fixed_wide_vectors: move into folder

This commit is contained in:
2025-01-02 19:53:50 -08:00
parent c5fb915a6d
commit 19bb5c021e
38 changed files with 0 additions and 0 deletions

1
lib/linear_ops/.gitignore vendored Normal file

@ -0,0 +1 @@
/target

36
lib/linear_ops/Cargo.lock generated Normal file

@ -0,0 +1,36 @@
# This file is automatically @generated by Cargo.
# It is not intended for manual editing.
version = 3
[[package]]
name = "bnum"
version = "0.12.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "50202def95bf36cb7d1d7a7962cea1c36a3f8ad42425e5d2b71d7acb8041b5b8"
[[package]]
name = "fixed_wide"
version = "0.1.1"
dependencies = [
"bnum",
"paste",
]
[[package]]
name = "linear_ops"
version = "0.1.0"
dependencies = [
"fixed_wide",
"paste",
"ratio_ops",
]
[[package]]
name = "paste"
version = "1.0.15"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "57c0d7b74b563b49d38dae00a0c37d4d6de9b432382b2892f0574ddcae73fd0a"
[[package]]
name = "ratio_ops"
version = "0.1.0"

22
lib/linear_ops/Cargo.toml Normal file

@ -0,0 +1,22 @@
[package]
name = "linear_ops"
version = "0.1.0"
edition = "2021"
repository = "https://git.itzana.me/StrafesNET/fixed_wide_vectors"
license = "MIT OR Apache-2.0"
description = "Vector/Matrix operations using trait bounds."
authors = ["Rhys Lloyd <krakow20@gmail.com>"]
[features]
default=["named-fields","fixed-wide"]
named-fields=[]
fixed-wide=["dep:fixed_wide","dep:paste"]
deferred-division=["dep:ratio_ops"]
[dependencies]
ratio_ops = { version = "0.1.0", path = "../ratio_ops", registry = "strafesnet", optional = true }
fixed_wide = { version = "0.1.0", path = "../fixed_wide", registry = "strafesnet", optional = true }
paste = { version = "1.0.15", optional = true }
[dev-dependencies]
fixed_wide = { version = "0.1.0", path = "../fixed_wide", registry = "strafesnet", features = ["wide-mul"] }

@ -0,0 +1,176 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS

@ -0,0 +1,23 @@
Permission is hereby granted, free of charge, to any
person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the
Software without restriction, including without
limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software
is furnished to do so, subject to the following
conditions:
The above copyright notice and this permission notice
shall be included in all copies or substantial portions
of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

10
lib/linear_ops/src/lib.rs Normal file

@ -0,0 +1,10 @@
mod macros;
pub mod types;
pub mod vector;
pub mod matrix;
#[cfg(feature="named-fields")]
mod named;
#[cfg(test)]
mod tests;

@ -0,0 +1 @@

@ -0,0 +1,79 @@
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_fixed_wide_vector_not_const_generic {
(
(),
$n:expr
) => {
impl<const N:usize> Vector<N,fixed_wide::fixed::Fixed<$n,{$n*32}>>{
#[inline]
pub fn length(self)-><fixed_wide::fixed::Fixed::<$n,{$n*32}> as core::ops::Mul>::Output{
self.length_squared().sqrt_unchecked()
}
#[inline]
pub fn with_length<U,V>(self,length:U)-><Vector<N,V> as core::ops::Div<<fixed_wide::fixed::Fixed::<$n,{$n*32}> as core::ops::Mul>::Output>>::Output
where
fixed_wide::fixed::Fixed<$n,{$n*32}>:core::ops::Mul<U,Output=V>,
U:Copy,
V:core::ops::Div<<fixed_wide::fixed::Fixed::<$n,{$n*32}> as core::ops::Mul>::Output>,
{
self*length/self.length()
}
}
};
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! macro_4 {
( $macro: ident, $any:tt ) => {
$crate::macro_repeated!($macro,$any,1,2,3,4);
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_fixed_wide_vector {
() => {
$crate::macro_4!(impl_fixed_wide_vector_not_const_generic,());
// I LOVE NOT BEING ABLE TO USE CONST GENERICS
$crate::macro_repeated!(
impl_fix_not_const_generic,(),
(1,1),(2,1),(3,1),(4,1),(5,1),(6,1),(7,1),(8,1),(9,1),(10,1),(11,1),(12,1),(13,1),(14,1),(15,1),(16,1),
(1,2),(2,2),(3,2),(4,2),(5,2),(6,2),(7,2),(8,2),(9,2),(10,2),(11,2),(12,2),(13,2),(14,2),(15,2),(16,2),
(1,3),(2,3),(3,3),(4,3),(5,3),(6,3),(7,3),(8,3),(9,3),(10,3),(11,3),(12,3),(13,3),(14,3),(15,3),(16,3),
(1,4),(2,4),(3,4),(4,4),(5,4),(6,4),(7,4),(8,4),(9,4),(10,4),(11,4),(12,4),(13,4),(14,4),(15,4),(16,4),
(1,5),(2,5),(3,5),(4,5),(5,5),(6,5),(7,5),(8,5),(9,5),(10,5),(11,5),(12,5),(13,5),(14,5),(15,5),(16,5),
(1,6),(2,6),(3,6),(4,6),(5,6),(6,6),(7,6),(8,6),(9,6),(10,6),(11,6),(12,6),(13,6),(14,6),(15,6),(16,6),
(1,7),(2,7),(3,7),(4,7),(5,7),(6,7),(7,7),(8,7),(9,7),(10,7),(11,7),(12,7),(13,7),(14,7),(15,7),(16,7),
(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8),(8,8),(9,8),(10,8),(11,8),(12,8),(13,8),(14,8),(15,8),(16,8),
(1,9),(2,9),(3,9),(4,9),(5,9),(6,9),(7,9),(8,9),(9,9),(10,9),(11,9),(12,9),(13,9),(14,9),(15,9),(16,9),
(1,10),(2,10),(3,10),(4,10),(5,10),(6,10),(7,10),(8,10),(9,10),(10,10),(11,10),(12,10),(13,10),(14,10),(15,10),(16,10),
(1,11),(2,11),(3,11),(4,11),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11),(11,11),(12,11),(13,11),(14,11),(15,11),(16,11),
(1,12),(2,12),(3,12),(4,12),(5,12),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12),(12,12),(13,12),(14,12),(15,12),(16,12),
(1,13),(2,13),(3,13),(4,13),(5,13),(6,13),(7,13),(8,13),(9,13),(10,13),(11,13),(12,13),(13,13),(14,13),(15,13),(16,13),
(1,14),(2,14),(3,14),(4,14),(5,14),(6,14),(7,14),(8,14),(9,14),(10,14),(11,14),(12,14),(13,14),(14,14),(15,14),(16,14),
(1,15),(2,15),(3,15),(4,15),(5,15),(6,15),(7,15),(8,15),(9,15),(10,15),(11,15),(12,15),(13,15),(14,15),(15,15),(16,15),
(1,16),(2,16),(3,16),(4,16),(5,16),(6,16),(7,16),(8,16),(9,16),(10,16),(11,16),(12,16),(13,16),(14,16),(15,16),(16,16)
);
};
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_fix_not_const_generic{
(
(),
($lhs:expr,$rhs:expr)
)=>{
impl<const N:usize> Vector<N,fixed_wide::fixed::Fixed<$lhs,{$lhs*32}>>
{
paste::item!{
#[inline]
pub fn [<fix_ $rhs>](self)->Vector<N,fixed_wide::fixed::Fixed<$rhs,{$rhs*32}>>{
self.map(|t|t.[<fix_ $rhs>]())
}
}
}
}
}

@ -0,0 +1,272 @@
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix {
() => {
impl<const X:usize,const Y:usize,T> Matrix<X,Y,T>{
#[inline(always)]
pub const fn new(array:[[T;Y];X])->Self{
Self{array}
}
#[inline(always)]
pub fn to_array(self)->[[T;Y];X]{
self.array
}
#[inline]
pub fn from_cols(cols:[Vector<Y,T>;X])->Self
{
Matrix::new(
cols.map(|col|col.array),
)
}
#[inline]
pub fn map<F,U>(self,f:F)->Matrix<X,Y,U>
where
F:Fn(T)->U
{
Matrix::new(
self.array.map(|inner|inner.map(&f)),
)
}
#[inline]
pub fn transpose(self)->Matrix<Y,X,T>{
//how did I think of this
let mut array_of_iterators=self.array.map(|axis|axis.into_iter());
Matrix::new(
core::array::from_fn(|_|
array_of_iterators.each_mut().map(|iter|
iter.next().unwrap()
)
)
)
}
#[inline]
// old (list of rows) MatY<VecX>.MatX<VecZ> = MatY<VecZ>
// new (list of columns) MatX<VecY>.MatZ<VecX> = MatZ<VecY>
pub fn dot<const Z:usize,U,V>(self,rhs:Matrix<Z,X,U>)->Matrix<Z,Y,V>
where
T:core::ops::Mul<U,Output=V>+Copy,
V:core::iter::Sum,
U:Copy,
{
let mut array_of_iterators=self.array.map(|axis|axis.into_iter().cycle());
Matrix{
array:rhs.array.map(|rhs_axis|
core::array::from_fn(|_|
array_of_iterators
.iter_mut()
.zip(rhs_axis.iter())
.map(|(lhs_iter,&rhs_value)|
lhs_iter.next().unwrap()*rhs_value
).sum()
)
)
}
}
#[inline]
// MatX<VecY>.VecY = VecX
pub fn transform_vector<U,V>(self,rhs:Vector<X,U>)->Vector<Y,V>
where
T:core::ops::Mul<U,Output=V>,
V:core::iter::Sum,
U:Copy,
{
let mut array_of_iterators=self.array.map(|axis|axis.into_iter());
Vector::new(
core::array::from_fn(|_|
array_of_iterators
.iter_mut()
.zip(rhs.array.iter())
.map(|(lhs_iter,&rhs_value)|
lhs_iter.next().unwrap()*rhs_value
).sum()
)
)
}
}
impl<const X:usize,const Y:usize,T> Matrix<X,Y,T>
where
T:Copy
{
#[inline(always)]
pub const fn from_value(value:T)->Self{
Self::new([[value;Y];X])
}
}
impl<const X:usize,const Y:usize,T:Default> Default for Matrix<X,Y,T>{
#[inline]
fn default()->Self{
Self::new(
core::array::from_fn(|_|core::array::from_fn(|_|Default::default()))
)
}
}
impl<const X:usize,const Y:usize,T:core::fmt::Display> core::fmt::Display for Matrix<X,Y,T>{
#[inline]
fn fmt(&self,f:&mut core::fmt::Formatter)->Result<(),core::fmt::Error>{
for col in &self.array[0..X]{
core::write!(f,"\n")?;
for elem in &col[0..Y-1]{
core::write!(f,"{}, ",elem)?;
}
// assume we will be using matrices of size 1x1 or greater
core::write!(f,"{}",col.last().unwrap())?;
}
Ok(())
}
}
impl<const X:usize,const Y:usize,const Z:usize,T,U,V> core::ops::Mul<Matrix<Z,X,U>> for Matrix<X,Y,T>
where
T:core::ops::Mul<U,Output=V>+Copy,
V:core::iter::Sum,
U:Copy,
{
type Output=Matrix<Z,Y,V>;
#[inline]
fn mul(self,rhs:Matrix<Z,X,U>)->Self::Output{
self.dot(rhs)
}
}
impl<const X:usize,const Y:usize,T,U,V> core::ops::Mul<Vector<X,U>> for Matrix<X,Y,T>
where
T:core::ops::Mul<U,Output=V>,
V:core::iter::Sum,
U:Copy,
{
type Output=Vector<Y,V>;
#[inline]
fn mul(self,rhs:Vector<X,U>)->Self::Output{
self.transform_vector(rhs)
}
}
#[cfg(feature="deferred-division")]
$crate::impl_matrix_deferred_division!();
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix_deferred_division {
() => {
impl<const X:usize,const Y:usize,T:ratio_ops::ratio::Divide<U,Output=V>,U:Copy,V> ratio_ops::ratio::Divide<U> for Matrix<X,Y,T>{
type Output=Matrix<X,Y,V>;
#[inline]
fn divide(self,rhs:U)->Self::Output{
self.map(|t|t.divide(rhs))
}
}
impl<const X:usize,const Y:usize,T,U> core::ops::Div<U> for Matrix<X,Y,T>{
type Output=ratio_ops::ratio::Ratio<Matrix<X,Y,T>,U>;
#[inline]
fn div(self,rhs:U)->Self::Output{
ratio_ops::ratio::Ratio::new(self,rhs)
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix_extend {
( $x: expr, $y: expr ) => {
impl<T> Matrix<$x,$y,T>{
#[inline]
pub fn extend_column(self,value:Vector<$y,T>)->Matrix<{$x+1},$y,T>{
let mut iter=self.array.into_iter().chain(core::iter::once(value.array));
Matrix::new(
core::array::from_fn(|_|iter.next().unwrap()),
)
}
#[inline]
pub fn extend_row(self,value:Vector<$x,T>)->Matrix<$x,{$y+1},T>{
let mut iter_rows=value.array.into_iter();
Matrix::new(
self.array.map(|axis|{
let mut elements_iter=axis.into_iter().chain(core::iter::once(iter_rows.next().unwrap()));
core::array::from_fn(|_|elements_iter.next().unwrap())
})
)
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix_named_fields_shape {
(
($struct_outer:ident, $size_outer: expr),
($size_inner: expr)
) => {
impl<T> core::ops::Deref for Matrix<$size_outer,$size_inner,T>{
type Target=$struct_outer<Vector<$size_inner,T>>;
#[inline]
fn deref(&self)->&Self::Target{
unsafe{core::mem::transmute(&self.array)}
}
}
impl<T> core::ops::DerefMut for Matrix<$size_outer,$size_inner,T>{
#[inline]
fn deref_mut(&mut self)->&mut Self::Target{
unsafe{core::mem::transmute(&mut self.array)}
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix_named_fields_shape_shim {
(
($($vector_info:tt),+),
$matrix_info:tt
) => {
$crate::macro_repeated!(impl_matrix_named_fields_shape,$matrix_info,$($vector_info),+);
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix_named_fields {
(
($($matrix_info:tt),+),
$vector_infos:tt
) => {
$crate::macro_repeated!(impl_matrix_named_fields_shape_shim,$vector_infos,$($matrix_info),+);
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix_3x3 {
()=>{
impl<T,T2,T3> Matrix<3,3,T>
where
//cross
T:core::ops::Mul<T,Output=T2>+Copy,
T2:core::ops::Sub,
//dot
T:core::ops::Mul<<T2 as core::ops::Sub>::Output,Output=T3>,
T3:core::iter::Sum,
{
pub fn det(self)->T3{
self.x_axis.dot(self.y_axis.cross(self.z_axis))
}
}
impl<T,T2> Matrix<3,3,T>
where
T:core::ops::Mul<T,Output=T2>+Copy,
T2:core::ops::Sub,
{
pub fn adjugate(self)->Matrix<3,3,<T2 as core::ops::Sub>::Output>{
Matrix::new([
[self.y_axis.y*self.z_axis.z-self.y_axis.z*self.z_axis.y,self.x_axis.z*self.z_axis.y-self.x_axis.y*self.z_axis.z,self.x_axis.y*self.y_axis.z-self.x_axis.z*self.y_axis.y],
[self.y_axis.z*self.z_axis.x-self.y_axis.x*self.z_axis.z,self.x_axis.x*self.z_axis.z-self.x_axis.z*self.z_axis.x,self.x_axis.z*self.y_axis.x-self.x_axis.x*self.y_axis.z],
[self.y_axis.x*self.z_axis.y-self.y_axis.y*self.z_axis.x,self.x_axis.y*self.z_axis.x-self.x_axis.x*self.z_axis.y,self.x_axis.x*self.y_axis.y-self.x_axis.y*self.y_axis.x],
])
}
}
}
}

@ -0,0 +1,20 @@
pub mod common;
pub mod vector;
pub mod matrix;
#[cfg(feature="fixed-wide")]
pub mod fixed_wide;
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! macro_repeated{
(
$macro:ident,
$any:tt,
$($repeated:tt),*
)=>{
$(
$crate::$macro!($any, $repeated);
)*
};
}

@ -0,0 +1,357 @@
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector {
() => {
impl<const N:usize,T> Vector<N,T>{
#[inline(always)]
pub const fn new(array:[T;N])->Self{
Self{array}
}
#[inline(always)]
pub fn to_array(self)->[T;N]{
self.array
}
#[inline]
pub fn map<F,U>(self,f:F)->Vector<N,U>
where
F:Fn(T)->U
{
Vector::new(
self.array.map(f)
)
}
#[inline]
pub fn map_zip<F,U,V>(self,other:Vector<N,U>,f:F)->Vector<N,V>
where
F:Fn((T,U))->V,
{
let mut iter=self.array.into_iter().zip(other.array);
Vector::new(
core::array::from_fn(|_|f(iter.next().unwrap())),
)
}
}
impl<const N:usize,T:Copy> Vector<N,T>{
#[inline(always)]
pub const fn from_value(value:T)->Self{
Self::new([value;N])
}
}
impl<const N:usize,T:Default> Default for Vector<N,T>{
#[inline]
fn default()->Self{
Self::new(
core::array::from_fn(|_|Default::default())
)
}
}
impl<const N:usize,T:core::fmt::Display> core::fmt::Display for Vector<N,T>{
#[inline]
fn fmt(&self,f:&mut core::fmt::Formatter)->Result<(),core::fmt::Error>{
for elem in &self.array[0..N-1]{
core::write!(f,"{}, ",elem)?;
}
// assume we will be using vectors of length 1 or greater
core::write!(f,"{}",self.array.last().unwrap())
}
}
impl<const N:usize,T:Ord> Vector<N,T>{
#[inline]
pub fn min(self,rhs:Self)->Self{
self.map_zip(rhs,|(a,b)|a.min(b))
}
#[inline]
pub fn max(self,rhs:Self)->Self{
self.map_zip(rhs,|(a,b)|a.max(b))
}
#[inline]
pub fn cmp(self,rhs:Self)->Vector<N,core::cmp::Ordering>{
self.map_zip(rhs,|(a,b)|a.cmp(&b))
}
#[inline]
pub fn lt(self,rhs:Self)->Vector<N,bool>{
self.map_zip(rhs,|(a,b)|a.lt(&b))
}
#[inline]
pub fn gt(self,rhs:Self)->Vector<N,bool>{
self.map_zip(rhs,|(a,b)|a.gt(&b))
}
#[inline]
pub fn ge(self,rhs:Self)->Vector<N,bool>{
self.map_zip(rhs,|(a,b)|a.ge(&b))
}
#[inline]
pub fn le(self,rhs:Self)->Vector<N,bool>{
self.map_zip(rhs,|(a,b)|a.le(&b))
}
}
impl<const N:usize> Vector<N,bool>{
#[inline]
pub fn all(&self)->bool{
self.array==[true;N]
}
#[inline]
pub fn any(&self)->bool{
self.array!=[false;N]
}
}
impl<const N:usize,T:core::ops::Neg<Output=V>,V> core::ops::Neg for Vector<N,T>{
type Output=Vector<N,V>;
#[inline]
fn neg(self)->Self::Output{
Vector::new(
self.array.map(|t|-t)
)
}
}
impl<const N:usize,T> Vector<N,T>
{
#[inline]
pub fn dot<U,V>(self,rhs:Vector<N,U>)->V
where
T:core::ops::Mul<U,Output=V>,
V:core::iter::Sum,
{
self.array.into_iter().zip(rhs.array).map(|(a,b)|a*b).sum()
}
}
impl<const N:usize,T,V> Vector<N,T>
where
T:core::ops::Mul<Output=V>+Copy,
V:core::iter::Sum,
{
#[inline]
pub fn length_squared(self)->V{
self.array.into_iter().map(|t|t*t).sum()
}
}
// Impl arithmetic operators
$crate::impl_vector_assign_operator!(AddAssign, add_assign );
$crate::impl_vector_operator!(Add, add );
$crate::impl_vector_assign_operator!(SubAssign, sub_assign );
$crate::impl_vector_operator!(Sub, sub );
$crate::impl_vector_assign_operator!(RemAssign, rem_assign );
$crate::impl_vector_operator!(Rem, rem );
// mul and div are special, usually you multiply by a scalar
// and implementing both vec*vec and vec*scalar is conflicting implementations Q_Q
$crate::impl_vector_assign_operator_scalar!(MulAssign, mul_assign );
$crate::impl_vector_operator_scalar!(Mul, mul );
$crate::impl_vector_assign_operator_scalar!(DivAssign, div_assign );
#[cfg(not(feature="deferred-division"))]
$crate::impl_vector_operator_scalar!(Div, div );
#[cfg(feature="deferred-division")]
$crate::impl_vector_deferred_division!();
// Impl bitwise operators
$crate::impl_vector_assign_operator!(BitAndAssign, bitand_assign );
$crate::impl_vector_operator!(BitAnd, bitand );
$crate::impl_vector_assign_operator!(BitOrAssign, bitor_assign );
$crate::impl_vector_operator!(BitOr, bitor );
$crate::impl_vector_assign_operator!(BitXorAssign, bitxor_assign );
$crate::impl_vector_operator!(BitXor, bitxor );
// Impl shift operators
$crate::impl_vector_shift_assign_operator!(ShlAssign, shl_assign);
$crate::impl_vector_shift_operator!(Shl, shl);
$crate::impl_vector_shift_assign_operator!(ShrAssign, shr_assign);
$crate::impl_vector_shift_operator!(Shr, shr);
// dedicated methods for this type
#[cfg(feature="fixed-wide")]
$crate::impl_fixed_wide_vector!();
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_deferred_division {
() => {
impl<const N:usize,T:ratio_ops::ratio::Divide<U,Output=V>,U:Copy,V> ratio_ops::ratio::Divide<U> for Vector<N,T>{
type Output=Vector<N,V>;
#[inline]
fn divide(self,rhs:U)->Self::Output{
self.map(|t|t.divide(rhs))
}
}
impl<const N:usize,T,U> core::ops::Div<U> for Vector<N,T>{
type Output=ratio_ops::ratio::Ratio<Vector<N,T>,U>;
#[inline]
fn div(self,rhs:U)->Self::Output{
ratio_ops::ratio::Ratio::new(self,rhs)
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_operator_scalar {
($trait: ident, $method: ident ) => {
impl<const N:usize,T:core::ops::$trait<U,Output=V>,U:Copy,V> core::ops::$trait<U> for Vector<N,T>{
type Output=Vector<N,V>;
#[inline]
fn $method(self,rhs:U)->Self::Output{
self.map(|t|t.$method(rhs))
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_operator {
($trait: ident, $method: ident ) => {
impl<const N:usize,T:core::ops::$trait<U,Output=V>,U,V> core::ops::$trait<Vector<N,U>> for Vector<N,T>{
type Output=Vector<N,V>;
#[inline]
fn $method(self,rhs:Vector<N,U>)->Self::Output{
self.map_zip(rhs,|(a,b)|a.$method(b))
}
}
impl<const N:usize,T:core::ops::$trait<i64,Output=T>> core::ops::$trait<i64> for Vector<N,T>{
type Output=Self;
#[inline]
fn $method(self,rhs:i64)->Self::Output{
self.map(|t|t.$method(rhs))
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_assign_operator_scalar {
($trait: ident, $method: ident ) => {
impl<const N:usize,T:core::ops::$trait<U>,U:Copy> core::ops::$trait<U> for Vector<N,T>{
#[inline]
fn $method(&mut self,rhs:U){
self.array.iter_mut()
.for_each(|t|t.$method(rhs))
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_assign_operator {
($trait: ident, $method: ident ) => {
impl<const N:usize,T:core::ops::$trait<U>,U> core::ops::$trait<Vector<N,U>> for Vector<N,T>{
#[inline]
fn $method(&mut self,rhs:Vector<N,U>){
self.array.iter_mut().zip(rhs.array)
.for_each(|(a,b)|a.$method(b))
}
}
impl<const N:usize,T:core::ops::$trait<i64>> core::ops::$trait<i64> for Vector<N,T>{
#[inline]
fn $method(&mut self,rhs:i64){
self.array.iter_mut()
.for_each(|t|t.$method(rhs))
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_shift_operator {
($trait: ident, $method: ident ) => {
impl<const N:usize,T:core::ops::$trait<U,Output=V>,U,V> core::ops::$trait<Vector<N,U>> for Vector<N,T>{
type Output=Vector<N,V>;
#[inline]
fn $method(self,rhs:Vector<N,U>)->Self::Output{
self.map_zip(rhs,|(a,b)|a.$method(b))
}
}
impl<const N:usize,T:core::ops::$trait<u32,Output=V>,V> core::ops::$trait<u32> for Vector<N,T>{
type Output=Vector<N,V>;
#[inline]
fn $method(self,rhs:u32)->Self::Output{
self.map(|t|t.$method(rhs))
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_shift_assign_operator {
($trait: ident, $method: ident ) => {
impl<const N:usize,T:core::ops::$trait<U>,U> core::ops::$trait<Vector<N,U>> for Vector<N,T>{
#[inline]
fn $method(&mut self,rhs:Vector<N,U>){
self.array.iter_mut().zip(rhs.array)
.for_each(|(a,b)|a.$method(b))
}
}
impl<const N:usize,T:core::ops::$trait<u32>> core::ops::$trait<u32> for Vector<N,T>{
#[inline]
fn $method(&mut self,rhs:u32){
self.array.iter_mut()
.for_each(|t|t.$method(rhs))
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_extend {
( $size: expr ) => {
impl<T> Vector<$size,T>{
#[inline]
pub fn extend(self,value:T)->Vector<{$size+1},T>{
let mut iter=self.array.into_iter().chain(core::iter::once(value));
Vector::new(
core::array::from_fn(|_|iter.next().unwrap()),
)
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_named_fields {
( $struct:ident, $size: expr ) => {
impl<T> core::ops::Deref for Vector<$size,T>{
type Target=$struct<T>;
#[inline]
fn deref(&self)->&Self::Target{
unsafe{core::mem::transmute(&self.array)}
}
}
impl<T> core::ops::DerefMut for Vector<$size,T>{
#[inline]
fn deref_mut(&mut self)->&mut Self::Target{
unsafe{core::mem::transmute(&mut self.array)}
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_3 {
()=>{
impl<T> Vector<3,T>
{
#[inline]
pub fn cross<U,V>(self,rhs:Vector<3,U>)->Vector<3,<V as core::ops::Sub>::Output>
where
T:core::ops::Mul<U,Output=V>+Copy,
U:Copy,
V:core::ops::Sub,
{
Vector::new([
self.y*rhs.z-self.z*rhs.y,
self.z*rhs.x-self.x*rhs.z,
self.x*rhs.y-self.y*rhs.x,
])
}
}
}
}

@ -0,0 +1,17 @@
use crate::vector::Vector;
#[derive(Clone,Copy,Debug,Hash,Eq,PartialEq)]
pub struct Matrix<const X:usize,const Y:usize,T>{
pub(crate) array:[[T;Y];X],
}
crate::impl_matrix!();
crate::impl_matrix_extend!(2,2);
crate::impl_matrix_extend!(2,3);
crate::impl_matrix_extend!(3,2);
crate::impl_matrix_extend!(3,3);
//Special case 3x3 matrix operations because I cba to write macros for the arbitrary cases
#[cfg(feature="named-fields")]
crate::impl_matrix_3x3!();

@ -0,0 +1,59 @@
use crate::vector::Vector;
use crate::matrix::Matrix;
#[repr(C)]
pub struct Vector2<T> {
pub x: T,
pub y: T,
}
#[repr(C)]
pub struct Vector3<T> {
pub x: T,
pub y: T,
pub z: T,
}
#[repr(C)]
pub struct Vector4<T> {
pub x: T,
pub y: T,
pub z: T,
pub w: T,
}
crate::impl_vector_named_fields!(Vector2, 2);
crate::impl_vector_named_fields!(Vector3, 3);
crate::impl_vector_named_fields!(Vector4, 4);
#[repr(C)]
pub struct Matrix2<T> {
pub x_axis: T,
pub y_axis: T,
}
#[repr(C)]
pub struct Matrix3<T> {
pub x_axis: T,
pub y_axis: T,
pub z_axis: T,
}
#[repr(C)]
pub struct Matrix4<T> {
pub x_axis: T,
pub y_axis: T,
pub z_axis: T,
pub w_axis: T,
}
crate::impl_matrix_named_fields!(
//outer struct
(
(Matrix2, 2),
(Matrix3, 3),
(Matrix4, 4)
),
//inner struct
(
(2),
(3),
(4)
)
);

@ -0,0 +1,96 @@
use crate::types::{Matrix3,Matrix3x2,Matrix3x4,Matrix4x2,Vector3};
type Planar64=fixed_wide::types::I32F32;
type Planar64Wide1=fixed_wide::types::I64F64;
//type Planar64Wide2=fixed_wide::types::I128F128;
type Planar64Wide3=fixed_wide::types::I256F256;
#[test]
fn wide_vec3(){
let v=Vector3::from_value(Planar64::from(3));
let v1=v*v.x;
let v2=v1*v1.y;
let v3=v2*v2.z;
assert_eq!(v3.array,Vector3::from_value(Planar64Wide3::from(3i128.pow(8))).array);
}
#[test]
fn wide_vec3_dot(){
let v=Vector3::from_value(Planar64::from(3));
let v1=v*v.x;
let v2=v1*v1.y;
let v3=v2.dot(v2);
assert_eq!(v3,Planar64Wide3::from(3i128.pow(8)*3));
}
#[test]
fn wide_vec3_length_squared(){
let v=Vector3::from_value(Planar64::from(3));
let v1=v*v.x;
let v2=v1*v1.y;
let v3=v2.length_squared();
assert_eq!(v3,Planar64Wide3::from(3i128.pow(8)*3));
}
#[test]
fn wide_matrix_dot(){
let lhs=Matrix3x4::new([
[Planar64::from(1),Planar64::from(2),Planar64::from(3),Planar64::from(4)],
[Planar64::from(5),Planar64::from(6),Planar64::from(7),Planar64::from(8)],
[Planar64::from(9),Planar64::from(10),Planar64::from(11),Planar64::from(12)],
]).transpose();
let rhs=Matrix4x2::new([
[Planar64::from(1),Planar64::from(2)],
[Planar64::from(3),Planar64::from(4)],
[Planar64::from(5),Planar64::from(6)],
[Planar64::from(7),Planar64::from(8)],
]).transpose();
// Mat3<Vec4>.dot(Mat4<Vec2>) -> Mat3<Vec2>
let m_dot=lhs*rhs;
//In[1]:= {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}} . {{1, 2}, {3, 4}, {5, 6}, {7, 8}}
//Out[1]= {{50, 60}, {114, 140}, {178, 220}}
assert_eq!(
m_dot.array,
Matrix3x2::new([
[Planar64Wide1::from(50),Planar64Wide1::from(60)],
[Planar64Wide1::from(114),Planar64Wide1::from(140)],
[Planar64Wide1::from(178),Planar64Wide1::from(220)],
]).transpose().array
);
}
#[test]
#[cfg(feature="named-fields")]
fn wide_matrix_det(){
let m=Matrix3::new([
[Planar64::from(1),Planar64::from(2),Planar64::from(3)],
[Planar64::from(4),Planar64::from(5),Planar64::from(7)],
[Planar64::from(6),Planar64::from(8),Planar64::from(9)],
]);
// In[2]:= Det[{{1, 2, 3}, {4, 5, 7}, {6, 8, 9}}]
// Out[2]= 7
assert_eq!(m.det(),fixed_wide::fixed::Fixed::<3,96>::from(7));
}
#[test]
#[cfg(feature="named-fields")]
fn wide_matrix_adjugate(){
let m=Matrix3::new([
[Planar64::from(1),Planar64::from(2),Planar64::from(3)],
[Planar64::from(4),Planar64::from(5),Planar64::from(7)],
[Planar64::from(6),Planar64::from(8),Planar64::from(9)],
]);
// In[6]:= Adjugate[{{1, 2, 3}, {4, 5, 7}, {6, 8, 9}}]
// Out[6]= {{-11, 6, -1}, {6, -9, 5}, {2, 4, -3}}
assert_eq!(
m.adjugate().array,
Matrix3::new([
[Planar64Wide1::from(-11),Planar64Wide1::from(6),Planar64Wide1::from(-1)],
[Planar64Wide1::from(6),Planar64Wide1::from(-9),Planar64Wide1::from(5)],
[Planar64Wide1::from(2),Planar64Wide1::from(4),Planar64Wide1::from(-3)],
]).array
);
}

@ -0,0 +1,6 @@
mod tests;
#[cfg(feature="named-fields")]
mod named;
mod fixed_wide;

@ -0,0 +1,30 @@
use crate::types::{Vector3,Matrix3};
#[test]
fn test_vector(){
let mut v=Vector3::new([1,2,3]);
assert_eq!(v.x,1);
assert_eq!(v.y,2);
assert_eq!(v.z,3);
v.x=5;
assert_eq!(v.x,5);
v.y*=v.x;
assert_eq!(v.y,10);
}
#[test]
fn test_matrix(){
let mut v=Matrix3::from_value(2);
assert_eq!(v.x_axis.x,2);
assert_eq!(v.y_axis.y,2);
assert_eq!(v.z_axis.z,2);
v.x_axis.x=5;
assert_eq!(v.x_axis.x,5);
v.y_axis.z*=v.x_axis.x;
assert_eq!(v.y_axis.z,10);
}

@ -0,0 +1,59 @@
use crate::types::{Vector2,Vector3,Matrix3x4,Matrix4x2,Matrix3x2,Matrix2x3};
#[test]
fn test_bool(){
assert_eq!(Vector3::new([false,false,false]).any(),false);
assert_eq!(Vector3::new([false,false,true]).any(),true);
assert_eq!(Vector3::new([false,false,true]).all(),false);
assert_eq!(Vector3::new([true,true,true]).all(),true);
}
#[test]
fn test_length_squared(){
assert_eq!(Vector3::new([1,2,3]).length_squared(),14);
}
#[test]
fn test_arithmetic(){
let a=Vector3::new([1,2,3]);
assert_eq!((a+a*2).array,Vector3::new([1*3,2*3,3*3]).array);
}
#[test]
fn matrix_transform_vector(){
let m=Matrix2x3::new([
[1,2,3],
[4,5,6],
]).transpose();
let v=Vector3::new([1,2,3]);
let transformed=m*v;
assert_eq!(transformed.array,Vector2::new([14,32]).array);
}
#[test]
fn matrix_dot(){
// All this code was written row major and I converted the lib to colum major
let rhs=Matrix4x2::new([
[ 1.0, 2.0],
[ 3.0, 4.0],
[ 5.0, 6.0],
[ 7.0, 8.0],
]).transpose(); // | | |
let lhs=Matrix3x4::new([ // | | |
[1.0, 2.0, 3.0, 4.0],// [ 50.0, 60.0],
[5.0, 6.0, 7.0, 8.0],// [114.0,140.0],
[9.0,10.0,11.0,12.0],// [178.0,220.0],
]).transpose();
// Mat3<Vec4>.dot(Mat4<Vec2>) -> Mat3<Vec2>
let m_dot=lhs*rhs;
//In[1]:= {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}} . {{1, 2}, {3, 4}, {5, 6}, {7, 8}}
//Out[1]= {{50, 60}, {114, 140}, {178, 220}}
assert_eq!(
m_dot.array,
Matrix3x2::new([
[50.0,60.0],
[114.0,140.0],
[178.0,220.0],
]).transpose().array
);
}

@ -0,0 +1,18 @@
use crate::vector::Vector;
use crate::matrix::Matrix;
pub type Vector2<T>=Vector<2,T>;
pub type Vector3<T>=Vector<3,T>;
pub type Vector4<T>=Vector<4,T>;
pub type Matrix2<T>=Matrix<2,2,T>;
pub type Matrix2x3<T>=Matrix<2,3,T>;
pub type Matrix2x4<T>=Matrix<2,4,T>;
pub type Matrix3x2<T>=Matrix<3,2,T>;
pub type Matrix3<T>=Matrix<3,3,T>;
pub type Matrix3x4<T>=Matrix<3,4,T>;
pub type Matrix4x2<T>=Matrix<4,2,T>;
pub type Matrix4x3<T>=Matrix<4,3,T>;
pub type Matrix4<T>=Matrix<4,4,T>;

@ -0,0 +1,19 @@
/// An array-backed vector type. Named fields are made accessible via the Deref/DerefMut traits which are implmented for 2-4 dimensions.
/// let mut v = Vector::new([1.0,2.0,3.0]);
/// v.x += v.z;
/// println!("v.x={}",v.x);
#[derive(Clone,Copy,Debug,Hash,Eq,PartialEq)]
pub struct Vector<const N:usize,T>{
pub(crate) array:[T;N],
}
crate::impl_vector!();
// Needs const generics for generic case
crate::impl_vector_extend!(2);
crate::impl_vector_extend!(3);
//cross product
#[cfg(feature="named-fields")]
crate::impl_vector_3!();