use crate::types::I32F32; use crate::types::I256F256; #[test] fn you_can_add_numbers(){ let a=I256F256::from((3i128*2).pow(4)); assert_eq!(a+a,I256F256::from((3i128*2).pow(4)*2)); } #[test] fn to_f32(){ let a=I256F256::from(1)>>2; let f:f32=a.into(); assert_eq!(f,0.25f32); let f:f32=(-a).into(); assert_eq!(f,-0.25f32); let a=I256F256::from(0); let f:f32=(-a).into(); assert_eq!(f,0f32); let a=I256F256::from(237946589723468975i64)<<32; let f:f32=a.into(); assert_eq!(f,237946589723468975f32*2.0f32.powi(32)); } #[test] fn to_f64(){ let a=I256F256::from(1)>>2; let f:f64=a.into(); assert_eq!(f,0.25f64); let f:f64=(-a).into(); assert_eq!(f,-0.25f64); let a=I256F256::from(0); let f:f64=(-a).into(); assert_eq!(f,0f64); let a=I256F256::from(237946589723468975i64)<<32; let f:f64=a.into(); assert_eq!(f,237946589723468975f64*2.0f64.powi(32)); } #[test] fn you_can_shr_numbers(){ let a=I32F32::from(4); assert_eq!(a>>1,I32F32::from(2)); } #[test] fn test_wide_mul(){ let a=I32F32::ONE; let aa=a.wide_mul_1_1(a); assert_eq!(aa,crate::types::I64F64::ONE); } #[test] fn test_wide_div(){ let a=I32F32::ONE*4; let b=I32F32::ONE*2; let wide_a=a.wide_mul_1_1(I32F32::ONE); let wide_b=b.wide_mul_1_1(I32F32::ONE); let ab=a.wide_div_1_1(b); assert_eq!(ab,crate::types::I64F64::ONE*2); let wab=wide_a.wide_div_2_1(b); assert_eq!(wab,crate::fixed::Fixed::<3,96>::ONE*2); let awb=a.wide_div_1_2(wide_b); assert_eq!(awb,crate::fixed::Fixed::<3,96>::ONE*2); } #[test] fn test_wide_mul_repeated() { let a=I32F32::from(2); let b=I32F32::from(3); let w1=a.wide_mul_1_1(b); let w2=w1.wide_mul_2_2(w1); let w3=w2.wide_mul_4_4(w2); assert_eq!(w3,I256F256::from((3i128*2).pow(4))); } #[test] fn test_bint(){ let a=I32F32::ONE; assert_eq!(a*2,I32F32::from(2)); } #[test] fn test_fix(){ assert_eq!(I32F32::ONE.fix_8(),I256F256::ONE); assert_eq!(I32F32::ONE,I256F256::ONE.fix_1()); assert_eq!(I32F32::NEG_ONE.fix_8(),I256F256::NEG_ONE); assert_eq!(I32F32::NEG_ONE,I256F256::NEG_ONE.fix_1()); } #[test] fn test_sqrt(){ let a=I32F32::ONE*4; assert_eq!(a.sqrt(),I32F32::from(2)); } #[test] fn test_sqrt_zero(){ let a=I32F32::ZERO; assert_eq!(a.sqrt(),I32F32::ZERO); } #[test] fn test_sqrt_low(){ let a=I32F32::HALF; let b=a.fixed_mul(a); assert_eq!(b.sqrt(),a); } fn find_equiv_sqrt_via_f64(n:I32F32)->I32F32{ //GIMME THEM BITS BOY let &[bits]=n.to_bits().to_bits().digits(); let ibits=bits as i64; let f=(ibits as f64)/((1u64<<32) as f64); let f_ans=f.sqrt(); let i=(f_ans*((1u64<<32) as f64)) as i64; let r=I32F32::from_bits(bnum::BInt::<1>::from(i)); //mimic the behaviour of the algorithm, //return the result if it truncates to the exact answer if (r+I32F32::EPSILON).wide_mul_1_1(r+I32F32::EPSILON)==n.wide_mul_1_1(I32F32::ONE){ return r+I32F32::EPSILON; } if (r-I32F32::EPSILON).wide_mul_1_1(r-I32F32::EPSILON)==n.wide_mul_1_1(I32F32::ONE){ return r-I32F32::EPSILON; } return r; } fn test_exact(n:I32F32){ assert_eq!(n.sqrt(),find_equiv_sqrt_via_f64(n)); } #[test] fn test_sqrt_exact(){ //43 for i in 0..((i64::MAX as f32).ln() as u32){ let n=I32F32::from_bits(bnum::BInt::<1>::from((i as f32).exp() as i64)); test_exact(n); } } #[test] fn test_sqrt_max(){ let a=I32F32::MAX; test_exact(a); }