cfg(feature="deferred-division")]
$crate::impl_matrix_deferred_division!();
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix_deferred_division {
() => {
impl<const X:usize,const Y:usize,T:ratio_ops::ratio::Divide<U,Output=V>,U:Copy,V> ratio_ops::ratio::Divide<U> for Matrix<X,Y,T>{
type Output=Matrix<X,Y,V>;
#[inline]
fn divide(self,rhs:U)->Self::Output{
self.map(|t|t.divide(rhs))
}
}
impl<const X:usize,const Y:usize,T,U> core::ops::Div<U> for Matrix<X,Y,T>{
type Output=ratio_ops::ratio::Ratio<Matrix<X,Y,T>,U>;
#[inline]
fn div(self,rhs:U)->Self::Output{
ratio_ops::ratio::Ratio::new(self,rhs)
}
}
#[cfg(feature="fixed_wide")]
$crate::impl_matrix_wide_dot_8x8!();
}
}
@@ -188,13 +111,11 @@ macro_rules! impl_matrix_named_fields_shape {
) => {
impl<T> core::ops::Deref for Matrix<$size_outer,$size_inner,T>{
type Target=$struct_outer<Vector<$size_inner,T>>;
#[inline]
fn deref(&self)->&Self::Target{
unsafe{core::mem::transmute(&self.array)}
}
}
impl<T> core::ops::DerefMut for Matrix<$size_outer,$size_inner,T>{
#[inline]
fn deref_mut(&mut self)->&mut Self::Target{
unsafe{core::mem::transmute(&mut self.array)}
}
@@ -228,31 +149,7 @@ macro_rules! impl_matrix_named_fields {
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix_3x3 {
()=>{
impl<T,T2,T3> Matrix<3,3,T>
where
//cross
T:core::ops::Mul<T,Output=T2>+Copy,
T2:core::ops::Sub,
//dot
T:core::ops::Mul<<T2 as core::ops::Sub>::Output,Output=T3>,
T3:core::iter::Sum,
{
pub fn det(self)->T3{
self.x_axis.dot(self.y_axis.cross(self.z_axis))
}
}
impl<T,T2> Matrix<3,3,T>
where
T:core::ops::Mul<T,Output=T2>+Copy,
T2:core::ops::Sub,
{
pub fn adjugate(self)->Matrix<3,3,<T2 as core::ops::Sub>::Output>{
Matrix::new([
[self.y_axis.y*self.z_axis.z-self.y_axis.z*self.z_axis.y,self.x_axis.z*self.z_axis.y-self.x_axis.y*self.z_axis.z,self.x_axis.y*self.y_axis.z-self.x_axis.z*self.y_axis.y],
[self.y_axis.z*self.z_axis.x-self.y_axis.x*self.z_axis.z,self.x_axis.x*self.z_axis.z-self.x_axis.z*self.z_axis.x,self.x_axis.z*self.y_axis.x-self.x_axis.x*self.y_axis.z],
[self.y_axis.x*self.z_axis.y-self.y_axis.y*self.z_axis.x,self.x_axis.y*self.z_axis.x-self.x_axis.x*self.z_axis.y,self.x_axis.x*self.y_axis.y-self.x_axis.y*self.y_axis.x],
])
}
}
#[cfg(feature="fixed_wide")]
$crate::impl_matrix_wide_3x3!();
}
}

View File

@@ -1,3 +1,6 @@
#[cfg(feature="fixed_wide")]
pub mod fixed_wide;
pub mod common;
pub mod vector;
pub mod matrix;

View File

@@ -39,7 +39,6 @@ macro_rules! impl_vector {
}
impl<const N:usize,T:Default> Default for Vector<N,T>{
#[inline]
fn default()->Self{
Self::new(
core::array::from_fn(|_|Default::default())
@@ -47,17 +46,6 @@ macro_rules! impl_vector {
}
}
impl<const N:usize,T:core::fmt::Display> core::fmt::Display for Vector<N,T>{
#[inline]
fn fmt(&self,f:&mut core::fmt::Formatter)->Result<(),core::fmt::Error>{
for elem in &self.array[0..N-1]{
core::write!(f,"{}, ",elem)?;
}
// assume we will be using vectors of length 1 or greater
core::write!(f,"{}",self.array.last().unwrap())
}
}
impl<const N:usize,T:Ord> Vector<N,T>{
#[inline]
pub fn min(self,rhs:Self)->Self{
@@ -102,7 +90,6 @@ macro_rules! impl_vector {
impl<const N:usize,T:core::ops::Neg<Output=V>,V> core::ops::Neg for Vector<N,T>{
type Output=Vector<N,V>;
#[inline]
fn neg(self)->Self::Output{
Vector::new(
self.array.map(|t|-t)
@@ -110,47 +97,18 @@ macro_rules! impl_vector {
}
}
impl<const N:usize,T> Vector<N,T>
{
#[inline]
pub fn dot<U,V>(self,rhs:Vector<N,U>)->V
where
T:core::ops::Mul<U,Output=V>,
V:core::iter::Sum,
{
self.array.into_iter().zip(rhs.array).map(|(a,b)|a*b).sum()
}
}
impl<const N:usize,T,V> Vector<N,T>
where
T:core::ops::Mul<Output=V>+Copy,
V:core::iter::Sum,
{
#[inline]
pub fn length_squared(self)->V{
self.array.into_iter().map(|t|t*t).sum()
}
}
// Impl arithmetic operators
$crate::impl_vector_assign_operator!(AddAssign, add_assign );
$crate::impl_vector_operator!(Add, add );
$crate::impl_vector_assign_operator!(SubAssign, sub_assign );
$crate::impl_vector_operator!(Sub, sub );
$crate::impl_vector_assign_operator!(MulAssign, mul_assign );
$crate::impl_vector_operator!(Mul, mul );
$crate::impl_vector_assign_operator!(DivAssign, div_assign );
$crate::impl_vector_operator!(Div, div );
$crate::impl_vector_assign_operator!(RemAssign, rem_assign );
$crate::impl_vector_operator!(Rem, rem );
// mul and div are special, usually you multiply by a scalar
// and implementing both vec*vec and vec*scalar is conflicting implementations Q_Q
$crate::impl_vector_assign_operator_scalar!(MulAssign, mul_assign );
$crate::impl_vector_operator_scalar!(Mul, mul );
$crate::impl_vector_assign_operator_scalar!(DivAssign, div_assign );
#[cfg(not(feature="deferred-division"))]
$crate::impl_vector_operator_scalar!(Div, div );
#[cfg(feature="deferred-division")]
$crate::impl_vector_deferred_division!();
// Impl bitwise operators
$crate::impl_vector_assign_operator!(BitAndAssign, bitand_assign );
$crate::impl_vector_operator!(BitAnd, bitand );
@@ -159,44 +117,9 @@ macro_rules! impl_vector {
$crate::impl_vector_assign_operator!(BitXorAssign, bitxor_assign );
$crate::impl_vector_operator!(BitXor, bitxor );
// Impl shift operators
$crate::impl_vector_shift_assign_operator!(ShlAssign, shl_assign);
$crate::impl_vector_shift_operator!(Shl, shl);
$crate::impl_vector_shift_assign_operator!(ShrAssign, shr_assign);
$crate::impl_vector_shift_operator!(Shr, shr);
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_deferred_division {
() => {
impl<const N:usize,T:ratio_ops::ratio::Divide<U,Output=V>,U:Copy,V> ratio_ops::ratio::Divide<U> for Vector<N,T>{
type Output=Vector<N,V>;
#[inline]
fn divide(self,rhs:U)->Self::Output{
self.map(|t|t.divide(rhs))
}
}
impl<const N:usize,T,U> core::ops::Div<U> for Vector<N,T>{
type Output=ratio_ops::ratio::Ratio<Vector<N,T>,U>;
#[inline]
fn div(self,rhs:U)->Self::Output{
ratio_ops::ratio::Ratio::new(self,rhs)
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_operator_scalar {
($trait: ident, $method: ident ) => {
impl<const N:usize,T:core::ops::$trait<U,Output=V>,U:Copy,V> core::ops::$trait<U> for Vector<N,T>{
type Output=Vector<N,V>;
#[inline]
fn $method(self,rhs:U)->Self::Output{
self.map(|t|t.$method(rhs))
}
}
// Impl floating-point based methods
#[cfg(feature="fixed_wide")]
$crate::impl_wide_vector_operations!();
}
}
#[doc(hidden)]
@@ -205,14 +128,12 @@ macro_rules! impl_vector_operator {
($trait: ident, $method: ident ) => {
impl<const N:usize,T:core::ops::$trait<U,Output=V>,U,V> core::ops::$trait<Vector<N,U>> for Vector<N,T>{
type Output=Vector<N,V>;
#[inline]
fn $method(self,rhs:Vector<N,U>)->Self::Output{
self.map_zip(rhs,|(a,b)|a.$method(b))
}
}
impl<const N:usize,T:core::ops::$trait<i64,Output=T>> core::ops::$trait<i64> for Vector<N,T>{
type Output=Self;
#[inline]
fn $method(self,rhs:i64)->Self::Output{
self.map(|t|t.$method(rhs))
}
@@ -221,30 +142,15 @@ macro_rules! impl_vector_operator {
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_assign_operator_scalar {
($trait: ident, $method: ident ) => {
impl<const N:usize,T:core::ops::$trait<U>,U:Copy> core::ops::$trait<U> for Vector<N,T>{
#[inline]
fn $method(&mut self,rhs:U){
self.array.iter_mut()
.for_each(|t|t.$method(rhs))
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_assign_operator {
($trait: ident, $method: ident ) => {
impl<const N:usize,T:core::ops::$trait<U>,U> core::ops::$trait<Vector<N,U>> for Vector<N,T>{
#[inline]
fn $method(&mut self,rhs:Vector<N,U>){
self.array.iter_mut().zip(rhs.array)
.for_each(|(a,b)|a.$method(b))
}
}
impl<const N:usize,T:core::ops::$trait<i64>> core::ops::$trait<i64> for Vector<N,T>{
#[inline]
fn $method(&mut self,rhs:i64){
self.array.iter_mut()
.for_each(|t|t.$method(rhs))
@@ -252,46 +158,6 @@ macro_rules! impl_vector_assign_operator {
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_shift_operator {
($trait: ident, $method: ident ) => {
impl<const N:usize,T:core::ops::$trait<U,Output=V>,U,V> core::ops::$trait<Vector<N,U>> for Vector<N,T>{
type Output=Vector<N,V>;
#[inline]
fn $method(self,rhs:Vector<N,U>)->Self::Output{
self.map_zip(rhs,|(a,b)|a.$method(b))
}
}
impl<const N:usize,T:core::ops::$trait<u32,Output=V>,V> core::ops::$trait<u32> for Vector<N,T>{
type Output=Vector<N,V>;
#[inline]
fn $method(self,rhs:u32)->Self::Output{
self.map(|t|t.$method(rhs))
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_shift_assign_operator {
($trait: ident, $method: ident ) => {
impl<const N:usize,T:core::ops::$trait<U>,U> core::ops::$trait<Vector<N,U>> for Vector<N,T>{
#[inline]
fn $method(&mut self,rhs:Vector<N,U>){
self.array.iter_mut().zip(rhs.array)
.for_each(|(a,b)|a.$method(b))
}
}
impl<const N:usize,T:core::ops::$trait<u32>> core::ops::$trait<u32> for Vector<N,T>{
#[inline]
fn $method(&mut self,rhs:u32){
self.array.iter_mut()
.for_each(|t|t.$method(rhs))
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
@@ -315,13 +181,11 @@ macro_rules! impl_vector_named_fields {
( $struct:ident, $size: expr ) => {
impl<T> core::ops::Deref for Vector<$size,T>{
type Target=$struct<T>;
#[inline]
fn deref(&self)->&Self::Target{
unsafe{core::mem::transmute(&self.array)}
}
}
impl<T> core::ops::DerefMut for Vector<$size,T>{
#[inline]
fn deref_mut(&mut self)->&mut Self::Target{
unsafe{core::mem::transmute(&mut self.array)}
}
@@ -333,21 +197,7 @@ macro_rules! impl_vector_named_fields {
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_3 {
()=>{
impl<T> Vector<3,T>
{
#[inline]
pub fn cross<U,V>(self,rhs:Vector<3,U>)->Vector<3,<V as core::ops::Sub>::Output>
where
T:core::ops::Mul<U,Output=V>+Copy,
U:Copy,
V:core::ops::Sub,
{
Vector::new([
self.y*rhs.z-self.z*rhs.y,
self.z*rhs.x-self.x*rhs.z,
self.x*rhs.y-self.y*rhs.x,
])
}
}
#[cfg(feature="fixed_wide")]
$crate::impl_vector_wide_3!();
}
}

View File

@@ -1,6 +1,6 @@
use crate::vector::Vector;
#[derive(Clone,Copy,Debug,Hash,Eq,PartialEq)]
#[derive(Clone,Copy,Hash,Eq,PartialEq)]
pub struct Matrix<const X:usize,const Y:usize,T>{
pub(crate) array:[[T;X];Y],
}
@@ -13,5 +13,4 @@ crate::impl_matrix_extend!(3,2);
crate::impl_matrix_extend!(3,3);
//Special case 3x3 matrix operations because I cba to write macros for the arbitrary cases
#[cfg(feature="named-fields")]
crate::impl_matrix_3x3!();

View File

@@ -8,9 +8,9 @@ type Planar64Wide3=fixed_wide::types::I256F256;
#[test]
fn wide_vec3(){
let v=Vector3::from_value(Planar64::from(3));
let v1=v*v.x;
let v2=v1*v1.y;
let v3=v2*v2.z;
let v1=v.wide_mul_1_1(v);
let v2=v1.wide_mul_2_2(v1);
let v3=v2.wide_mul_4_4(v2);
assert_eq!(v3.array,Vector3::from_value(Planar64Wide3::from(3i128.pow(8))).array);
}
@@ -18,9 +18,9 @@ fn wide_vec3(){
#[test]
fn wide_vec3_dot(){
let v=Vector3::from_value(Planar64::from(3));
let v1=v*v.x;
let v2=v1*v1.y;
let v3=v2.dot(v2);
let v1=v.wide_mul_1_1(v);
let v2=v1.wide_mul_2_2(v1);
let v3=v2.wide_dot_4_4(v2);
assert_eq!(v3,Planar64Wide3::from(3i128.pow(8)*3));
}
@@ -28,9 +28,9 @@ fn wide_vec3_dot(){
#[test]
fn wide_vec3_length_squared(){
let v=Vector3::from_value(Planar64::from(3));
let v1=v*v.x;
let v2=v1*v1.y;
let v3=v2.length_squared();
let v1=v.wide_mul_1_1(v);
let v2=v1.wide_mul_2_2(v1);
let v3=v2.wide_length_squared();
assert_eq!(v3,Planar64Wide3::from(3i128.pow(8)*3));
}
@@ -49,7 +49,7 @@ fn wide_matrix_dot(){
[Planar64::from(7),Planar64::from(8)],
]);
// Mat3<Vec4>.dot(Mat4<Vec2>) -> Mat3<Vec2>
let m_dot=lhs*rhs;
let m_dot=lhs.wide_dot_1_1(rhs);
//In[1]:= {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}} . {{1, 2}, {3, 4}, {5, 6}, {7, 8}}
//Out[1]= {{50, 60}, {114, 140}, {178, 220}}
assert_eq!(
@@ -63,7 +63,6 @@ fn wide_matrix_dot(){
}
#[test]
#[cfg(feature="named-fields")]
fn wide_matrix_det(){
let m=Matrix3::new([
[Planar64::from(1),Planar64::from(2),Planar64::from(3)],
@@ -72,11 +71,10 @@ fn wide_matrix_det(){
]);
// In[2]:= Det[{{1, 2, 3}, {4, 5, 7}, {6, 8, 9}}]
// Out[2]= 7
assert_eq!(m.det(),fixed_wide::fixed::Fixed::<3,96>::from(7));
assert_eq!(m.wide_det_3x3_1(),fixed_wide::fixed::Fixed::<3,96>::from(7));
}
#[test]
#[cfg(feature="named-fields")]
fn wide_matrix_adjugate(){
let m=Matrix3::new([
[Planar64::from(1),Planar64::from(2),Planar64::from(3)],
@@ -86,7 +84,7 @@ fn wide_matrix_adjugate(){
// In[6]:= Adjugate[{{1, 2, 3}, {4, 5, 7}, {6, 8, 9}}]
// Out[6]= {{-11, 6, -1}, {6, -9, 5}, {2, 4, -3}}
assert_eq!(
m.adjugate().array,
m.wide_adjugate_3x3_1().array,
Matrix3::new([
[Planar64Wide1::from(-11),Planar64Wide1::from(6),Planar64Wide1::from(-1)],
[Planar64Wide1::from(6),Planar64Wide1::from(-9),Planar64Wide1::from(5)],

View File

@@ -3,4 +3,5 @@ mod tests;
#[cfg(feature="named-fields")]
mod named;
#[cfg(feature="fixed_wide")]
mod fixed_wide;

View File

@@ -1,4 +1,4 @@
use crate::types::{Vector2,Vector3,Matrix4x3,Matrix2x4,Matrix2x3,Matrix3x2};
use crate::types::{Vector3,Matrix4x3,Matrix2x4,Matrix2x3};
#[test]
fn test_bool(){
@@ -8,28 +8,12 @@ fn test_bool(){
assert_eq!(Vector3::new([true,true,true]).all(),true);
}
#[test]
fn test_length_squared(){
assert_eq!(Vector3::new([1,2,3]).length_squared(),14);
}
#[test]
fn test_arithmetic(){
let a=Vector3::new([1,2,3]);
assert_eq!((a+a*2).array,Vector3::new([1*3,2*3,3*3]).array);
}
#[test]
fn matrix_transform_vector(){
let m=Matrix3x2::new([
[1,2,3],
[4,5,6],
]);
let v=Vector3::new([1,2,3]);
let transformed=m*v;
assert_eq!(transformed.array,Vector2::new([14,32]).array);
}
#[test]
fn matrix_dot(){
@@ -45,7 +29,7 @@ fn matrix_dot(){
[9.0,10.0,11.0,12.0],// [178.0,220.0],
]);
// Mat3<Vec4>.dot(Mat4<Vec2>) -> Mat3<Vec2>
let m_dot=lhs*rhs;
let m_dot=lhs.dot(rhs);
//In[1]:= {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}} . {{1, 2}, {3, 4}, {5, 6}, {7, 8}}
//Out[1]= {{50, 60}, {114, 140}, {178, 220}}
assert_eq!(

View File

@@ -3,7 +3,7 @@
/// v.x += v.z;
/// println!("v.x={}",v.x);
#[derive(Clone,Copy,Debug,Hash,Eq,PartialEq)]
#[derive(Clone,Copy,Hash,Eq,PartialEq)]
pub struct Vector<const N:usize,T>{
pub(crate) array:[T;N],
}
@@ -15,5 +15,4 @@ crate::impl_vector_extend!(2);
crate::impl_vector_extend!(3);
//cross product
#[cfg(feature="named-fields")]
crate::impl_vector_3!();

View File

@@ -1,15 +0,0 @@
[package]
name = "linear_ops"
version = "0.1.0"
edition = "2021"
[features]
default=["named-fields"]
named-fields=[]
deferred-division=["dep:ratio_ops"]
[dependencies]
ratio_ops = { path = "../ratio_ops", optional = true }
[dev-dependencies]
fixed_wide = { version = "0.1.0", path = "../fixed_wide", features = ["wide-mul"] }

View File

@@ -1 +0,0 @@
/target

7
ratio_ops/Cargo.lock generated
View File

@@ -1,7 +0,0 @@
# This file is automatically @generated by Cargo.
# It is not intended for manual editing.
version = 3
[[package]]
name = "ratio_ops"
version = "0.1.0"

View File

@@ -1,6 +0,0 @@
[package]
name = "ratio_ops"
version = "0.1.0"
edition = "2021"
[dependencies]

View File

@@ -1 +0,0 @@
pub mod ratio;

View File

@@ -1,177 +0,0 @@
#[derive(Clone,Copy,Debug,Hash)]
pub struct Ratio<Num,Den>{
pub num:Num,
pub den:Den,
}
impl<Num,Den> Ratio<Num,Den>{
#[inline(always)]
pub const fn new(num:Num,den:Den)->Self{
Self{num,den}
}
}
/// The actual divide implementation, Div is replaced with a Ratio constructor
pub trait Divide<Rhs=Self>{
type Output;
fn divide(self,rhs:Rhs)->Self::Output;
}
impl<Num,Den> Ratio<Num,Den>
where
Num:Divide<Den>,
{
#[inline]
pub fn divide(self)-><Num as Divide<Den>>::Output{
self.num.divide(self.den)
}
}
//take care to use the ratio methods to avoid nested ratios
impl<LhsNum,LhsDen> Ratio<LhsNum,LhsDen>{
#[inline]
pub fn mul_ratio<RhsNum,RhsDen>(self,rhs:Ratio<RhsNum,RhsDen>)->Ratio<<LhsNum as core::ops::Mul<RhsNum>>::Output,<LhsDen as core::ops::Mul<RhsDen>>::Output>
where
LhsNum:core::ops::Mul<RhsNum>,
LhsDen:core::ops::Mul<RhsDen>,
{
Ratio::new(self.num*rhs.num,self.den*rhs.den)
}
#[inline]
pub fn div_ratio<RhsNum,RhsDen>(self,rhs:Ratio<RhsNum,RhsDen>)->Ratio<<LhsNum as core::ops::Mul<RhsDen>>::Output,<LhsDen as core::ops::Mul<RhsNum>>::Output>
where
LhsNum:core::ops::Mul<RhsDen>,
LhsDen:core::ops::Mul<RhsNum>,
{
Ratio::new(self.num*rhs.den,self.den*rhs.num)
}
}
macro_rules! impl_ratio_method {
($trait:ident, $method:ident, $ratio_method:ident) => {
impl<LhsNum,LhsDen> Ratio<LhsNum,LhsDen>{
#[inline]
pub fn $ratio_method<RhsNum,RhsDen,LhsCrossMul,RhsCrossMul>(self,rhs:Ratio<RhsNum,RhsDen>)->Ratio<<LhsCrossMul as core::ops::$trait<RhsCrossMul>>::Output,<LhsDen as core::ops::Mul<RhsDen>>::Output>
where
LhsNum:core::ops::Mul<RhsDen,Output=LhsCrossMul>,
LhsDen:core::ops::Mul<RhsNum,Output=RhsCrossMul>,
LhsDen:core::ops::Mul<RhsDen>,
LhsDen:Copy,
RhsDen:Copy,
LhsCrossMul:core::ops::$trait<RhsCrossMul>,
{
Ratio::new((self.num*rhs.den).$method(self.den*rhs.num),self.den*rhs.den)
}
}
};
}
impl_ratio_method!(Add,add,add_ratio);
impl_ratio_method!(Sub,sub,sub_ratio);
impl_ratio_method!(Rem,rem,rem_ratio);
/* generic rhs mul is not possible!
impl<Lhs,RhsNum,RhsDen> core::ops::Mul<Ratio<RhsNum,RhsDen>> for Lhs
where
Lhs:core::ops::Mul<RhsNum>,
{
type Output=Ratio<<Lhs as core::ops::Mul<RhsNum>>::Output,RhsDen>;
#[inline]
fn mul(self,rhs:Ratio<RhsNum,RhsDen>)->Self::Output{
Ratio::new(self*rhs.num,rhs.den)
}
}
*/
//operators
impl<LhsNum,LhsDen> core::ops::Neg for Ratio<LhsNum,LhsDen>
where
LhsNum:core::ops::Neg,
{
type Output=Ratio<<LhsNum as core::ops::Neg>::Output,LhsDen>;
#[inline]
fn neg(self)->Self::Output{
Ratio::new(-self.num,self.den)
}
}
impl<LhsNum,LhsDen,Rhs> core::ops::Mul<Rhs> for Ratio<LhsNum,LhsDen>
where
LhsNum:core::ops::Mul<Rhs>,
{
type Output=Ratio<<LhsNum as core::ops::Mul<Rhs>>::Output,LhsDen>;
#[inline]
fn mul(self,rhs:Rhs)->Self::Output{
Ratio::new(self.num*rhs,self.den)
}
}
impl<LhsNum,LhsDen,Rhs> core::ops::Div<Rhs> for Ratio<LhsNum,LhsDen>
where
LhsDen:core::ops::Mul<Rhs>,
{
type Output=Ratio<LhsNum,<LhsDen as core::ops::Mul<Rhs>>::Output>;
#[inline]
fn div(self,rhs:Rhs)->Self::Output{
Ratio::new(self.num,self.den*rhs)
}
}
macro_rules! impl_ratio_operator {
($trait:ident, $method:ident) => {
impl<LhsNum,LhsDen,Rhs,Intermediate> core::ops::$trait<Rhs> for Ratio<LhsNum,LhsDen>
where
LhsNum:core::ops::$trait<Intermediate>,
LhsDen:Copy,
Rhs:core::ops::Mul<LhsDen,Output=Intermediate>,
{
type Output=Ratio<<LhsNum as core::ops::$trait<Intermediate>>::Output,LhsDen>;
#[inline]
fn $method(self,rhs:Rhs)->Self::Output{
Ratio::new(self.num.$method(rhs*self.den),self.den)
}
}
};
}
impl_ratio_operator!(Add,add);
impl_ratio_operator!(Sub,sub);
impl_ratio_operator!(Rem,rem);
//assign operators
impl<LhsNum,LhsDen,Rhs> core::ops::MulAssign<Rhs> for Ratio<LhsNum,LhsDen>
where
LhsNum:core::ops::MulAssign<Rhs>,
{
#[inline]
fn mul_assign(&mut self,rhs:Rhs){
self.num*=rhs;
}
}
impl<LhsNum,LhsDen,Rhs> core::ops::DivAssign<Rhs> for Ratio<LhsNum,LhsDen>
where
LhsDen:core::ops::MulAssign<Rhs>,
{
#[inline]
fn div_assign(&mut self,rhs:Rhs){
self.den*=rhs;
}
}
macro_rules! impl_ratio_assign_operator {
($trait:ident, $method:ident) => {
impl<LhsNum,LhsDen,Rhs> core::ops::$trait<Rhs> for Ratio<LhsNum,LhsDen>
where
LhsNum:core::ops::$trait,
LhsDen:Copy,
Rhs:core::ops::Mul<LhsDen,Output=LhsNum>,
{
#[inline]
fn $method(&mut self,rhs:Rhs){
self.num.$method(rhs*self.den)
}
}
};
}
impl_ratio_assign_operator!(AddAssign,add_assign);
impl_ratio_assign_operator!(SubAssign,sub_assign);
impl_ratio_assign_operator!(RemAssign,rem_assign);