forked from StrafesNET/strafe-project
implement MinkowskiMesh::predict_collision{_end}
This commit is contained in:
parent
2d3efdc2e1
commit
5bfd340d87
@ -3,24 +3,18 @@ use crate::model_physics::{FEV,MeshQuery};
|
||||
use crate::integer::{Time,Planar64};
|
||||
use crate::zeroes::zeroes2;
|
||||
|
||||
struct State<FEV>{
|
||||
fev:FEV,
|
||||
time:Time,
|
||||
}
|
||||
|
||||
enum Transition<F,E,V>{
|
||||
Miss,
|
||||
Next(FEV<F,E,V>,Time),
|
||||
Hit(F,Time),
|
||||
}
|
||||
|
||||
impl<F:Copy,E:Copy,V:Copy> State<FEV<F,E,V>>{
|
||||
fn next_transition(&self,mesh:&impl MeshQuery<F,E,V>,body:&Body,time_limit:Time)->Transition<F,E,V>{
|
||||
pub fn next_transition_body<F:Copy,E:Copy,V:Copy>(fev:&FEV<F,E,V>,time:Time,mesh:&impl MeshQuery<F,E,V>,body:&Body,time_limit:Time)->Transition<F,E,V>{
|
||||
//conflicting derivative means it crosses in the wrong direction.
|
||||
//if the transition time is equal to an already tested transition, do not replace the current best.
|
||||
let mut best_time=time_limit;
|
||||
let mut best_transtition=Transition::Miss;
|
||||
match &self.fev{
|
||||
match fev{
|
||||
&FEV::<F,E,V>::Face(face_id)=>{
|
||||
//test own face collision time, ignoring roots with zero or conflicting derivative
|
||||
//n=face.normal d=face.dot
|
||||
@ -28,7 +22,7 @@ impl<F:Copy,E:Copy,V:Copy> State<FEV<F,E,V>>{
|
||||
let (n,d)=mesh.face_nd(face_id);
|
||||
for t in zeroes2((n.dot(body.position)-d)*2,n.dot(body.velocity)*2,n.dot(body.acceleration)){
|
||||
let t=body.time+Time::from(t);
|
||||
if self.time<t&&t<best_time&&n.dot(body.extrapolated_velocity(t))<Planar64::ZERO{
|
||||
if time<t&&t<best_time&&n.dot(body.extrapolated_velocity(t))<Planar64::ZERO{
|
||||
best_time=t;
|
||||
best_transtition=Transition::Hit(face_id,t);
|
||||
}
|
||||
@ -41,7 +35,7 @@ impl<F:Copy,E:Copy,V:Copy> State<FEV<F,E,V>>{
|
||||
let d=n.dot(mesh.vert(mesh.edge_verts(edge_id)[0]));
|
||||
for t in zeroes2((n.dot(body.position)-d)*2,n.dot(body.velocity)*2,n.dot(body.acceleration)){
|
||||
let t=body.time+Time::from(t);
|
||||
if self.time<t&&t<best_time&&n.dot(body.extrapolated_velocity(t))<Planar64::ZERO{
|
||||
if time<t&&t<best_time&&n.dot(body.extrapolated_velocity(t))<Planar64::ZERO{
|
||||
best_time=t;
|
||||
best_transtition=Transition::Next(FEV::<F,E,V>::Edge(edge_id),t);
|
||||
break;
|
||||
@ -59,7 +53,7 @@ impl<F:Copy,E:Copy,V:Copy> State<FEV<F,E,V>>{
|
||||
let d=n.dot(mesh.vert(mesh.edge_verts(edge_id)[0]));
|
||||
for t in zeroes2((n.dot(body.position)-d)*2,n.dot(body.velocity)*2,n.dot(body.acceleration)){
|
||||
let t=body.time+Time::from(t);
|
||||
if self.time<t&&t<best_time&&n.dot(body.extrapolated_velocity(t))<Planar64::ZERO{
|
||||
if time<t&&t<best_time&&n.dot(body.extrapolated_velocity(t))<Planar64::ZERO{
|
||||
best_time=t;
|
||||
best_transtition=Transition::Next(FEV::<F,E,V>::Face(test_face_id),t);
|
||||
break;
|
||||
@ -72,7 +66,7 @@ impl<F:Copy,E:Copy,V:Copy> State<FEV<F,E,V>>{
|
||||
let d=n.dot(mesh.vert(vert_id));
|
||||
for t in zeroes2((n.dot(body.position)-d)*2,n.dot(body.velocity)*2,n.dot(body.acceleration)){
|
||||
let t=body.time+Time::from(t);
|
||||
if self.time<t&&t<best_time&&n.dot(body.extrapolated_velocity(t))<Planar64::ZERO{
|
||||
if time<t&&t<best_time&&n.dot(body.extrapolated_velocity(t))<Planar64::ZERO{
|
||||
best_time=t;
|
||||
best_transtition=Transition::Next(FEV::<F,E,V>::Vert(vert_id),t);
|
||||
break;
|
||||
@ -88,7 +82,7 @@ impl<F:Copy,E:Copy,V:Copy> State<FEV<F,E,V>>{
|
||||
let d=n.dot(mesh.vert(vert_id));
|
||||
for t in zeroes2((n.dot(body.position)-d)*2,n.dot(body.velocity)*2,n.dot(body.acceleration)){
|
||||
let t=body.time+Time::from(t);
|
||||
if self.time<t&&t<best_time&&n.dot(body.extrapolated_velocity(t))<Planar64::ZERO{
|
||||
if time<t&&t<best_time&&n.dot(body.extrapolated_velocity(t))<Planar64::ZERO{
|
||||
best_time=t;
|
||||
best_transtition=Transition::Next(FEV::<F,E,V>::Edge(edge_id),t);
|
||||
break;
|
||||
@ -100,27 +94,13 @@ impl<F:Copy,E:Copy,V:Copy> State<FEV<F,E,V>>{
|
||||
}
|
||||
best_transtition
|
||||
}
|
||||
}
|
||||
|
||||
pub fn predict_collision<F:Copy,E:Copy,V:Copy>(mesh:&impl MeshQuery<F,E,V>,relative_body:&Body,time_limit:Time)->Option<(F,Time)>{
|
||||
let mut state=State{
|
||||
fev:mesh.closest_fev(relative_body.position),
|
||||
time:relative_body.time,
|
||||
};
|
||||
//it would be possible to write down the point of closest approach...
|
||||
pub fn crawl_fev_body<F:Copy,E:Copy,V:Copy>(mut fev:FEV<F,E,V>,mesh:&impl MeshQuery<F,E,V>,relative_body:&Body,time_limit:Time)->Option<(F,Time)>{
|
||||
let mut time=relative_body.time;
|
||||
loop{
|
||||
match state.next_transition(mesh,relative_body,time_limit){
|
||||
match next_transition_body(&fev,time,mesh,relative_body,time_limit){
|
||||
Transition::Miss=>return None,
|
||||
Transition::Next(fev,time)=>(state.fev,state.time)=(fev,time),
|
||||
Transition::Next(next_fev,next_time)=>(fev,time)=(next_fev,next_time),
|
||||
Transition::Hit(face,time)=>return Some((face,time)),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn predict_collision_end<F:Copy,E:Copy,V:Copy>(mesh:&impl MeshQuery<F,E,V>,relative_body:&Body,time_limit:Time,ignore_face_id:F)->Option<(F,Time)>{
|
||||
//imagine the mesh without the collision face
|
||||
//no algorithm needed, there is only one state and three cases (Face,Edge,None)
|
||||
//determine when it passes an edge ("sliding off" case) or if it leaves the surface directly
|
||||
//the state can be constructed from the ContactCollision directly
|
||||
None
|
||||
}
|
||||
|
@ -325,6 +325,31 @@ impl MinkowskiMesh<'_>{
|
||||
//put some genius code right here
|
||||
todo!()
|
||||
}
|
||||
pub fn predict_collision(&self,relative_body:&crate::physics::Body,time_limit:crate::integer::Time)->Option<(MinkowskiFace,crate::integer::Time)>{
|
||||
crate::face_crawler::crawl_fev_body(self.closest_fev(relative_body.position),self,relative_body,time_limit)
|
||||
}
|
||||
pub fn predict_collision_end(&self,relative_body:&crate::physics::Body,time_limit:crate::integer::Time,contact_face_id:MinkowskiFace)->Option<(MinkowskiEdge,crate::integer::Time)>{
|
||||
//no algorithm needed, there is only one state and two cases (Edge,None)
|
||||
//determine when it passes an edge ("sliding off" case)
|
||||
let mut best_time=time_limit;
|
||||
let mut best_edge=None;
|
||||
let face_n=self.face_nd(contact_face_id).0;
|
||||
for &edge_id in self.face_edges(contact_face_id).iter(){
|
||||
let edge_n=self.edge_n(edge_id);
|
||||
let n=face_n.cross(edge_n);
|
||||
//picking a vert randomly is terrible
|
||||
let d=n.dot(self.vert(self.edge_verts(edge_id)[0]));
|
||||
for t in crate::zeroes::zeroes2((n.dot(relative_body.position)-d)*2,n.dot(relative_body.velocity)*2,n.dot(relative_body.acceleration)){
|
||||
let t=relative_body.time+crate::integer::Time::from(t);
|
||||
if relative_body.time<t&&t<best_time&&n.dot(relative_body.extrapolated_velocity(t))<Planar64::ZERO{
|
||||
best_time=t;
|
||||
best_edge=Some(edge_id);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
best_edge.map(|e|(e,best_time))
|
||||
}
|
||||
}
|
||||
impl MeshQuery<MinkowskiFace,MinkowskiEdge,MinkowskiVert> for MinkowskiMesh<'_>{
|
||||
fn face_nd(&self,face_id:MinkowskiFace)->(Planar64Vec3,Planar64){
|
||||
|
Loading…
x
Reference in New Issue
Block a user