use std::collections::{HashMap,HashSet};
use crate::model_physics::{self,PhysicsMesh,PhysicsMeshTransform,TransformedMesh,MeshQuery,PhysicsMeshId,PhysicsSubmeshId};
use strafesnet_common::bvh;
use strafesnet_common::map;
use strafesnet_common::run;
use strafesnet_common::aabb;
use strafesnet_common::model::{MeshId,ModelId};
use strafesnet_common::gameplay_attributes::{self,CollisionAttributesId};
use strafesnet_common::gameplay_modes::{self,StageId};
use strafesnet_common::gameplay_style::{self,StyleModifiers};
use strafesnet_common::controls_bitflag::Controls;
use strafesnet_common::instruction::{self,InstructionEmitter,InstructionConsumer,TimedInstruction};
use strafesnet_common::integer::{self,Time,Planar64,Planar64Vec3,Planar64Mat3,Angle32,Ratio64Vec2};
use gameplay::ModeState;

//internal influence
//when the physics asks itself what happens next, this is how it's represented
#[derive(Debug)]
enum PhysicsInternalInstruction{
	CollisionStart(Collision),
	CollisionEnd(Collision),
	StrafeTick,
	ReachWalkTargetVelocity,
	// Water,
	// Spawn(
	// 	Option<SpawnId>,
	// 	bool,//true = Trigger; false = teleport
	// 	bool,//true = Force
	// )
}
//external influence
//this is how you influence the physics from outside
#[derive(Debug)]
pub enum PhysicsInputInstruction{
	ReplaceMouse(MouseState,MouseState),
	SetNextMouse(MouseState),
	SetMoveRight(bool),
	SetMoveUp(bool),
	SetMoveBack(bool),
	SetMoveLeft(bool),
	SetMoveDown(bool),
	SetMoveForward(bool),
	SetJump(bool),
	SetZoom(bool),
	Restart,
	Spawn(gameplay_modes::ModeId,StageId),
	Idle,
		//Idle: there were no input events, but the simulation is safe to advance to this timestep
		//for interpolation / networking / playback reasons, most playback heads will always want
		//to be 1 instruction ahead to generate the next state for interpolation.
	PracticeFly,
	SetSensitivity(Ratio64Vec2),
}
#[derive(Debug)]
enum PhysicsInstruction{
	Internal(PhysicsInternalInstruction),
	//InputInstructions conditionally activate RefreshWalkTarget
	//(by doing what SetWalkTargetVelocity used to do and then flagging it)
	Input(PhysicsInputInstruction),
}

#[derive(Clone,Copy,Debug,Default,Hash)]
pub struct Body{
	pub position:Planar64Vec3,//I64 where 2^32 = 1 u
	pub velocity:Planar64Vec3,//I64 where 2^32 = 1 u/s
	pub acceleration:Planar64Vec3,//I64 where 2^32 = 1 u/s/s
	pub time:Time,//nanoseconds x xxxxD!
}
impl std::ops::Neg for Body{
	type Output=Self;
	fn neg(self)->Self::Output{
		Self{
			position:self.position,
			velocity:-self.velocity,
			acceleration:self.acceleration,
			time:-self.time,
		}
	}
}

//hey dumbass just use a delta
#[derive(Clone,Debug)]
pub struct MouseState {
	pub pos: glam::IVec2,
	pub time:Time,
}
impl Default for MouseState{
	fn default() -> Self {
		Self {
			time:Time::ZERO,
			pos:glam::IVec2::ZERO,
		}
	}
}
impl MouseState {
	pub fn lerp(&self,target:&MouseState,time:Time)->glam::IVec2 {
		let m0=self.pos.as_i64vec2();
		let m1=target.pos.as_i64vec2();
		//these are deltas
		let t1t=(target.time-time).nanos();
		let tt0=(time-self.time).nanos();
		let dt=(target.time-self.time).nanos();
		((m0*t1t+m1*tt0)/dt).as_ivec2()
	}
}

#[derive(Clone,Debug,Default)]
pub struct InputState{
	mouse:MouseState,
	next_mouse:MouseState,
	controls:strafesnet_common::controls_bitflag::Controls,
}
impl InputState{
	pub const fn get_next_mouse(&self)->&MouseState{
		&self.next_mouse
	}
	fn set_next_mouse(&mut self,next_mouse:MouseState){
		//I like your functions magic language
		self.mouse=std::mem::replace(&mut self.next_mouse,next_mouse);
		//equivalently:
		//(self.next_mouse,self.mouse)=(next_mouse,self.next_mouse.clone());
	}
	fn replace_mouse(&mut self,mouse:MouseState,next_mouse:MouseState){
		(self.next_mouse,self.mouse)=(next_mouse,mouse);
	}
	fn set_control(&mut self,control:Controls,state:bool){
		self.controls.set(control,state)
	}
	fn time_delta(&self)->Time{
		self.next_mouse.time-self.mouse.time
	}
	fn mouse_delta(&self)->glam::IVec2{
		self.next_mouse.pos-self.mouse.pos
	}
	fn lerp_delta(&self,time:Time)->glam::IVec2{
		//these are deltas
		let dm=self.mouse_delta().as_i64vec2();
		let t=(time-self.mouse.time).nanos();
		let dt=self.time_delta().nanos();
		((dm*t)/dt).as_ivec2()
	}
}
#[derive(Clone,Debug)]
enum JumpDirection{
	Exactly(Planar64Vec3),
	FromContactNormal,
}
impl JumpDirection{
	fn direction(&self,models:&PhysicsModels,hitbox_mesh:&HitboxMesh,contact:&ContactCollision)->Planar64Vec3{
		match self{
			JumpDirection::FromContactNormal=>contact_normal(models,hitbox_mesh,contact),
			&JumpDirection::Exactly(dir)=>dir,
		}
	}
}
#[derive(Clone,Debug)]
enum TransientAcceleration{
	Reached,
	Reachable{
		acceleration:Planar64Vec3,
		time:Time,
	},
	//walk target will never be reached
	Unreachable{
		acceleration:Planar64Vec3,
	}
}
#[derive(Clone,Debug)]
struct ContactMoveState{
	jump_direction:JumpDirection,
	contact:ContactCollision,
	target:TransientAcceleration,
}
impl TransientAcceleration{
	fn with_target_diff(target_diff:Planar64Vec3,accel:Planar64,time:Time)->Self{
		if target_diff==Planar64Vec3::ZERO{
			TransientAcceleration::Reached
		}else{
			//normal friction acceleration is clippedAcceleration.dot(normal)*friction
			TransientAcceleration::Reachable{
				acceleration:target_diff.with_length(accel),
				time:time+Time::from(target_diff.length()/accel)
			}
		}
	}
	fn ground(walk_settings:&gameplay_style::WalkSettings,body:&Body,gravity:Planar64Vec3,target_velocity:Planar64Vec3)->Self{
		let target_diff=target_velocity-body.velocity;
		//precalculate accel
		let accel=walk_settings.accel(target_diff,gravity);
		Self::with_target_diff(target_diff,accel,body.time)
	}
	fn ladder(ladder_settings:&gameplay_style::LadderSettings,body:&Body,gravity:Planar64Vec3,target_velocity:Planar64Vec3)->Self{
		let target_diff=target_velocity-body.velocity;
		let accel=ladder_settings.accel(target_diff,gravity);
		Self::with_target_diff(target_diff,accel,body.time)
	}
	fn acceleration(&self)->Planar64Vec3{
		match self{
			TransientAcceleration::Reached=>Planar64Vec3::ZERO,
			&TransientAcceleration::Reachable{acceleration,time:_}=>acceleration,
			&TransientAcceleration::Unreachable{acceleration}=>acceleration,
		}
	}
}
impl ContactMoveState{
	fn ground(walk_settings:&gameplay_style::WalkSettings,body:&Body,gravity:Planar64Vec3,target_velocity:Planar64Vec3,contact:ContactCollision)->Self{
		Self{
			target:TransientAcceleration::ground(walk_settings,body,gravity,target_velocity),
			contact,
			jump_direction:JumpDirection::Exactly(Planar64Vec3::Y),
		}
	}
	fn ladder(ladder_settings:&gameplay_style::LadderSettings,body:&Body,gravity:Planar64Vec3,target_velocity:Planar64Vec3,contact:ContactCollision)->Self{
		Self{//,style,velocity,normal,style.ladder_speed,style.ladder_accel
			target:TransientAcceleration::ladder(ladder_settings,body,gravity,target_velocity),
			contact,
			jump_direction:JumpDirection::FromContactNormal,
		}
	}
}
fn ground_things(walk_settings:&gameplay_style::WalkSettings,contact:&ContactCollision,touching:&TouchingState,models:&PhysicsModels,hitbox_mesh:&HitboxMesh,style:&StyleModifiers,camera:&PhysicsCamera,input_state:&InputState)->(Planar64Vec3,Planar64Vec3){
	let normal=contact_normal(models,hitbox_mesh,contact);
	let gravity=touching.base_acceleration(models,style,camera,input_state);
	let control_dir=style.get_y_control_dir(camera,input_state.controls);
	let mut target_velocity=walk_settings.get_walk_target_velocity(control_dir,normal);
	touching.constrain_velocity(models,hitbox_mesh,&mut target_velocity);
	(gravity,target_velocity)
}
fn ladder_things(ladder_settings:&gameplay_style::LadderSettings,contact:&ContactCollision,touching:&TouchingState,models:&PhysicsModels,hitbox_mesh:&HitboxMesh,style:&StyleModifiers,camera:&PhysicsCamera,input_state:&InputState)->(Planar64Vec3,Planar64Vec3){
	let normal=contact_normal(models,hitbox_mesh,contact);
	let gravity=touching.base_acceleration(models,style,camera,input_state);
	let control_dir=style.get_y_control_dir(camera,input_state.controls);
	let mut target_velocity=ladder_settings.get_ladder_target_velocity(control_dir,normal);
	touching.constrain_velocity(models,hitbox_mesh,&mut target_velocity);
	(gravity,target_velocity)
}

#[derive(Default)]
struct PhysicsModels{
	meshes:HashMap<PhysicsMeshId,PhysicsMesh>,
	models:HashMap<PhysicsModelId,PhysicsModel>,
	//separate models into Contacting and Intersecting?
	//wrap model id with ContactingModelId and IntersectingModelId
	//attributes can be split into contacting and intersecting (this also saves a bit of memory)
	//can go even further and deduplicate General attributes separately, reconstructing it when queried
	attributes:HashMap<PhysicsAttributesId,PhysicsCollisionAttributes>,
}
impl PhysicsModels{
	fn clear(&mut self){
		self.meshes.clear();
		self.models.clear();
		self.attributes.clear();
	}
	//TODO: "statically" verify the maps don't refer to any nonexistant data, if they do delete the references.
	//then I can make these getter functions unchecked.
	fn mesh(&self,convex_mesh_id:ConvexMeshId)->TransformedMesh{
		let model=&self.models[&convex_mesh_id.model_id];
		TransformedMesh::new(
			self.meshes[&model.mesh_id].submesh_view(convex_mesh_id.submesh_id),
			&model.transform
		)
	}
	fn model(&self,model_id:PhysicsModelId)->&PhysicsModel{
		&self.models[&model_id]
	}
	fn attr(&self,model_id:PhysicsModelId)->&PhysicsCollisionAttributes{
		&self.attributes[&self.models[&model_id].attr_id]
	}
}

#[derive(Clone,Copy,Debug)]
pub struct PhysicsCamera{
	//punch: Planar64Vec3,
	//punch_velocity: Planar64Vec3,
	sensitivity:Ratio64Vec2,//dots to Angle32 ratios
	clamped_mouse_pos:glam::IVec2,//angles are calculated from this cumulative value
	//angle limits could be an enum + struct that defines whether it's limited and selects clamp or wrap depending
	// enum AngleLimit{
	// 	Unlimited,
	// 	Limited{lower:Angle32,upper:Angle32},
	// }
	//pitch_limit:AngleLimit,
	//yaw_limit:AngleLimit,
}

impl PhysicsCamera{
	const ANGLE_PITCH_LOWER_LIMIT:Angle32=Angle32::NEG_FRAC_PI_2;
	const ANGLE_PITCH_UPPER_LIMIT:Angle32=Angle32::FRAC_PI_2;
	pub fn move_mouse(&mut self,mouse_delta:glam::IVec2){
		let mut unclamped_mouse_pos=self.clamped_mouse_pos+mouse_delta;
		unclamped_mouse_pos.y=unclamped_mouse_pos.y.clamp(
			self.sensitivity.y.rhs_div_int(Self::ANGLE_PITCH_LOWER_LIMIT.get() as i64) as i32,
			self.sensitivity.y.rhs_div_int(Self::ANGLE_PITCH_UPPER_LIMIT.get() as i64) as i32,
		);
		self.clamped_mouse_pos=unclamped_mouse_pos;
	}
	pub fn simulate_move_angles(&self,mouse_delta:glam::IVec2)->glam::Vec2 {
		let a=-self.sensitivity.mul_int((self.clamped_mouse_pos+mouse_delta).as_i64vec2());
		let ax=Angle32::wrap_from_i64(a.x);
		let ay=Angle32::clamp_from_i64(a.y)
		//clamp to actual vertical cam limit
		.clamp(Self::ANGLE_PITCH_LOWER_LIMIT,Self::ANGLE_PITCH_UPPER_LIMIT);
		return glam::vec2(ax.into(),ay.into());
	}
	#[inline]
	fn get_rotation(&self,mouse_pos:glam::IVec2)->Planar64Mat3{
		let a=-self.sensitivity.mul_int(mouse_pos.as_i64vec2());
		let ax=Angle32::wrap_from_i64(a.x);
		let ay=Angle32::clamp_from_i64(a.y)
		//clamp to actual vertical cam limit
		.clamp(Self::ANGLE_PITCH_LOWER_LIMIT,Self::ANGLE_PITCH_UPPER_LIMIT);
		Planar64Mat3::from_rotation_yx(ax,ay)
	}
	fn rotation(&self)->Planar64Mat3{
		self.get_rotation(self.clamped_mouse_pos)
	}
	fn simulate_move_rotation(&self,mouse_delta:glam::IVec2)->Planar64Mat3{
		self.get_rotation(self.clamped_mouse_pos+mouse_delta)
	}
	fn get_rotation_y(&self,mouse_pos_x:i32)->Planar64Mat3{
		let ax=-self.sensitivity.x.mul_int(mouse_pos_x as i64);
		Planar64Mat3::from_rotation_y(Angle32::wrap_from_i64(ax))
	}
	fn rotation_y(&self)->Planar64Mat3{
		self.get_rotation_y(self.clamped_mouse_pos.x)
	}
	fn simulate_move_rotation_y(&self,mouse_delta_x:i32)->Planar64Mat3{
		self.get_rotation_y(self.clamped_mouse_pos.x+mouse_delta_x)
	}
}

impl std::default::Default for PhysicsCamera{
	fn default()->Self{
		Self{
			sensitivity:Ratio64Vec2::ONE*200_000,
			clamped_mouse_pos:glam::IVec2::ZERO,
		}
	}
}
mod gameplay{
	use super::{gameplay_modes,HashSet,HashMap,ModelId};
	#[derive(Clone,Debug)]
	pub struct ModeState{
		mode_id:gameplay_modes::ModeId,
		stage_id:gameplay_modes::StageId,
		next_ordered_checkpoint_id:gameplay_modes::CheckpointId,//which OrderedCheckpoint model_id you must pass next (if 0 you haven't passed OrderedCheckpoint0)
		unordered_checkpoints:HashSet<ModelId>,
		jump_counts:HashMap<ModelId,u32>,//model_id -> jump count
	}
	impl ModeState{
		pub const fn get_mode_id(&self)->gameplay_modes::ModeId{
			self.mode_id
		}
		pub const fn get_stage_id(&self)->gameplay_modes::StageId{
			self.stage_id
		}
		pub const fn get_next_ordered_checkpoint_id(&self)->gameplay_modes::CheckpointId{
			self.next_ordered_checkpoint_id
		}
		pub fn get_jump_count(&self,model_id:ModelId)->Option<u32>{
			self.jump_counts.get(&model_id).copied()
		}
		pub const fn ordered_checkpoint_count(&self)->u32{
			self.next_ordered_checkpoint_id.get()
		}
		pub fn unordered_checkpoint_count(&self)->u32{
			self.unordered_checkpoints.len() as u32
		}
		pub fn set_mode_id(&mut self,mode_id:gameplay_modes::ModeId){
			self.clear();
			self.mode_id=mode_id;
		}
		pub fn set_stage_id(&mut self,stage_id:gameplay_modes::StageId){
			self.clear_checkpoints();
			self.stage_id=stage_id;
		}
		pub fn accumulate_ordered_checkpoint(&mut self,stage:&gameplay_modes::Stage,model_id:ModelId){
			if stage.is_next_ordered_checkpoint(self.get_next_ordered_checkpoint_id(),model_id){
				self.next_ordered_checkpoint_id=gameplay_modes::CheckpointId::new(self.next_ordered_checkpoint_id.get()+1);
			}
		}
		pub fn accumulate_unordered_checkpoint(&mut self,stage:&gameplay_modes::Stage,model_id:ModelId){
			if stage.is_unordered_checkpoint(model_id){
				self.unordered_checkpoints.insert(model_id);
			}
		}
		pub fn clear(&mut self){
			self.clear_jump_counts();
			self.clear_checkpoints();
		}
		pub fn clear_jump_counts(&mut self){
			self.jump_counts.clear();
		}
		pub fn clear_checkpoints(&mut self){
			self.next_ordered_checkpoint_id=gameplay_modes::CheckpointId::FIRST;
			self.unordered_checkpoints.clear();
		}
	}
	impl std::default::Default for ModeState{
		fn default()->Self{
			Self{
				mode_id:gameplay_modes::ModeId::MAIN,
				stage_id:gameplay_modes::StageId::FIRST,
				next_ordered_checkpoint_id:gameplay_modes::CheckpointId::FIRST,
				unordered_checkpoints:HashSet::new(),
				jump_counts:HashMap::new(),
			}
		}
	}
}
#[derive(Clone,Debug)]
struct WorldState{}

struct HitboxMesh{
	halfsize:Planar64Vec3,
	mesh:PhysicsMesh,
	transform:PhysicsMeshTransform,
}
impl HitboxMesh{
	fn new(mesh:PhysicsMesh,transform:integer::Planar64Affine3)->Self{
		//calculate extents
		let mut aabb=aabb::Aabb::default();
		let transform=PhysicsMeshTransform::new(transform);
		let transformed_mesh=TransformedMesh::new(mesh.complete_mesh_view(),&transform);
		for vert in transformed_mesh.verts(){
			aabb.grow(vert);
		}
		Self{
			halfsize:aabb.size()/2,
			mesh,
			transform,
		}
	}
	#[inline]
	fn transformed_mesh(&self)->TransformedMesh{
		TransformedMesh::new(self.mesh.complete_mesh_view(),&self.transform)
	}
}

trait StyleHelper{
	fn get_control(&self,control:Controls,controls:Controls)->bool;
	fn get_control_dir(&self,controls:Controls)->Planar64Vec3;
	fn get_y_control_dir(&self,camera:&PhysicsCamera,controls:Controls)->Planar64Vec3;
	fn get_propulsion_control_dir(&self,camera:&PhysicsCamera,controls:Controls)->Planar64Vec3;
	fn calculate_mesh(&self)->HitboxMesh;
}
impl StyleHelper for StyleModifiers{
	fn get_control(&self,control:Controls,controls:Controls)->bool{
		controls.intersection(self.controls_mask).contains(control)
	}

	fn get_control_dir(&self,controls:Controls)->Planar64Vec3{
		//don't get fancy just do it
		let mut control_dir:Planar64Vec3 = Planar64Vec3::ZERO;
		//Apply mask after held check so you can require non-allowed keys to be held for some reason
		let controls=controls.intersection(self.controls_mask);
		if controls.contains(Controls::MoveForward){
			control_dir+=Self::FORWARD_DIR;
		}
		if controls.contains(Controls::MoveBackward){
			control_dir-=Self::FORWARD_DIR;
		}
		if controls.contains(Controls::MoveLeft){
			control_dir-=Self::RIGHT_DIR;
		}
		if controls.contains(Controls::MoveRight){
			control_dir+=Self::RIGHT_DIR;
		}
		if controls.contains(Controls::MoveUp){
			control_dir+=Self::UP_DIR;
		}
		if controls.contains(Controls::MoveDown){
			control_dir-=Self::UP_DIR;
		}
		return control_dir
	}

	fn get_y_control_dir(&self,camera:&PhysicsCamera,controls:Controls)->Planar64Vec3{
		camera.rotation_y()*self.get_control_dir(controls)
	}

	fn get_propulsion_control_dir(&self,camera:&PhysicsCamera,controls:Controls)->Planar64Vec3{
		//don't interpolate this! discrete mouse movement, constant acceleration
		camera.rotation()*self.get_control_dir(controls)
	}
	fn calculate_mesh(&self)->HitboxMesh{
		let mesh=match self.hitbox.mesh{
			gameplay_style::HitboxMesh::Box=>PhysicsMesh::unit_cube(),
			gameplay_style::HitboxMesh::Cylinder=>PhysicsMesh::unit_cylinder(),
		};
		let transform=integer::Planar64Affine3::new(Planar64Mat3::from_diagonal(self.hitbox.halfsize),Planar64Vec3::ZERO);
		HitboxMesh::new(mesh,transform)
	}
}
#[derive(Clone,Debug)]
enum MoveState{
	Air,
	Walk(ContactMoveState),
	Ladder(ContactMoveState),
	Water,
	Fly,
}
impl MoveState{
	//call this after state.move_state is changed
	fn apply_enum(&self,body:&mut Body,touching:&TouchingState,models:&PhysicsModels,hitbox_mesh:&HitboxMesh,style:&StyleModifiers,camera:&PhysicsCamera,input_state:&InputState){
		match self{
			MoveState::Fly=>body.acceleration=Planar64Vec3::ZERO,
			MoveState::Air=>{
				//calculate base acceleration
				let a=touching.base_acceleration(models,style,camera,input_state);
				//set_acceleration clips according to contacts
				set_acceleration(body,touching,models,hitbox_mesh,a);
			},
			_=>(),
		}
	}
	//function to coerce &mut self into &self
	fn apply_to_body(&self,body:&mut Body,touching:&TouchingState,models:&PhysicsModels,hitbox_mesh:&HitboxMesh,style:&StyleModifiers,camera:&PhysicsCamera,input_state:&InputState){
		match self{
			MoveState::Air=>(),
			MoveState::Water=>(),
			MoveState::Fly=>{
				//set velocity according to current control state
				let v=style.get_propulsion_control_dir(camera,input_state.controls)*80;
				//set_velocity clips velocity according to current touching state
				set_velocity(body,touching,models,hitbox_mesh,v);
			},
			MoveState::Walk(walk_state)
			|MoveState::Ladder(walk_state)
			=>{
				//accelerate towards walk target or do nothing
				let a=walk_state.target.acceleration();
				set_acceleration(body,touching,models,hitbox_mesh,a);
			},
		}
	}
	/// changes the move state
	fn apply_input(&mut self,body:&Body,touching:&TouchingState,models:&PhysicsModels,hitbox_mesh:&HitboxMesh,style:&StyleModifiers,camera:&PhysicsCamera,input_state:&InputState){
		match self{
			MoveState::Fly
			|MoveState::Air
			|MoveState::Water=>(),
			MoveState::Walk(ContactMoveState{target,contact,jump_direction:_})=>{
				if let Some(walk_settings)=&style.walk{
					let (gravity,target_velocity)=ground_things(walk_settings,contact,touching,models,hitbox_mesh,style,camera,input_state);
					*target=TransientAcceleration::ground(walk_settings,body,gravity,target_velocity);
				}else{
					panic!("ContactMoveState exists in style which does not allow walking!");
				}
			},
			MoveState::Ladder(ContactMoveState{target,contact,jump_direction:_})=>{
				if let Some(ladder_settings)=&style.ladder{
					let (gravity,target_velocity)=ladder_things(ladder_settings,contact,touching,models,hitbox_mesh,style,camera,input_state);
					*target=TransientAcceleration::ladder(ladder_settings,body,gravity,target_velocity);
				}else{
					panic!("ContactMoveState exists in style which does not allow walking!");
				}
			},
		}
	}
	fn get_walk_state(&self)->Option<&ContactMoveState>{
		match self{
			MoveState::Walk(walk_state)
			|MoveState::Ladder(walk_state)
			=>Some(walk_state),
			MoveState::Air
			|MoveState::Water
			|MoveState::Fly
			=>None,
		}
	}
	fn next_move_instruction(&self,strafe:&Option<gameplay_style::StrafeSettings>,time:Time)->Option<TimedInstruction<PhysicsInternalInstruction>>{
		//check if you have a valid walk state and create an instruction
		match self{
			MoveState::Walk(walk_state)|MoveState::Ladder(walk_state)=>match &walk_state.target{
				&TransientAcceleration::Reachable{acceleration:_,time}=>Some(TimedInstruction{
					time,
					instruction:PhysicsInternalInstruction::ReachWalkTargetVelocity
				}),
				TransientAcceleration::Unreachable{acceleration:_}
				|TransientAcceleration::Reached
				=>None,
			}
			MoveState::Air=>strafe.as_ref().map(|strafe|{
				TimedInstruction{
					time:strafe.next_tick(time),
					//only poll the physics if there is a before and after mouse event
					instruction:PhysicsInternalInstruction::StrafeTick
				}
			}),
			MoveState::Water=>None,//TODO
			MoveState::Fly=>None,
		}
	}
}

#[derive(Clone,Default)]
pub struct PhysicsOutputState{
	body:Body,
	camera:PhysicsCamera,
	camera_offset:Planar64Vec3,
	mouse_pos:glam::IVec2,
}
impl PhysicsOutputState{
	pub fn extrapolate(&self,mouse:MouseState)->(glam::Vec3,glam::Vec2){
		((self.body.extrapolated_position(mouse.time)+self.camera_offset).into(),self.camera.simulate_move_angles(mouse.pos-self.mouse_pos))
	}
}

#[derive(Clone,Hash,Eq,PartialEq)]
enum PhysicsCollisionAttributes{
	Contact{//track whether you are contacting the object
		contacting:gameplay_attributes::ContactingAttributes,
		general:gameplay_attributes::GeneralAttributes,
	},
	Intersect{//track whether you are intersecting the object
		intersecting:gameplay_attributes::IntersectingAttributes,
		general:gameplay_attributes::GeneralAttributes,
	},
}
struct NonPhysicsError;
impl TryFrom<&gameplay_attributes::CollisionAttributes> for PhysicsCollisionAttributes{
	type Error=NonPhysicsError;
	fn try_from(value:&gameplay_attributes::CollisionAttributes)->Result<Self,Self::Error>{
		match value{
			gameplay_attributes::CollisionAttributes::Decoration=>Err(NonPhysicsError),
			gameplay_attributes::CollisionAttributes::Contact{contacting,general}=>Ok(Self::Contact{contacting:contacting.clone(),general:general.clone()}),
			gameplay_attributes::CollisionAttributes::Intersect{intersecting,general}=>Ok(Self::Intersect{intersecting:intersecting.clone(),general:general.clone()}),
		}
	}
}
#[derive(Clone,Copy,Hash,id::Id,Eq,PartialEq)]
struct PhysicsAttributesId(u32);
impl Into<CollisionAttributesId> for PhysicsAttributesId{
	fn into(self)->CollisionAttributesId{
		CollisionAttributesId::new(self.0)
	}
}
impl From<CollisionAttributesId> for PhysicsAttributesId{
	fn from(value:CollisionAttributesId)->Self{
		Self::new(value.get())
	}
}
//unique physics meshes indexed by this
#[derive(Debug,Default,Clone,Copy,Eq,Hash,PartialEq)]
struct ConvexMeshId{
	model_id:PhysicsModelId,
	submesh_id:PhysicsSubmeshId,
}
#[derive(Debug,Default,Clone,Copy,Hash,id::Id,Eq,PartialEq)]
struct PhysicsModelId(u32);
impl Into<ModelId> for PhysicsModelId{
	fn into(self)->ModelId{
		ModelId::new(self.0)
	}
}
impl From<ModelId> for PhysicsModelId{
	fn from(value:ModelId)->Self{
		Self::new(value.get())
	}
}
pub struct PhysicsModel{
	//A model is a thing that has a hitbox. can be represented by a list of TreyMesh-es
	//in this iteration, all it needs is extents.
	mesh_id:PhysicsMeshId,
	//put these up on the Model (data normalization)
	attr_id:PhysicsAttributesId,
	transform:PhysicsMeshTransform,
}

impl PhysicsModel{
	const fn new(mesh_id:PhysicsMeshId,attr_id:PhysicsAttributesId,transform:PhysicsMeshTransform)->Self{
		Self{
			mesh_id,
			attr_id,
			transform,
		}
	}
}

#[derive(Debug,Clone,Copy,Eq,Hash,PartialEq)]
pub struct ContactCollision{
	face_id:model_physics::MinkowskiFace,
	convex_mesh_id:ConvexMeshId,
}
#[derive(Debug,Clone,Eq,Hash,PartialEq)]
pub struct IntersectCollision{
	convex_mesh_id:ConvexMeshId,
}
#[derive(Debug,Clone,Eq,Hash,PartialEq)]
pub enum Collision{
	Contact(ContactCollision),
	Intersect(IntersectCollision),
}
impl Collision{
	const fn convex_mesh_id(&self)->ConvexMeshId{
		match self{
			&Collision::Contact(ContactCollision{convex_mesh_id,face_id:_})
			|&Collision::Intersect(IntersectCollision{convex_mesh_id})=>convex_mesh_id,
		}
	}
	const fn face_id(&self)->Option<model_physics::MinkowskiFace>{
		match self{
			&Collision::Contact(ContactCollision{convex_mesh_id:_,face_id})=>Some(face_id),
			&Collision::Intersect(IntersectCollision{convex_mesh_id:_})=>None,
		}
	}
}
#[derive(Clone,Debug,Default)]
struct TouchingState{
	contacts:HashSet::<ContactCollision>,
	intersects:HashSet::<IntersectCollision>,
}
impl TouchingState{
	fn clear(&mut self){
		self.contacts.clear();
		self.intersects.clear();
	}
	fn insert(&mut self,collision:Collision)->bool{
		match collision{
			Collision::Contact(collision)=>self.contacts.insert(collision),
			Collision::Intersect(collision)=>self.intersects.insert(collision),
		}
	}
	fn remove(&mut self,collision:&Collision)->bool{
		match collision{
			Collision::Contact(collision)=>self.contacts.remove(collision),
			Collision::Intersect(collision)=>self.intersects.remove(collision),
		}
	}
	fn base_acceleration(&self,models:&PhysicsModels,style:&StyleModifiers,camera:&PhysicsCamera,input_state:&InputState)->Planar64Vec3{
		let mut a=style.gravity;
		if let Some(rocket_settings)=&style.rocket{
			a+=rocket_settings.acceleration(style.get_propulsion_control_dir(camera,input_state.controls));
		}
		//add accelerators
		for contact in &self.contacts{
			match models.attr(contact.convex_mesh_id.model_id){
				PhysicsCollisionAttributes::Contact{contacting:_,general}=>{
					match &general.accelerator{
						Some(accelerator)=>a+=accelerator.acceleration,
						None=>(),
					}
				},
				_=>panic!("impossible touching state"),
			}
		}
		for intersect in &self.intersects{
			match models.attr(intersect.convex_mesh_id.model_id){
				PhysicsCollisionAttributes::Intersect{intersecting:_,general}=>{
					match &general.accelerator{
						Some(accelerator)=>a+=accelerator.acceleration,
						None=>(),
					}
				},
				_=>panic!("impossible touching state"),
			}
		}
		//TODO: add water
		a
	}
	fn constrain_velocity(&self,models:&PhysicsModels,hitbox_mesh:&HitboxMesh,velocity:&mut Planar64Vec3){
		//TODO: trey push solve
		for contact in &self.contacts{
			let n=contact_normal(models,hitbox_mesh,contact);
			let d=n.dot128(*velocity);
			if d<0{
				*velocity-=n*Planar64::raw(((d<<32)/n.dot128(n)) as i64);
			}
		}
	}
	fn constrain_acceleration(&self,models:&PhysicsModels,hitbox_mesh:&HitboxMesh,acceleration:&mut Planar64Vec3){
		//TODO: trey push solve
		for contact in &self.contacts{
			let n=contact_normal(models,hitbox_mesh,contact);
			let d=n.dot128(*acceleration);
			if d<0{
				*acceleration-=n*Planar64::raw(((d<<32)/n.dot128(n)) as i64);
			}
		}
	}
	fn predict_collision_end(&self,collector:&mut instruction::InstructionCollector<PhysicsInternalInstruction>,models:&PhysicsModels,hitbox_mesh:&HitboxMesh,body:&Body,time:Time){
		let relative_body=VirtualBody::relative(&Body::default(),body).body(time);
		for contact in &self.contacts{
			//detect face slide off
			let model_mesh=models.mesh(contact.convex_mesh_id);
			let minkowski=model_physics::MinkowskiMesh::minkowski_sum(model_mesh,hitbox_mesh.transformed_mesh());
			collector.collect(minkowski.predict_collision_face_out(&relative_body,collector.time(),contact.face_id).map(|(_face,time)|{
				TimedInstruction{
					time,
					instruction:PhysicsInternalInstruction::CollisionEnd(
						Collision::Contact(ContactCollision{convex_mesh_id:contact.convex_mesh_id,face_id:contact.face_id})
					),
				}
			}));
		}
		for intersect in &self.intersects{
			//detect model collision in reverse
			let model_mesh=models.mesh(intersect.convex_mesh_id);
			let minkowski=model_physics::MinkowskiMesh::minkowski_sum(model_mesh,hitbox_mesh.transformed_mesh());
			collector.collect(minkowski.predict_collision_out(&relative_body,collector.time()).map(|(_face,time)|{
				TimedInstruction{
					time,
					instruction:PhysicsInternalInstruction::CollisionEnd(
						Collision::Intersect(IntersectCollision{convex_mesh_id:intersect.convex_mesh_id})
					),
				}
			}));
		}
	}
}

impl Body{
	pub const fn new(position:Planar64Vec3,velocity:Planar64Vec3,acceleration:Planar64Vec3,time:Time)->Self{
		Self{
			position,
			velocity,
			acceleration,
			time,
		}
	}
	pub fn extrapolated_position(&self,time:Time)->Planar64Vec3{
		let dt=time-self.time;
		self.position+self.velocity*dt+self.acceleration*(dt*dt/2)
	}
	pub fn extrapolated_velocity(&self,time:Time)->Planar64Vec3{
		let dt=time-self.time;
		self.velocity+self.acceleration*dt
	}
	pub fn advance_time(&mut self,time:Time){
		self.position=self.extrapolated_position(time);
		self.velocity=self.extrapolated_velocity(time);
		self.time=time;
	}
	pub fn infinity_dir(&self)->Option<Planar64Vec3>{
		if self.velocity==Planar64Vec3::ZERO{
			if self.acceleration==Planar64Vec3::ZERO{
				None
			}else{
				Some(self.acceleration)
			}
		}else{
			Some(self.velocity)
		}
	}
	pub fn grow_aabb(&self,aabb:&mut aabb::Aabb,t0:Time,t1:Time){
		aabb.grow(self.extrapolated_position(t0));
		aabb.grow(self.extrapolated_position(t1));
		//v+a*t==0
		//goober code
		if self.acceleration.x()!=Planar64::ZERO{
			let t=Time::from(-self.velocity.x()/self.acceleration.x());
			if t0<t&&t<t1{
				aabb.grow(self.extrapolated_position(t));
			}
		}
		if self.acceleration.y()!=Planar64::ZERO{
			let t=Time::from(-self.velocity.y()/self.acceleration.y());
			if t0<t&&t<t1{
				aabb.grow(self.extrapolated_position(t));
			}
		}
		if self.acceleration.z()!=Planar64::ZERO{
			let t=Time::from(-self.velocity.z()/self.acceleration.z());
			if t0<t&&t<t1{
				aabb.grow(self.extrapolated_position(t));
			}
		}
	}

}
impl std::fmt::Display for Body{
	fn fmt(&self,f:&mut std::fmt::Formatter<'_>)->std::fmt::Result{
		write!(f,"p({}) v({}) a({}) t({})",self.position,self.velocity,self.acceleration,self.time)
	}
}

struct VirtualBody<'a>{
	body0:&'a Body,
	body1:&'a Body,
}
impl VirtualBody<'_>{
	const fn relative<'a>(body0:&'a Body,body1:&'a Body)->VirtualBody<'a>{
		//(p0,v0,a0,t0)
		//(p1,v1,a1,t1)
		VirtualBody{
			body0,
			body1,
		}
	}
	fn extrapolated_position(&self,time:Time)->Planar64Vec3{
		self.body1.extrapolated_position(time)-self.body0.extrapolated_position(time)
	}
	fn extrapolated_velocity(&self,time:Time)->Planar64Vec3{
		self.body1.extrapolated_velocity(time)-self.body0.extrapolated_velocity(time)
	}
	fn acceleration(&self)->Planar64Vec3{
		self.body1.acceleration-self.body0.acceleration
	}
	fn body(&self,time:Time)->Body{
		Body::new(self.extrapolated_position(time),self.extrapolated_velocity(time),self.acceleration(),time)
	}
}

#[derive(Clone,Debug)]
pub struct PhysicsState{
	time:Time,
	body:Body,
	world:WorldState,//currently there is only one state the world can be in
	touching:TouchingState,
	//camera must exist in state because wormholes modify the camera, also camera punch
	camera:PhysicsCamera,
	//input_state
	input_state:InputState,
	//style
	style:StyleModifiers,//mode style with custom style updates applied
	//gameplay_state
	mode_state:ModeState,
	move_state:MoveState,
	//run is non optional: when you spawn in a run is created
	//the run cannot be finished unless you start it by visiting
	//a start zone.  If you change mode, a new run is created.
	run:run::Run,
}
//random collection of contextual data that doesn't belong in PhysicsState
pub struct PhysicsData{
	//permanent map data
	bvh:bvh::BvhNode<ConvexMeshId>,
	//transient map/environment data (open world loads/unloads parts of this data)
	models:PhysicsModels,
	//semi-transient data
	modes:gameplay_modes::Modes,
	//cached calculations
	hitbox_mesh:HitboxMesh,
}
impl Default for PhysicsState{
	fn default()->Self{
 		Self{
			body:Body::new(Planar64Vec3::int(0,50,0),Planar64Vec3::int(0,0,0),Planar64Vec3::int(0,-100,0),Time::ZERO),
			time:Time::ZERO,
			style:StyleModifiers::default(),
			touching:TouchingState::default(),
			move_state:MoveState::Air,
			camera:PhysicsCamera::default(),
			input_state:InputState::default(),
			world:WorldState{},
			mode_state:ModeState::default(),
			run:run::Run::new(),
		}
	}
}
impl Default for PhysicsData{
	fn default()->Self{
 		Self{
			bvh:bvh::BvhNode::default(),
			models:Default::default(),
			modes:Default::default(),
			hitbox_mesh:StyleModifiers::default().calculate_mesh(),
		}
	}
}

impl PhysicsState{
	fn clear(&mut self){
		self.touching.clear();
	}
	fn reset_to_default(&mut self){
		let mut new_state=Self::default();
		new_state.camera.sensitivity=self.camera.sensitivity;
		*self=new_state;
	}
	fn next_move_instruction(&self)->Option<TimedInstruction<PhysicsInternalInstruction>>{
		self.move_state.next_move_instruction(&self.style.strafe,self.time)
	}
	//lmao idk this is convenient
	fn apply_enum_and_input_and_body(&mut self,data:&PhysicsData){
		self.move_state.apply_enum(&mut self.body,&self.touching,&data.models,&data.hitbox_mesh,&self.style,&self.camera,&self.input_state);
		self.move_state.apply_input(&self.body,&self.touching,&data.models,&data.hitbox_mesh,&self.style,&self.camera,&self.input_state);
		self.move_state.apply_to_body(&mut self.body,&self.touching,&data.models,&data.hitbox_mesh,&self.style,&self.camera,&self.input_state);
	}
	fn apply_enum_and_body(&mut self,data:&PhysicsData){
		self.move_state.apply_enum(&mut self.body,&self.touching,&data.models,&data.hitbox_mesh,&self.style,&self.camera,&self.input_state);
		self.move_state.apply_to_body(&mut self.body,&self.touching,&data.models,&data.hitbox_mesh,&self.style,&self.camera,&self.input_state);
	}
	fn apply_input_and_body(&mut self,data:&PhysicsData){
		self.move_state.apply_input(&self.body,&self.touching,&data.models,&data.hitbox_mesh,&self.style,&self.camera,&self.input_state);
		self.move_state.apply_to_body(&mut self.body,&self.touching,&data.models,&data.hitbox_mesh,&self.style,&self.camera,&self.input_state);
	}
	fn set_move_state(&mut self,data:&PhysicsData,move_state:MoveState){
		self.move_state=move_state;
		//this function call reads the above state that was just set
		self.apply_enum_and_body(data);
	}
	fn cull_velocity(&mut self,data:&PhysicsData,velocity:Planar64Vec3){
		//TODO: be more precise about contacts
		if set_velocity_cull(&mut self.body,&mut self.touching,&data.models,&data.hitbox_mesh,velocity){
			//TODO do better
			match self.move_state.get_walk_state(){
				//did you stop touching the thing you were walking on?
				Some(walk_state)=>if !self.touching.contacts.contains(&walk_state.contact){
					self.set_move_state(data,MoveState::Air);
				},
				None=>self.apply_enum_and_body(data),
			}
		}
	}

	//state mutated on collision:
	//Accelerator
	//stair step-up

	//state mutated on instruction
	//change fly acceleration (fly_sustain)
	//change fly velocity

	//generic event emmiters
	//PlatformStandTime
	//walk/swim/air/ladder sounds
	//VState?

	//falling under the map
	// fn next_respawn_instruction(&self) -> Option<TimedInstruction<PhysicsInstruction>> {
	// 	if self.body.position<self.world.min_y {
	// 		return Some(TimedInstruction{
	// 			time:self.time,
	// 			instruction:PhysicsInstruction::Trigger(None)
	// 		});
	// 	}
	// }

	// fn next_water_instruction(&self) -> Option<TimedInstruction<PhysicsInstruction>> {
	// 	return Some(TimedInstruction{
	// 		time:(self.time*self.strafe_tick_num/self.strafe_tick_den+1)*self.strafe_tick_den/self.strafe_tick_num,
	// 		//only poll the physics if there is a before and after mouse event
	// 		instruction:PhysicsInstruction::Water
	// 	});
	// }
}

#[derive(Default)]
pub struct PhysicsContext{
	state:PhysicsState,//this captures the entire state of the physics.
	data:PhysicsData,//data currently loaded into memory which is needded for physics to run, but is not part of the state.
}
//the physics consumes the generic PhysicsInstruction, but can only emit the more narrow PhysicsInternalInstruction
impl instruction::InstructionConsumer<PhysicsInstruction> for PhysicsContext{
	fn process_instruction(&mut self,ins:TimedInstruction<PhysicsInstruction>){
		atomic_state_update(&mut self.state,&self.data,ins)
	}
}
impl instruction::InstructionEmitter<PhysicsInternalInstruction> for PhysicsContext{
	//this little next instruction function can cache its return value and invalidate the cached value by watching the State.
	fn next_instruction(&self,time_limit:Time)->Option<TimedInstruction<PhysicsInternalInstruction>>{
		next_instruction_internal(&self.state,&self.data,time_limit)
	}
}
impl PhysicsContext{
	pub fn clear(&mut self){
		self.state.clear();
	}
	//TODO: remove non-standard interfaces to process_instruction
	pub fn load_user_settings(&mut self,user_settings:&crate::settings::UserSettings){
		self.run_input_instruction(TimedInstruction{
			time:self.state.time,
			instruction:PhysicsInputInstruction::SetSensitivity(user_settings.calculate_sensitivity()),
		});
	}
	pub fn restart(&mut self){
		self.run_input_instruction(TimedInstruction{
			time:self.state.time,
			instruction:PhysicsInputInstruction::Restart,
		});
	}
	pub fn spawn(&mut self){
		self.run_input_instruction(TimedInstruction{
			time:self.state.time,
			instruction:PhysicsInputInstruction::Spawn(gameplay_modes::ModeId::MAIN,StageId::FIRST),
		});
	}
	pub const fn output(&self)->PhysicsOutputState{
		PhysicsOutputState{
			body:self.state.body,
			camera:self.state.camera,
			camera_offset:self.state.style.camera_offset,
			mouse_pos:self.state.input_state.mouse.pos,
		}
	}
	pub const fn get_next_mouse(&self)->&MouseState{
		self.state.input_state.get_next_mouse()
	}
	pub fn generate_models(&mut self,map:&map::CompleteMap){
		self.data.modes=map.modes.clone();
		for mode in &mut self.data.modes.modes{
			mode.denormalize_data();
		}
		let mut used_attributes=Vec::new();
		let mut physics_attr_id_from_model_attr_id=HashMap::<CollisionAttributesId,PhysicsAttributesId>::new();
		let mut used_meshes=Vec::new();
		let mut physics_mesh_id_from_model_mesh_id=HashMap::<MeshId,PhysicsMeshId>::new();
		self.data.models.models=map.models.iter().enumerate().filter_map(|(model_id,model)|{
			//TODO: use .entry().or_insert_with(||{
			let attr_id=if let Some(&attr_id)=physics_attr_id_from_model_attr_id.get(&model.attributes){
				attr_id
			}else{
				//check if it's real
				match map.attributes.get(model.attributes.get() as usize).and_then(|m_attr|{
					PhysicsCollisionAttributes::try_from(m_attr).map_or(None,|p_attr|{
						let attr_id=PhysicsAttributesId::new(used_attributes.len() as u32);
						used_attributes.push(p_attr);
						physics_attr_id_from_model_attr_id.insert(model.attributes,attr_id);
						Some(attr_id)
					})
				}){
					Some(attr_id)=>attr_id,
					None=>return None,
				}
			};
			let mesh_id=if let Some(&mesh_id)=physics_mesh_id_from_model_mesh_id.get(&model.mesh){
				mesh_id
			}else{
				match map.meshes.get(model.mesh.get() as usize).and_then(|mesh|{
					match PhysicsMesh::try_from(mesh){
						Ok(physics_mesh)=>{
							let mesh_id=PhysicsMeshId::new(used_meshes.len() as u32);
							used_meshes.push(physics_mesh);
							physics_mesh_id_from_model_mesh_id.insert(model.mesh,mesh_id);
							Some(mesh_id)
						},
						Err(e)=>{
							println!("Failed to build PhysicsMesh: {e}");
							None
						}
					}
				}){
					Some(mesh_id)=>mesh_id,
					None=>return None,
				}
			};
			Some((PhysicsModelId::new(model_id as u32),PhysicsModel::new(mesh_id,attr_id,PhysicsMeshTransform::new(model.transform))))
		}).collect();
		self.data.models.attributes=used_attributes.into_iter().enumerate().map(|(attr_id,attr)|(PhysicsAttributesId::new(attr_id as u32),attr)).collect();
		self.data.models.meshes=used_meshes.into_iter().enumerate().map(|(mesh_id,mesh)|(PhysicsMeshId::new(mesh_id as u32),mesh)).collect();
		let convex_mesh_aabb_list=self.data.models.models.iter()
		.flat_map(|(&model_id,model)|{
			self.data.models.meshes[&model.mesh_id].submesh_views()
			.enumerate().map(move|(submesh_id,view)|{
				let mut aabb=aabb::Aabb::default();
				let transformed_mesh=TransformedMesh::new(view,&model.transform);
				for v in transformed_mesh.verts(){
					aabb.grow(v);
				}
				(ConvexMeshId{
					model_id,
					submesh_id:PhysicsSubmeshId::new(submesh_id as u32),
				},aabb)
			})
		}).collect();
		self.data.bvh=bvh::generate_bvh(convex_mesh_aabb_list);
		println!("Physics Objects: {}",self.data.models.models.len());
	}

	//tickless gaming
	fn run_internal_exhaustive(&mut self,time_limit:Time){
		//prepare is ommitted - everything is done via instructions.
		while let Some(instruction)=self.next_instruction(time_limit){//collect
			//process
			self.process_instruction(TimedInstruction{
				time:instruction.time,
				instruction:PhysicsInstruction::Internal(instruction.instruction),
			});
			//write hash lol
		}
	}
	pub fn run_input_instruction(&mut self,instruction:TimedInstruction<PhysicsInputInstruction>){
		self.run_internal_exhaustive(instruction.time);
		self.process_instruction(TimedInstruction{
			time:instruction.time,
			instruction:PhysicsInstruction::Input(instruction.instruction),
		});
	}
}

	//this is the one who asks
	fn next_instruction_internal(state:&PhysicsState,data:&PhysicsData,time_limit:Time)->Option<TimedInstruction<PhysicsInternalInstruction>>{
		//JUST POLLING!!! NO MUTATION
		let mut collector = instruction::InstructionCollector::new(time_limit);

		collector.collect(state.next_move_instruction());

		//check for collision ends
		state.touching.predict_collision_end(&mut collector,&data.models,&data.hitbox_mesh,&state.body,state.time);
		//check for collision starts
		let mut aabb=aabb::Aabb::default();
		state.body.grow_aabb(&mut aabb,state.time,collector.time());
		aabb.inflate(data.hitbox_mesh.halfsize);
		//common body
		let relative_body=VirtualBody::relative(&Body::default(),&state.body).body(state.time);
		data.bvh.the_tester(&aabb,&mut |&convex_mesh_id|{
			//no checks are needed because of the time limits.
			let model_mesh=data.models.mesh(convex_mesh_id);
			let minkowski=model_physics::MinkowskiMesh::minkowski_sum(model_mesh,data.hitbox_mesh.transformed_mesh());
			collector.collect(minkowski.predict_collision_in(&relative_body,collector.time())
				//temp (?) code to avoid collision loops
				.map_or(None,|(face,time)|if time==state.time{None}else{Some((face,time))})
				.map(|(face,time)|{
				TimedInstruction{time,instruction:PhysicsInternalInstruction::CollisionStart(match data.models.attr(convex_mesh_id.model_id){
					PhysicsCollisionAttributes::Contact{contacting:_,general:_}=>Collision::Contact(ContactCollision{convex_mesh_id,face_id:face}),
					PhysicsCollisionAttributes::Intersect{intersecting:_,general:_}=>Collision::Intersect(IntersectCollision{convex_mesh_id}),
				})}
			}));
		});
		collector.instruction()
	}


fn contact_normal(models:&PhysicsModels,hitbox_mesh:&HitboxMesh,contact:&ContactCollision)->Planar64Vec3{
	let model_mesh=models.mesh(contact.convex_mesh_id);
	let minkowski=model_physics::MinkowskiMesh::minkowski_sum(model_mesh,hitbox_mesh.transformed_mesh());
	minkowski.face_nd(contact.face_id).0
}

fn set_position(body:&mut Body,touching:&mut TouchingState,point:Planar64Vec3)->Planar64Vec3{
	//test intersections at new position
	//hovering above the surface 0 units is not intersecting.  you will fall into it just fine
	body.position=point;
	//manual clear //for c in contacts{process_instruction(CollisionEnd(c))}
	touching.clear();
	//TODO: calculate contacts and determine the actual state
	//touching.recalculate(body);
	point
}
fn set_velocity_cull(body:&mut Body,touching:&mut TouchingState,models:&PhysicsModels,hitbox_mesh:&HitboxMesh,v:Planar64Vec3)->bool{
	//This is not correct but is better than what I have
	let mut culled=false;
	touching.contacts.retain(|contact|{
		let n=contact_normal(models,hitbox_mesh,contact);
		let r=n.dot(v)<=Planar64::ZERO;
		if !r{
			culled=true;
			println!("set_velocity_cull contact={:?}",contact);
		}
		r
	});
	set_velocity(body,touching,models,hitbox_mesh,v);
	culled
}
fn set_velocity(body:&mut Body,touching:&TouchingState,models:&PhysicsModels,hitbox_mesh:&HitboxMesh,mut v:Planar64Vec3){
	touching.constrain_velocity(models,hitbox_mesh,&mut v);
	body.velocity=v;
}
fn set_acceleration_cull(body:&mut Body,touching:&mut TouchingState,models:&PhysicsModels,hitbox_mesh:&HitboxMesh,a:Planar64Vec3)->bool{
	//This is not correct but is better than what I have
	let mut culled=false;
	touching.contacts.retain(|contact|{
		let n=contact_normal(models,hitbox_mesh,contact);
		let r=n.dot(a)<=Planar64::ZERO;
		if !r{
			culled=true;
			println!("set_acceleration_cull contact={:?}",contact);
		}
		r
	});
	set_acceleration(body,touching,models,hitbox_mesh,a);
	culled
}
fn set_acceleration(body:&mut Body,touching:&TouchingState,models:&PhysicsModels,hitbox_mesh:&HitboxMesh,mut a:Planar64Vec3){
	touching.constrain_acceleration(models,hitbox_mesh,&mut a);
	body.acceleration=a;
}

fn teleport(body:&mut Body,touching:&mut TouchingState,models:&PhysicsModels,style:&StyleModifiers,hitbox_mesh:&HitboxMesh,point:Planar64Vec3)->MoveState{
	set_position(body,touching,point);
	set_acceleration(body,touching,models,hitbox_mesh,style.gravity);
	MoveState::Air
}
fn teleport_to_spawn(body:&mut Body,touching:&mut TouchingState,style:&StyleModifiers,hitbox_mesh:&HitboxMesh,mode:&gameplay_modes::Mode,models:&PhysicsModels,stage_id:gameplay_modes::StageId)->Option<MoveState>{
	let model=models.model(mode.get_spawn_model_id(stage_id)?.into());
	let point=model.transform.vertex.transform_point3(Planar64Vec3::Y)+Planar64Vec3::Y*(style.hitbox.halfsize.y()+Planar64::ONE/16);
	Some(teleport(body,touching,models,style,hitbox_mesh,point))
}

fn run_teleport_behaviour(wormhole:&Option<gameplay_attributes::Wormhole>,models:&PhysicsModels,mode:&gameplay_modes::Mode,style:&StyleModifiers,hitbox_mesh:&HitboxMesh,mode_state:&mut ModeState,touching:&mut TouchingState,body:&mut Body,convex_mesh_id:ConvexMeshId)->Option<MoveState>{
	//TODO: jump count and checkpoints are always reset on teleport.
	//Map makers are expected to use tools to prevent
	//multi-boosting on JumpLimit boosters such as spawning into a SetVelocity
	if let Some(stage_element)=mode.get_element(convex_mesh_id.model_id.into()){
		if let Some(stage)=mode.get_stage(stage_element.stage_id()){
			if mode_state.get_stage_id()<stage_element.stage_id(){
				//checkpoint check
				//check if current stage is complete
				if let Some(current_stage)=mode.get_stage(mode_state.get_stage_id()){
					if !current_stage.is_complete(mode_state.ordered_checkpoint_count(),mode_state.unordered_checkpoint_count()){
						//do the stage checkpoints have to be reset?
						return teleport_to_spawn(body,touching,style,hitbox_mesh,mode,models,mode_state.get_stage_id());
					}
				}
				//check if all between stages have no checkpoints required to pass them
				for stage_id in mode_state.get_stage_id().get()+1..stage_element.stage_id().get(){
					let stage_id=StageId::new(stage_id);
					//check if none of the between stages has checkpoints, if they do teleport back to that stage
					if !mode.get_stage(stage_id)?.is_empty(){
						mode_state.set_stage_id(stage_id);
						return teleport_to_spawn(body,touching,style,hitbox_mesh,mode,models,stage_id);
					}
				}
				//notably you do not get teleported for touching ordered checkpoints in the wrong order within the same stage.
				mode_state.set_stage_id(stage_element.stage_id());
			}else if stage_element.force(){
				//forced stage_element will set the stage_id even if the stage has already been passed
				mode_state.set_stage_id(stage_element.stage_id());
			}
			match stage_element.behaviour(){
				gameplay_modes::StageElementBehaviour::SpawnAt=>(),
				gameplay_modes::StageElementBehaviour::Trigger
				|gameplay_modes::StageElementBehaviour::Teleport=>{
					//I guess this is correct behaviour when trying to teleport to a non-existent spawn but it's still weird
					return teleport_to_spawn(body,touching,style,hitbox_mesh,mode,models,mode_state.get_stage_id());
				},
				gameplay_modes::StageElementBehaviour::Platform=>(),
				gameplay_modes::StageElementBehaviour::Check=>(),//this is to run the checkpoint check behaviour without any other side effects
				gameplay_modes::StageElementBehaviour::Checkpoint=>{
					//each of these checks if the model is actually a valid respective checkpoint object
					//accumulate sequential ordered checkpoints
					mode_state.accumulate_ordered_checkpoint(&stage,convex_mesh_id.model_id.into());
					//insert model id in accumulated unordered checkpoints
					mode_state.accumulate_unordered_checkpoint(&stage,convex_mesh_id.model_id.into());
				},
			}
		}
	}
	match wormhole{
		&Some(gameplay_attributes::Wormhole{destination_model})=>{
			let origin_model=models.model(convex_mesh_id.model_id);
			let destination_model=models.model(destination_model.into());
			//ignore the transform for now
			Some(teleport(body,touching,models,style,hitbox_mesh,body.position-origin_model.transform.vertex.translation+destination_model.transform.vertex.translation))
		}
		None=>None,
	}
}

fn atomic_internal_instruction(state:&mut PhysicsState,data:&PhysicsData,ins:TimedInstruction<PhysicsInternalInstruction>){
	let should_advance_body=match ins.instruction{
		PhysicsInternalInstruction::CollisionStart(_)
		|PhysicsInternalInstruction::CollisionEnd(_)
		|PhysicsInternalInstruction::StrafeTick
		|PhysicsInternalInstruction::ReachWalkTargetVelocity=>true,
	};
	if should_advance_body{
		state.body.advance_time(state.time);
	}
		match ins.instruction{
			PhysicsInternalInstruction::CollisionStart(collision)=>{
				let convex_mesh_id=collision.convex_mesh_id();
				match (data.models.attr(convex_mesh_id.model_id),&collision){
					(PhysicsCollisionAttributes::Contact{contacting,general},&Collision::Contact(contact))=>{
						let incident_velocity=state.body.velocity;
						//add to touching
						state.touching.insert(collision);
						//clip v
						set_velocity(&mut state.body,&state.touching,&data.models,&data.hitbox_mesh,incident_velocity);
						match &contacting.contact_behaviour{
							Some(gameplay_attributes::ContactingBehaviour::Surf)=>println!("I'm surfing!"),
							Some(gameplay_attributes::ContactingBehaviour::Cling)=>println!("Unimplemented!"),
							&Some(gameplay_attributes::ContactingBehaviour::Elastic(elasticity))=>{
								let reflected_velocity=state.body.velocity+(state.body.velocity-incident_velocity)*Planar64::raw(elasticity as i64+1);
								set_velocity(&mut state.body,&state.touching,&data.models,&data.hitbox_mesh,reflected_velocity);
							},
							Some(gameplay_attributes::ContactingBehaviour::Ladder(contacting_ladder))=>
							if let Some(ladder_settings)=&state.style.ladder{
								if contacting_ladder.sticky{
									//kill v
									//actually you could do this with a booster attribute :thinking:
									//it's a little bit different because maybe you want to chain ladders together
									set_velocity(&mut state.body,&state.touching,&data.models,&data.hitbox_mesh,Planar64Vec3::ZERO);//model.velocity
								}
								//ladder walkstate
								let (gravity,target_velocity)=ladder_things(ladder_settings,&contact,&state.touching,&data.models,&data.hitbox_mesh,&state.style,&state.camera,&state.input_state);
								let walk_state=ContactMoveState::ladder(ladder_settings,&state.body,gravity,target_velocity,contact);
								state.set_move_state(data,MoveState::Ladder(walk_state));
							},
							Some(gameplay_attributes::ContactingBehaviour::NoJump)=>todo!("nyi"),
							None=>if let Some(walk_settings)=&state.style.walk{
								if walk_settings.is_slope_walkable(contact_normal(&data.models,&data.hitbox_mesh,&contact),Planar64Vec3::Y){
									//ground
									let (gravity,target_velocity)=ground_things(walk_settings,&contact,&state.touching,&data.models,&data.hitbox_mesh,&state.style,&state.camera,&state.input_state);
									let walk_state=ContactMoveState::ground(walk_settings,&state.body,gravity,target_velocity,contact);
									state.set_move_state(data,MoveState::Walk(walk_state));
								}
							},
						}
						//I love making functions with 10 arguments to dodge the borrow checker
						if let Some(mode)=data.modes.get_mode(state.mode_state.get_mode_id()){
							run_teleport_behaviour(&general.wormhole,&data.models,mode,&state.style,&data.hitbox_mesh,&mut state.mode_state,&mut state.touching,&mut state.body,convex_mesh_id);
						}
						match &general.booster{
							Some(booster)=>{
								//DELETE THIS when boosters get converted to height machines
								match booster{
									//&gameplay_attributes::Booster::Affine(transform)=>v=transform.transform_point3(v),
									&gameplay_attributes::Booster::Velocity(velocity)=>{
										let boosted_velocity=state.body.velocity+velocity;
										//fall through boosters
										state.cull_velocity(data,boosted_velocity);
									},
									&gameplay_attributes::Booster::Energy{direction: _,energy: _}=>todo!(),
								}
							},
							None=>(),
						}
						if state.style.get_control(Controls::Jump,state.input_state.controls){
							if let (Some(jump_settings),Some(walk_state))=(&state.style.jump,state.move_state.get_walk_state()){
								let jump_dir=walk_state.jump_direction.direction(&data.models,&data.hitbox_mesh,&walk_state.contact);
								let jumped_velocity=jump_settings.jumped_velocity(&state.style,jump_dir,state.body.velocity);
								state.cull_velocity(data,jumped_velocity);
							}
						}
						match &general.trajectory{
							Some(trajectory)=>{
								match trajectory{
									gameplay_attributes::SetTrajectory::AirTime(_)=>todo!(),
									gameplay_attributes::SetTrajectory::Height(_)=>todo!(),
									gameplay_attributes::SetTrajectory::TargetPointTime { target_point: _, time: _ }=>todo!(),
									gameplay_attributes::SetTrajectory::TargetPointSpeed { target_point: _, speed: _, trajectory_choice: _ }=>todo!(),
									&gameplay_attributes::SetTrajectory::Velocity(velocity)=>{
										state.cull_velocity(data,velocity);
									},
									gameplay_attributes::SetTrajectory::DotVelocity { direction: _, dot: _ }=>todo!(),
								}
							},
							None=>(),
						}
						//doing enum to set the acceleration when surfing
						//doing input_and_body to refresh the walk state if you hit a wall while accelerating
						state.apply_enum_and_input_and_body(data);
					},
					(PhysicsCollisionAttributes::Intersect{intersecting:_,general},Collision::Intersect(_intersect))=>{
						//I think that setting the velocity to 0 was preventing surface contacts from entering an infinite loop
						state.touching.insert(collision);
						if let Some(mode)=data.modes.get_mode(state.mode_state.get_mode_id()){
							let zone=mode.get_zone(convex_mesh_id.model_id.into());
							match zone{
								Some(gameplay_modes::Zone::Start)=>{
									println!("@@@@ Starting new run!");
									state.run=run::Run::new();
								},
								Some(gameplay_modes::Zone::Finish)=>{
									match state.run.finish(state.time){
										Ok(())=>println!("@@@@ Finished run time={}",state.run.time(state.time)),
										Err(e)=>println!("@@@@ Run Finish error:{e:?}"),
									}
								},
								Some(gameplay_modes::Zone::Anticheat)=>state.run.flag(run::FlagReason::Anticheat),
								None=>(),
							}
							run_teleport_behaviour(&general.wormhole,&data.models,mode,&state.style,&data.hitbox_mesh,&mut state.mode_state,&mut state.touching,&mut state.body,convex_mesh_id);
						}
					},
					_=>panic!("invalid pair"),
				}
			},
			PhysicsInternalInstruction::CollisionEnd(collision)=>{
				match (data.models.attr(collision.convex_mesh_id().model_id),&collision){
					(PhysicsCollisionAttributes::Contact{contacting:_,general:_},&Collision::Contact(contact))=>{
						state.touching.remove(&collision);//remove contact before calling contact_constrain_acceleration
						//check ground
						//TODO do better
						//this is inner code from state.cull_velocity
						match state.move_state.get_walk_state(){
							//did you stop touching the thing you were walking on?
							Some(walk_state)=>if walk_state.contact==contact{
								state.set_move_state(data,MoveState::Air);
							},
							None=>state.apply_enum_and_body(data),
						}
					},
					(PhysicsCollisionAttributes::Intersect{intersecting: _,general:_},Collision::Intersect(_))=>{
						state.touching.remove(&collision);
						if let Some(mode)=data.modes.get_mode(state.mode_state.get_mode_id()){
							let zone=mode.get_zone(collision.convex_mesh_id().model_id.into());
							match zone{
								Some(gameplay_modes::Zone::Start)=>{
									match state.run.start(state.time){
										Ok(())=>println!("@@@@ Started run"),
										Err(e)=>println!("@@@@ Run Start error:{e:?}"),
									}
								},
								_=>(),
							}
						}
					},
					_=>panic!("invalid pair"),
				}
			},
			PhysicsInternalInstruction::StrafeTick=>{
				//TODO make this less huge
				if let Some(strafe_settings)=&state.style.strafe{
					let controls=state.input_state.controls;
					if strafe_settings.activates(controls){
						let masked_controls=strafe_settings.mask(controls);
						let control_dir=state.style.get_control_dir(masked_controls);
						if control_dir!=Planar64Vec3::ZERO{
							let camera_mat=state.camera.simulate_move_rotation_y(state.input_state.lerp_delta(state.time).x);
							if let Some(ticked_velocity)=strafe_settings.tick_velocity(state.body.velocity,(camera_mat*control_dir).with_length(Planar64::ONE)){
								//this is wrong but will work ig
								//need to note which push planes activate in push solve and keep those
								state.cull_velocity(data,ticked_velocity);
							}
						}
					}
				}
			}
			PhysicsInternalInstruction::ReachWalkTargetVelocity=>{
				match &mut state.move_state{
					MoveState::Air
					|MoveState::Water
					|MoveState::Fly
					=>println!("ReachWalkTargetVelocity fired for non-walking MoveState"),
					MoveState::Walk(walk_state)|MoveState::Ladder(walk_state)=>{
						match &walk_state.target{
							//you are not supposed to reach a walk target which is already reached!
							TransientAcceleration::Reached=>unreachable!(),
							TransientAcceleration::Reachable{acceleration:_,time:_}=>{
								//velocity is already handled by advance_time
								//we know that the acceleration is precisely zero because the walk target is known to be reachable
								//which means that gravity can be fully cancelled
								//ignore moving platforms for now
								set_acceleration(&mut state.body,&state.touching,&data.models,&data.hitbox_mesh,Planar64Vec3::ZERO);
								walk_state.target=TransientAcceleration::Reached;
							},
							//you are not supposed to reach an unreachable walk target!
							TransientAcceleration::Unreachable{acceleration:_}=>unreachable!(),
						}
					}
				}
			},
		}
	}

fn atomic_input_instruction(state:&mut PhysicsState,data:&PhysicsData,ins:TimedInstruction<PhysicsInputInstruction>){
	let should_advance_body=match ins.instruction{
		//the body may as well be a quantum wave function
		//as far as these instruction are concerned (they don't care where it is)
		PhysicsInputInstruction::SetSensitivity(..)
		|PhysicsInputInstruction::Restart
		|PhysicsInputInstruction::Spawn(..)
		|PhysicsInputInstruction::SetZoom(..)
		|PhysicsInputInstruction::Idle=>false,
		//these controls only update the body if you are on the ground
		PhysicsInputInstruction::SetNextMouse(..)
		|PhysicsInputInstruction::ReplaceMouse(..)
		|PhysicsInputInstruction::SetMoveForward(..)
		|PhysicsInputInstruction::SetMoveLeft(..)
		|PhysicsInputInstruction::SetMoveBack(..)
		|PhysicsInputInstruction::SetMoveRight(..)
		|PhysicsInputInstruction::SetMoveUp(..)
		|PhysicsInputInstruction::SetMoveDown(..)
		|PhysicsInputInstruction::SetJump(..)=>{
			match &state.move_state{
				MoveState::Fly
				|MoveState::Water
				|MoveState::Walk(_)
				|MoveState::Ladder(_)=>true,
				MoveState::Air=>false,
			}
		},
		//the body must be updated unconditionally
		PhysicsInputInstruction::PracticeFly=>true,
	};
	if should_advance_body{
		state.body.advance_time(state.time);
	}
	//TODO: UNTAB
				let mut b_refresh_walk_target=true;
				match ins.instruction{
					PhysicsInputInstruction::SetSensitivity(sensitivity)=>state.camera.sensitivity=sensitivity,
					PhysicsInputInstruction::SetNextMouse(m)=>{
						state.camera.move_mouse(state.input_state.mouse_delta());
						state.input_state.set_next_mouse(m);
					},
					PhysicsInputInstruction::ReplaceMouse(m0,m1)=>{
						state.camera.move_mouse(m0.pos-state.input_state.mouse.pos);
						state.input_state.replace_mouse(m0,m1);
					},
					PhysicsInputInstruction::SetMoveForward(s)=>state.input_state.set_control(Controls::MoveForward,s),
					PhysicsInputInstruction::SetMoveLeft(s)=>state.input_state.set_control(Controls::MoveLeft,s),
					PhysicsInputInstruction::SetMoveBack(s)=>state.input_state.set_control(Controls::MoveBackward,s),
					PhysicsInputInstruction::SetMoveRight(s)=>state.input_state.set_control(Controls::MoveRight,s),
					PhysicsInputInstruction::SetMoveUp(s)=>state.input_state.set_control(Controls::MoveUp,s),
					PhysicsInputInstruction::SetMoveDown(s)=>state.input_state.set_control(Controls::MoveDown,s),
					PhysicsInputInstruction::SetJump(s)=>{
						state.input_state.set_control(Controls::Jump,s);
						if let Some(walk_state)=state.move_state.get_walk_state(){
							if let Some(jump_settings)=&state.style.jump{
								let jump_dir=walk_state.jump_direction.direction(&data.models,&data.hitbox_mesh,&walk_state.contact);
								let jumped_velocity=jump_settings.jumped_velocity(&state.style,jump_dir,state.body.velocity);
								state.cull_velocity(&data,jumped_velocity);
							}
						}
						b_refresh_walk_target=false;
					},
					PhysicsInputInstruction::SetZoom(s)=>{
						state.input_state.set_control(Controls::Zoom,s);
						b_refresh_walk_target=false;
					},
					PhysicsInputInstruction::Restart=>{
						//totally reset physics state
						state.reset_to_default();
						//spawn at start zone
						let spawn_point=data.modes.get_mode(state.mode_state.get_mode_id()).map(|mode|
							//TODO: spawn at the bottom of the start zone plus the hitbox size
							//TODO: set camera andles to face the same way as the start zone
							data.models.model(mode.get_start().into()).transform.vertex.translation
						).unwrap_or(Planar64Vec3::ZERO);
						set_position(&mut state.body,&mut state.touching,spawn_point);
						set_velocity(&mut state.body,&state.touching,&data.models,&data.hitbox_mesh,Planar64Vec3::ZERO);
						state.set_move_state(data,MoveState::Air);
						b_refresh_walk_target=false;
					}
					PhysicsInputInstruction::Spawn(mode_id,stage_id)=>{
						//spawn at a particular stage
						if let Some(mode)=data.modes.get_mode(mode_id){
							teleport_to_spawn(&mut state.body,&mut state.touching,&state.style,&data.hitbox_mesh,mode,&data.models,stage_id);
						}
						b_refresh_walk_target=false;
					},
					PhysicsInputInstruction::PracticeFly=>{
						match &state.move_state{
							MoveState::Fly=>{
								state.set_move_state(data,MoveState::Air);
							},
							_=>{
								state.set_move_state(data,MoveState::Fly);
							},
						}
						b_refresh_walk_target=false;
					},
					PhysicsInputInstruction::Idle=>{
						//literally idle!
						b_refresh_walk_target=false;
					},
				}
				if b_refresh_walk_target{
					state.apply_input_and_body(data);
					state.cull_velocity(data,state.body.velocity);
				}
}

	fn atomic_state_update(state:&mut PhysicsState,data:&PhysicsData,ins:TimedInstruction<PhysicsInstruction>){
		match &ins.instruction{
			PhysicsInstruction::Input(PhysicsInputInstruction::Idle)
			|PhysicsInstruction::Input(PhysicsInputInstruction::SetNextMouse(_))
			|PhysicsInstruction::Input(PhysicsInputInstruction::ReplaceMouse(_,_))
			|PhysicsInstruction::Internal(PhysicsInternalInstruction::StrafeTick)
			|PhysicsInstruction::Internal(PhysicsInternalInstruction::ReachWalkTargetVelocity)=>(),
			_=>println!("{}|{:?}",ins.time,ins.instruction),
		}
		if ins.time<state.time{
			println!("@@@@ Time travel warning! {:?}",ins);
		}
		state.time=ins.time;
		match ins.instruction{
			PhysicsInstruction::Internal(instruction)=>atomic_internal_instruction(state,data,TimedInstruction{time:ins.time,instruction}),
			PhysicsInstruction::Input(instruction)=>atomic_input_instruction(state,data,TimedInstruction{time:ins.time,instruction}),
		}
	}

#[cfg(test)]
mod test{
	use super::*;
	fn test_collision_axis_aligned(relative_body:Body,expected_collision_time:Option<Time>){
		let h0=HitboxMesh::new(PhysicsMesh::unit_cube(),integer::Planar64Affine3::new(Planar64Mat3::from_diagonal(Planar64Vec3::int(5,1,5)/2),Planar64Vec3::ZERO));
		let h1=StyleModifiers::roblox_bhop().calculate_mesh();
		let hitbox_mesh=h1.transformed_mesh();
		let platform_mesh=h0.transformed_mesh();
		let minkowski=model_physics::MinkowskiMesh::minkowski_sum(platform_mesh,hitbox_mesh);
		let collision=minkowski.predict_collision_in(&relative_body,Time::MAX);
		assert_eq!(collision.map(|tup|tup.1),expected_collision_time,"Incorrect time of collision");
	}
	fn test_collision_rotated(relative_body:Body,expected_collision_time:Option<Time>){
		let h0=HitboxMesh::new(PhysicsMesh::unit_cube(),
			integer::Planar64Affine3::new(
				integer::Planar64Mat3::from_cols(
					Planar64Vec3::int(5,0,1)/2,
					Planar64Vec3::int(0,1,0)/2,
					Planar64Vec3::int(-1,0,5)/2,
				),
				Planar64Vec3::ZERO,
			)
		);
		let h1=StyleModifiers::roblox_bhop().calculate_mesh();
		let hitbox_mesh=h1.transformed_mesh();
		let platform_mesh=h0.transformed_mesh();
		let minkowski=model_physics::MinkowskiMesh::minkowski_sum(platform_mesh,hitbox_mesh);
		let collision=minkowski.predict_collision_in(&relative_body,Time::MAX);
		assert_eq!(collision.map(|tup|tup.1),expected_collision_time,"Incorrect time of collision");
	}
	fn test_collision(relative_body:Body,expected_collision_time:Option<Time>){
		test_collision_axis_aligned(relative_body.clone(),expected_collision_time);
		test_collision_rotated(relative_body,expected_collision_time);
	}
	#[test]
	fn test_collision_degenerate(){
		test_collision(Body::new(
			Planar64Vec3::int(0,5,0),
			Planar64Vec3::int(0,-1,0),
			Planar64Vec3::ZERO,
			Time::ZERO
		),Some(Time::from_secs(2)));
	}
	#[test]
	fn test_collision_degenerate_east(){
		test_collision(Body::new(
			Planar64Vec3::int(3,5,0),
			Planar64Vec3::int(0,-1,0),
			Planar64Vec3::ZERO,
			Time::ZERO
		),Some(Time::from_secs(2)));
	}
	#[test]
	fn test_collision_degenerate_south(){
		test_collision(Body::new(
			Planar64Vec3::int(0,5,3),
			Planar64Vec3::int(0,-1,0),
			Planar64Vec3::ZERO,
			Time::ZERO
		),Some(Time::from_secs(2)));
	}
	#[test]
	fn test_collision_degenerate_west(){
		test_collision(Body::new(
			Planar64Vec3::int(-3,5,0),
			Planar64Vec3::int(0,-1,0),
			Planar64Vec3::ZERO,
			Time::ZERO
		),Some(Time::from_secs(2)));
	}
	#[test]
	fn test_collision_degenerate_north(){
		test_collision(Body::new(
			Planar64Vec3::int(0,5,-3),
			Planar64Vec3::int(0,-1,0),
			Planar64Vec3::ZERO,
			Time::ZERO
		),Some(Time::from_secs(2)));
	}
	#[test]
	fn test_collision_parabola_edge_east_from_west(){
		test_collision(VirtualBody::relative(&Body::default(),&Body::new(
			Planar64Vec3::int(3,3,0),
			Planar64Vec3::int(100,-1,0),
			Planar64Vec3::int(0,-1,0),
			Time::ZERO
		)).body(Time::from_secs(-1)),Some(Time::from_secs(0)));
	}
	#[test]
	fn test_collision_parabola_edge_south_from_north(){
		test_collision(VirtualBody::relative(&Body::default(),&Body::new(
			Planar64Vec3::int(0,3,3),
			Planar64Vec3::int(0,-1,100),
			Planar64Vec3::int(0,-1,0),
			Time::ZERO
		)).body(Time::from_secs(-1)),Some(Time::from_secs(0)));
	}
	#[test]
	fn test_collision_parabola_edge_west_from_east(){
		test_collision(VirtualBody::relative(&Body::default(),&Body::new(
			Planar64Vec3::int(-3,3,0),
			Planar64Vec3::int(-100,-1,0),
			Planar64Vec3::int(0,-1,0),
			Time::ZERO
		)).body(Time::from_secs(-1)),Some(Time::from_secs(0)));
	}
	#[test]
	fn test_collision_parabola_edge_north_from_south(){
		test_collision(VirtualBody::relative(&Body::default(),&Body::new(
			Planar64Vec3::int(0,3,-3),
			Planar64Vec3::int(0,-1,-100),
			Planar64Vec3::int(0,-1,0),
			Time::ZERO
		)).body(Time::from_secs(-1)),Some(Time::from_secs(0)));
	}
	#[test]
	fn test_collision_parabola_edge_north_from_ne(){
		test_collision(VirtualBody::relative(&Body::default(),&Body::new(
			Planar64Vec3::int(0,6,-7)/2,
			Planar64Vec3::int(-10,-1,1),
			Planar64Vec3::int(0,-1,0),
			Time::ZERO
		)).body(Time::from_secs(-1)),Some(Time::from_secs(0)));
	}
	#[test]
	fn test_collision_parabola_edge_north_from_nw(){
		test_collision(VirtualBody::relative(&Body::default(),&Body::new(
			Planar64Vec3::int(0,6,-7)/2,
			Planar64Vec3::int(10,-1,1),
			Planar64Vec3::int(0,-1,0),
			Time::ZERO
		)).body(Time::from_secs(-1)),Some(Time::from_secs(0)));
	}
	#[test]
	fn test_collision_parabola_edge_east_from_se(){
		test_collision(VirtualBody::relative(&Body::default(),&Body::new(
			Planar64Vec3::int(7,6,0)/2,
			Planar64Vec3::int(-1,-1,-10),
			Planar64Vec3::int(0,-1,0),
			Time::ZERO
		)).body(Time::from_secs(-1)),Some(Time::from_secs(0)));
	}
	#[test]
	fn test_collision_parabola_edge_east_from_ne(){
		test_collision(VirtualBody::relative(&Body::default(),&Body::new(
			Planar64Vec3::int(7,6,0)/2,
			Planar64Vec3::int(-1,-1,10),
			Planar64Vec3::int(0,-1,0),
			Time::ZERO
		)).body(Time::from_secs(-1)),Some(Time::from_secs(0)));
	}
	#[test]
	fn test_collision_parabola_edge_south_from_se(){
		test_collision(VirtualBody::relative(&Body::default(),&Body::new(
			Planar64Vec3::int(0,6,7)/2,
			Planar64Vec3::int(-10,-1,-1),
			Planar64Vec3::int(0,-1,0),
			Time::ZERO
		)).body(Time::from_secs(-1)),Some(Time::from_secs(0)));
	}
	#[test]
	fn test_collision_parabola_edge_south_from_sw(){
		test_collision(VirtualBody::relative(&Body::default(),&Body::new(
			Planar64Vec3::int(0,6,7)/2,
			Planar64Vec3::int(10,-1,-1),
			Planar64Vec3::int(0,-1,0),
			Time::ZERO
		)).body(Time::from_secs(-1)),Some(Time::from_secs(0)));
	}
	#[test]
	fn test_collision_parabola_edge_west_from_se(){
		test_collision(VirtualBody::relative(&Body::default(),&Body::new(
			Planar64Vec3::int(-7,6,0)/2,
			Planar64Vec3::int(1,-1,-10),
			Planar64Vec3::int(0,-1,0),
			Time::ZERO
		)).body(Time::from_secs(-1)),Some(Time::from_secs(0)));
	}
	#[test]
	fn test_collision_parabola_edge_west_from_ne(){
		test_collision(VirtualBody::relative(&Body::default(),&Body::new(
			Planar64Vec3::int(-7,6,0)/2,
			Planar64Vec3::int(1,-1,10),
			Planar64Vec3::int(0,-1,0),
			Time::ZERO
		)).body(Time::from_secs(-1)),Some(Time::from_secs(0)));
	}
	#[test]
	fn test_collision_oblique(){
		test_collision(Body::new(
			Planar64Vec3::int(0,5,0),
			Planar64Vec3::int(1,-64,2)/64,
			Planar64Vec3::ZERO,
			Time::ZERO
		),Some(Time::from_secs(2)));
	}
	#[test]
	fn zoom_hit_nothing(){
		test_collision(Body::new(
			Planar64Vec3::int(0,10,0),
			Planar64Vec3::int(1,0,0),
			Planar64Vec3::int(0,1,0),
			Time::ZERO
		),None);
	}
	#[test]
	fn already_inside_hit_nothing(){
		test_collision(Body::new(
			Planar64Vec3::ZERO,
			Planar64Vec3::int(1,0,0),
			Planar64Vec3::int(0,1,0),
			Time::ZERO
		),None);
	}
}