use std::borrow::{Borrow,Cow}; use std::collections::{HashSet,HashMap}; use strafesnet_common::integer::vec3::Vector3; use strafesnet_common::model::{self,MeshId,PolygonIter}; use strafesnet_common::integer::{self,vec3,Fixed,Planar64,Planar64Vec3,Ratio}; pub trait UndirectedEdge{ type DirectedEdge:Copy+DirectedEdge; fn as_directed(&self,parity:bool)->Self::DirectedEdge; } pub trait DirectedEdge{ type UndirectedEdge:Copy+std::fmt::Debug+UndirectedEdge; fn as_undirected(&self)->Self::UndirectedEdge; fn parity(&self)->bool; //this is stupid but may work fine fn reverse(&self)-><::UndirectedEdge as UndirectedEdge>::DirectedEdge{ self.as_undirected().as_directed(!self.parity()) } } #[derive(Debug,Clone,Copy,Hash,id::Id,Eq,PartialEq)] pub struct MeshVertId(u32); #[derive(Debug,Clone,Copy,Hash,id::Id,Eq,PartialEq)] pub struct MeshFaceId(u32); #[derive(Debug,Clone,Copy,Hash,id::Id,Eq,PartialEq)] pub struct SubmeshVertId(u32); #[derive(Debug,Clone,Copy,Hash,id::Id,Eq,PartialEq)] pub struct SubmeshEdgeId(u32); /// DirectedEdgeId refers to an EdgeId when undirected. #[derive(Debug,Clone,Copy,Hash,id::Id,Eq,PartialEq)] pub struct SubmeshDirectedEdgeId(u32); #[derive(Debug,Clone,Copy,Hash,id::Id,Eq,PartialEq)] pub struct SubmeshFaceId(u32); impl UndirectedEdge for SubmeshEdgeId{ type DirectedEdge=SubmeshDirectedEdgeId; fn as_directed(&self,parity:bool)->SubmeshDirectedEdgeId{ SubmeshDirectedEdgeId(self.0|((parity as u32)<<(u32::BITS-1))) } } impl DirectedEdge for SubmeshDirectedEdgeId{ type UndirectedEdge=SubmeshEdgeId; fn as_undirected(&self)->SubmeshEdgeId{ SubmeshEdgeId(self.0&!(1<<(u32::BITS-1))) } fn parity(&self)->bool{ self.0&(1<<(u32::BITS-1))!=0 } } //Vertex <-> Edge <-> Face -> Collide #[derive(Debug)] pub enum FEV{ Face(F), Edge(E::UndirectedEdge), Vert(V), } //use Unit32 #[repr(C)] for map files #[derive(Clone,Hash,Eq,PartialEq)] struct Face{ normal:Planar64Vec3, dot:Planar64, } struct Vert(Planar64Vec3); pub trait MeshQuery{ // Vertex must be Planar64Vec3 because it represents an actual position type Normal; type Offset; fn edge_n(&self,edge_id:EDGE::UndirectedEdge)->Planar64Vec3{ let verts=self.edge_verts(edge_id); self.vert(verts[1].clone())-self.vert(verts[0].clone()) } fn directed_edge_n(&self,directed_edge_id:EDGE)->Planar64Vec3{ let verts=self.edge_verts(directed_edge_id.as_undirected()); (self.vert(verts[1].clone())-self.vert(verts[0].clone()))*((directed_edge_id.parity() as i64)*2-1) } fn vert(&self,vert_id:VERT)->Planar64Vec3; fn face_nd(&self,face_id:FACE)->(Self::Normal,Self::Offset); fn face_edges(&self,face_id:FACE)->Cow>; fn edge_faces(&self,edge_id:EDGE::UndirectedEdge)->Cow<[FACE;2]>; fn edge_verts(&self,edge_id:EDGE::UndirectedEdge)->Cow<[VERT;2]>; fn vert_edges(&self,vert_id:VERT)->Cow>; fn vert_faces(&self,vert_id:VERT)->Cow>; } struct FaceRefs{ edges:Vec, //verts:Vec, } struct EdgeRefs{ faces:[SubmeshFaceId;2],//left, right verts:[SubmeshVertId;2],//bottom, top } struct VertRefs{ faces:Vec, edges:Vec, } pub struct PhysicsMeshData{ //this contains all real and virtual faces used in both the complete mesh and convex submeshes //faces are sorted such that all faces that belong to the complete mesh appear first, and then //all remaining faces are virtual to operate internal logic of the face crawler //and cannot be part of a physics collision //virtual faces are only used in convex submeshes. faces:Vec,//MeshFaceId indexes this list verts:Vec,//MeshVertId indexes this list } pub struct PhysicsMeshTopology{ //mapping of local ids to PhysicsMeshData ids faces:Vec,//SubmeshFaceId indexes this list verts:Vec,//SubmeshVertId indexes this list //all ids here are local to this object face_topology:Vec, edge_topology:Vec, vert_topology:Vec, } #[derive(Clone,Copy,Hash,id::Id,Eq,PartialEq)] pub struct PhysicsMeshId(u32); impl Into for PhysicsMeshId{ fn into(self)->MeshId{ MeshId::new(self.0) } } impl From for PhysicsMeshId{ fn from(value:MeshId)->Self{ Self::new(value.get()) } } #[derive(Debug,Default,Clone,Copy,Hash,id::Id,Eq,PartialEq)] pub struct PhysicsSubmeshId(u32); pub struct PhysicsMesh{ data:PhysicsMeshData, complete_mesh:PhysicsMeshTopology, //Most objects in roblox maps are already convex, so the list length is 0 //as soon as the mesh is divided into 2 submeshes, the list length jumps to 2. //length 1 is unnecessary since the complete mesh would be a duplicate of the only submesh, but would still function properly submeshes:Vec, } impl PhysicsMesh{ pub fn unit_cube()->Self{ //go go gadget debug print mesh let data=PhysicsMeshData{ faces:vec![ Face{normal:vec3::raw_xyz( 4294967296, 0, 0),dot:Planar64::raw(4294967296)}, Face{normal:vec3::raw_xyz( 0, 4294967296, 0),dot:Planar64::raw(4294967296)}, Face{normal:vec3::raw_xyz( 0, 0, 4294967296),dot:Planar64::raw(4294967296)}, Face{normal:vec3::raw_xyz(-4294967296, 0, 0),dot:Planar64::raw(4294967296)}, Face{normal:vec3::raw_xyz( 0,-4294967296, 0),dot:Planar64::raw(4294967296)}, Face{normal:vec3::raw_xyz( 0, 0,-4294967296),dot:Planar64::raw(4294967296)} ], verts:vec![ Vert(vec3::raw_xyz( 4294967296,-4294967296,-4294967296)), Vert(vec3::raw_xyz( 4294967296, 4294967296,-4294967296)), Vert(vec3::raw_xyz( 4294967296, 4294967296, 4294967296)), Vert(vec3::raw_xyz( 4294967296,-4294967296, 4294967296)), Vert(vec3::raw_xyz(-4294967296, 4294967296,-4294967296)), Vert(vec3::raw_xyz(-4294967296, 4294967296, 4294967296)), Vert(vec3::raw_xyz(-4294967296,-4294967296, 4294967296)), Vert(vec3::raw_xyz(-4294967296,-4294967296,-4294967296)) ] }; let mesh_topology=PhysicsMeshTopology{ faces:(0..data.faces.len() as u32).map(MeshFaceId::new).collect(), verts:(0..data.verts.len() as u32).map(MeshVertId::new).collect(), face_topology:vec![ FaceRefs{edges:vec![SubmeshDirectedEdgeId((9223372036854775808u64-(1<<63)+(1<<31)) as u32),SubmeshDirectedEdgeId((9223372036854775809u64-(1<<63)+(1<<31)) as u32),SubmeshDirectedEdgeId((9223372036854775810u64-(1<<63)+(1<<31)) as u32),SubmeshDirectedEdgeId(3)]}, FaceRefs{edges:vec![SubmeshDirectedEdgeId((9223372036854775812u64-(1<<63)+(1<<31)) as u32),SubmeshDirectedEdgeId((9223372036854775813u64-(1<<63)+(1<<31)) as u32),SubmeshDirectedEdgeId(6),SubmeshDirectedEdgeId(1)]}, FaceRefs{edges:vec![SubmeshDirectedEdgeId(7),SubmeshDirectedEdgeId(2),SubmeshDirectedEdgeId((9223372036854775814u64-(1<<63)+(1<<31)) as u32),SubmeshDirectedEdgeId((9223372036854775816u64-(1<<63)+(1<<31)) as u32)]}, FaceRefs{edges:vec![SubmeshDirectedEdgeId(8),SubmeshDirectedEdgeId(5),SubmeshDirectedEdgeId((9223372036854775817u64-(1<<63)+(1<<31)) as u32),SubmeshDirectedEdgeId(10)]}, FaceRefs{edges:vec![SubmeshDirectedEdgeId((9223372036854775815u64-(1<<63)+(1<<31)) as u32),SubmeshDirectedEdgeId((9223372036854775818u64-(1<<63)+(1<<31)) as u32),SubmeshDirectedEdgeId(11),SubmeshDirectedEdgeId((9223372036854775811u64-(1<<63)+(1<<31)) as u32)]}, FaceRefs{edges:vec![SubmeshDirectedEdgeId(4),SubmeshDirectedEdgeId(0),SubmeshDirectedEdgeId((9223372036854775819u64-(1<<63)+(1<<31)) as u32),SubmeshDirectedEdgeId(9)]} ], edge_topology:vec![ EdgeRefs{faces:[SubmeshFaceId(0),SubmeshFaceId(5)],verts:[SubmeshVertId(0),SubmeshVertId(1)]}, EdgeRefs{faces:[SubmeshFaceId(0),SubmeshFaceId(1)],verts:[SubmeshVertId(1),SubmeshVertId(2)]}, EdgeRefs{faces:[SubmeshFaceId(0),SubmeshFaceId(2)],verts:[SubmeshVertId(2),SubmeshVertId(3)]}, EdgeRefs{faces:[SubmeshFaceId(4),SubmeshFaceId(0)],verts:[SubmeshVertId(0),SubmeshVertId(3)]}, EdgeRefs{faces:[SubmeshFaceId(1),SubmeshFaceId(5)],verts:[SubmeshVertId(1),SubmeshVertId(4)]}, EdgeRefs{faces:[SubmeshFaceId(1),SubmeshFaceId(3)],verts:[SubmeshVertId(4),SubmeshVertId(5)]}, EdgeRefs{faces:[SubmeshFaceId(2),SubmeshFaceId(1)],verts:[SubmeshVertId(2),SubmeshVertId(5)]}, EdgeRefs{faces:[SubmeshFaceId(4),SubmeshFaceId(2)],verts:[SubmeshVertId(3),SubmeshVertId(6)]}, EdgeRefs{faces:[SubmeshFaceId(2),SubmeshFaceId(3)],verts:[SubmeshVertId(5),SubmeshVertId(6)]}, EdgeRefs{faces:[SubmeshFaceId(3),SubmeshFaceId(5)],verts:[SubmeshVertId(4),SubmeshVertId(7)]}, EdgeRefs{faces:[SubmeshFaceId(4),SubmeshFaceId(3)],verts:[SubmeshVertId(6),SubmeshVertId(7)]}, EdgeRefs{faces:[SubmeshFaceId(5),SubmeshFaceId(4)],verts:[SubmeshVertId(0),SubmeshVertId(7)]} ], vert_topology:vec![ VertRefs{faces:vec![SubmeshFaceId(0),SubmeshFaceId(4),SubmeshFaceId(5)],edges:vec![SubmeshDirectedEdgeId((9223372036854775811u64-(1<<63)+(1<<31)) as u32),SubmeshDirectedEdgeId((9223372036854775819u64-(1<<63)+(1<<31)) as u32),SubmeshDirectedEdgeId((9223372036854775808u64-(1<<63)+(1<<31)) as u32)]}, VertRefs{faces:vec![SubmeshFaceId(0),SubmeshFaceId(5),SubmeshFaceId(1)],edges:vec![SubmeshDirectedEdgeId((9223372036854775812u64-(1<<63)+(1<<31)) as u32),SubmeshDirectedEdgeId(0),SubmeshDirectedEdgeId((9223372036854775809u64-(1<<63)+(1<<31)) as u32)]}, VertRefs{faces:vec![SubmeshFaceId(0),SubmeshFaceId(2),SubmeshFaceId(1)],edges:vec![SubmeshDirectedEdgeId(1),SubmeshDirectedEdgeId((9223372036854775810u64-(1<<63)+(1<<31)) as u32),SubmeshDirectedEdgeId((9223372036854775814u64-(1<<63)+(1<<31)) as u32)]}, VertRefs{faces:vec![SubmeshFaceId(0),SubmeshFaceId(2),SubmeshFaceId(4)],edges:vec![SubmeshDirectedEdgeId(2),SubmeshDirectedEdgeId(3),SubmeshDirectedEdgeId((9223372036854775815u64-(1<<63)+(1<<31)) as u32)]}, VertRefs{faces:vec![SubmeshFaceId(3),SubmeshFaceId(5),SubmeshFaceId(1)],edges:vec![SubmeshDirectedEdgeId(4),SubmeshDirectedEdgeId((9223372036854775817u64-(1<<63)+(1<<31)) as u32),SubmeshDirectedEdgeId((9223372036854775813u64-(1<<63)+(1<<31)) as u32)]}, VertRefs{faces:vec![SubmeshFaceId(2),SubmeshFaceId(3),SubmeshFaceId(1)],edges:vec![SubmeshDirectedEdgeId(5),SubmeshDirectedEdgeId(6),SubmeshDirectedEdgeId((9223372036854775816u64-(1<<63)+(1<<31)) as u32)]}, VertRefs{faces:vec![SubmeshFaceId(2),SubmeshFaceId(3),SubmeshFaceId(4)],edges:vec![SubmeshDirectedEdgeId(7),SubmeshDirectedEdgeId(8),SubmeshDirectedEdgeId((9223372036854775818u64-(1<<63)+(1<<31)) as u32)]}, VertRefs{faces:vec![SubmeshFaceId(4),SubmeshFaceId(3),SubmeshFaceId(5)],edges:vec![SubmeshDirectedEdgeId(10),SubmeshDirectedEdgeId(11),SubmeshDirectedEdgeId(9)]} ] }; Self{ data, complete_mesh:mesh_topology, submeshes:Vec::new(), } } pub fn unit_cylinder()->Self{ Self::unit_cube() } #[inline] pub const fn complete_mesh(&self)->&PhysicsMeshTopology{ &self.complete_mesh } #[inline] pub const fn complete_mesh_view(&self)->PhysicsMeshView{ PhysicsMeshView{ data:&self.data, topology:self.complete_mesh(), } } #[inline] pub fn submeshes(&self)->&[PhysicsMeshTopology]{ //the complete mesh is already a convex mesh when len()==0, len()==1 is invalid but will still work if self.submeshes.len()==0{ std::slice::from_ref(&self.complete_mesh) }else{ &self.submeshes.as_slice() } } #[inline] pub fn submesh_view(&self,submesh_id:PhysicsSubmeshId)->PhysicsMeshView{ PhysicsMeshView{ data:&self.data, topology:&self.submeshes()[submesh_id.get() as usize], } } pub fn submesh_views(&self)->impl Iterator{ self.submeshes().iter().map(|topology|PhysicsMeshView{ data:&self.data, topology, }) } } //mesh builder code #[derive(Default,Clone)] struct VertRefGuy{ edges:HashSet, faces:HashSet, } #[derive(Clone,Hash,Eq,PartialEq)] struct EdgeRefVerts([SubmeshVertId;2]); impl EdgeRefVerts{ const fn new(v0:SubmeshVertId,v1:SubmeshVertId)->(Self,bool){ (if v0.0Self{ Self([SubmeshFaceId(0);2]) } fn push(&mut self,i:usize,face_id:SubmeshFaceId){ self.0[i]=face_id; } } struct FaceRefEdges(Vec); #[derive(Default)] struct EdgePool{ edge_guys:Vec<(EdgeRefVerts,EdgeRefFaces)>, edge_id_from_guy:HashMap, } impl EdgePool{ fn push(&mut self,edge_ref_verts:EdgeRefVerts)->(&mut EdgeRefFaces,SubmeshEdgeId){ let edge_id=if let Some(&edge_id)=self.edge_id_from_guy.get(&edge_ref_verts){ edge_id }else{ let edge_id=SubmeshEdgeId::new(self.edge_guys.len() as u32); self.edge_guys.push((edge_ref_verts.clone(),EdgeRefFaces::new())); self.edge_id_from_guy.insert(edge_ref_verts,edge_id); edge_id }; (&mut unsafe{self.edge_guys.get_unchecked_mut(edge_id.get() as usize)}.1,edge_id) } } #[derive(Debug)] pub enum PhysicsMeshError{ ZeroVertices, NoPhysicsGroups, } impl std::fmt::Display for PhysicsMeshError{ fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { write!(f,"{self:?}") } } impl std::error::Error for PhysicsMeshError{} impl TryFrom<&model::Mesh> for PhysicsMesh{ type Error=PhysicsMeshError; fn try_from(mesh:&model::Mesh)->Result{ if mesh.unique_pos.len()==0{ return Err(PhysicsMeshError::ZeroVertices); } let verts=mesh.unique_pos.iter().copied().map(Vert).collect(); //TODO: fix submeshes //flat map mesh.physics_groups[$1].groups.polys()[$2] as face_id //lower face_id points to upper face_id //the same face is not allowed to be in multiple polygon groups let mut faces=Vec::new(); let mut face_id_from_face=HashMap::new(); let mut mesh_topologies:Vec=mesh.physics_groups.iter().map(|physics_group|{ //construct submesh let mut submesh_faces=Vec::new();//these contain a map from submeshId->meshId let mut submesh_verts=Vec::new(); let mut submesh_vert_id_from_mesh_vert_id=HashMap::::new(); //lazy closure let mut get_submesh_vert_id=|vert_id:MeshVertId|{ if let Some(&submesh_vert_id)=submesh_vert_id_from_mesh_vert_id.get(&vert_id){ submesh_vert_id }else{ let submesh_vert_id=SubmeshVertId::new(submesh_verts.len() as u32); submesh_verts.push(vert_id); submesh_vert_id_from_mesh_vert_id.insert(vert_id,submesh_vert_id); submesh_vert_id } }; let mut edge_pool=EdgePool::default(); let mut vert_ref_guys=vec![VertRefGuy::default();mesh.unique_pos.len()]; let mut face_ref_guys=Vec::new(); for polygon_group_id in &physics_group.groups{ let polygon_group=&mesh.polygon_groups[polygon_group_id.get() as usize]; for poly_vertices in polygon_group.polys(){ let submesh_face_id=SubmeshFaceId::new(submesh_faces.len() as u32); //one face per poly let mut normal=Vector3::new([Fixed::ZERO,Fixed::ZERO,Fixed::ZERO]); let len=poly_vertices.len(); let face_edges=poly_vertices.into_iter().enumerate().map(|(i,vert_id)|{ let vert0_id=MeshVertId::new(mesh.unique_vertices[vert_id.get() as usize].pos.get() as u32); let vert1_id=MeshVertId::new(mesh.unique_vertices[poly_vertices[(i+1)%len].get() as usize].pos.get() as u32); //index submesh verts let submesh_vert0_id=get_submesh_vert_id(vert0_id); let submesh_vert1_id=get_submesh_vert_id(vert1_id); //https://www.khronos.org/opengl/wiki/Calculating_a_Surface_Normal (Newell's Method) let v0=mesh.unique_pos[vert0_id.get() as usize]; let v1=mesh.unique_pos[vert1_id.get() as usize]; normal+=Vector3::new([ (v0.y-v1.y)*(v0.z+v1.z), (v0.z-v1.z)*(v0.x+v1.x), (v0.x-v1.x)*(v0.y+v1.y), ]); //get/create edge and push face into it let (edge_ref_verts,is_sorted)=EdgeRefVerts::new(submesh_vert0_id,submesh_vert1_id); let (edge_ref_faces,edge_id)=edge_pool.push(edge_ref_verts); //polygon vertices as assumed to be listed clockwise //populate the edge face on the left or right depending on how the edge vertices got sorted edge_ref_faces.push(!is_sorted as usize,submesh_face_id); //index edges & face into vertices { let vert_ref_guy=unsafe{vert_ref_guys.get_unchecked_mut(submesh_vert0_id.get() as usize)}; vert_ref_guy.edges.insert(edge_id.as_directed(is_sorted)); vert_ref_guy.faces.insert(submesh_face_id); unsafe{vert_ref_guys.get_unchecked_mut(submesh_vert1_id.get() as usize)}.edges.insert(edge_id.as_directed(!is_sorted)); } //return directed_edge_id edge_id.as_directed(is_sorted) }).collect(); let mut dot=Fixed::ZERO; // find the average dot for &v in poly_vertices{ dot+=normal.dot(mesh.unique_pos[mesh.unique_vertices[v.get() as usize].pos.get() as usize]); } //assume face hash is stable, and there are no flush faces... let face=Face{ normal:(normal/len as i64).divide().fix_1(), dot:(dot/(len*len) as i64).fix_1(), }; let face_id=match face_id_from_face.get(&face){ Some(&face_id)=>face_id, None=>{ let face_id=MeshFaceId::new(faces.len() as u32); face_id_from_face.insert(face.clone(),face_id); faces.push(face); face_id } }; submesh_faces.push(face_id); face_ref_guys.push(FaceRefEdges(face_edges)); } } PhysicsMeshTopology{ faces:submesh_faces, verts:submesh_verts, face_topology:face_ref_guys.into_iter().map(|face_ref_guy|{ FaceRefs{edges:face_ref_guy.0} }).collect(), edge_topology:edge_pool.edge_guys.into_iter().map(|(edge_ref_verts,edge_ref_faces)| EdgeRefs{faces:edge_ref_faces.0,verts:edge_ref_verts.0} ).collect(), vert_topology:vert_ref_guys.into_iter().map(|vert_ref_guy| VertRefs{ edges:vert_ref_guy.edges.into_iter().collect(), faces:vert_ref_guy.faces.into_iter().collect(), } ).collect(), } }).collect(); Ok(Self{ data:PhysicsMeshData{ faces, verts, }, complete_mesh:mesh_topologies.pop().ok_or(PhysicsMeshError::NoPhysicsGroups)?, submeshes:mesh_topologies, }) } } pub struct PhysicsMeshView<'a>{ data:&'a PhysicsMeshData, topology:&'a PhysicsMeshTopology, } impl MeshQuery for PhysicsMeshView<'_>{ type Normal=Planar64Vec3; type Offset=Planar64; fn face_nd(&self,face_id:SubmeshFaceId)->(Planar64Vec3,Planar64){ let face_idx=self.topology.faces[face_id.get() as usize].get() as usize; (self.data.faces[face_idx].normal,self.data.faces[face_idx].dot) } //ideally I never calculate the vertex position, but I have to for the graphical meshes... fn vert(&self,vert_id:SubmeshVertId)->Planar64Vec3{ let vert_idx=self.topology.verts[vert_id.get() as usize].get() as usize; self.data.verts[vert_idx].0 } fn face_edges(&self,face_id:SubmeshFaceId)->Cow>{ Cow::Borrowed(&self.topology.face_topology[face_id.get() as usize].edges) } fn edge_faces(&self,edge_id:SubmeshEdgeId)->Cow<[SubmeshFaceId;2]>{ Cow::Borrowed(&self.topology.edge_topology[edge_id.get() as usize].faces) } fn edge_verts(&self,edge_id:SubmeshEdgeId)->Cow<[SubmeshVertId;2]>{ Cow::Borrowed(&self.topology.edge_topology[edge_id.get() as usize].verts) } fn vert_edges(&self,vert_id:SubmeshVertId)->Cow>{ Cow::Borrowed(&self.topology.vert_topology[vert_id.get() as usize].edges) } fn vert_faces(&self,vert_id:SubmeshVertId)->Cow>{ Cow::Borrowed(&self.topology.vert_topology[vert_id.get() as usize].faces) } } pub struct PhysicsMeshTransform{ pub vertex:integer::Planar64Affine3, pub normal:integer::mat3::Matrix3>, pub det:Fixed<3,96>, } impl PhysicsMeshTransform{ pub fn new(transform:integer::Planar64Affine3)->Self{ Self{ normal:transform.matrix3.adjugate().transpose(), det:transform.matrix3.det(), vertex:transform, } } } pub struct TransformedMesh<'a>{ view:PhysicsMeshView<'a>, transform:&'a PhysicsMeshTransform, } impl TransformedMesh<'_>{ pub const fn new<'a>( view:PhysicsMeshView<'a>, transform:&'a PhysicsMeshTransform, )->TransformedMesh<'a>{ TransformedMesh{ view, transform, } } pub fn verts<'a>(&'a self)->impl Iterator>>+'a{ self.view.data.verts.iter().map(|&Vert(pos)|self.transform.vertex.transform_point3(pos)) } fn farthest_vert(&self,dir:Planar64Vec3)->SubmeshVertId{ //this happens to be well-defined. there are no virtual virtices SubmeshVertId::new( self.view.topology.verts.iter() .enumerate() .max_by_key(|(_,&vert_id)| dir.dot(self.transform.vertex.transform_point3(self.view.data.verts[vert_id.get() as usize].0)) ) //assume there is more than zero vertices. .unwrap().0 as u32 ) } } impl MeshQuery for TransformedMesh<'_>{ type Normal=Vector3>; type Offset=Fixed<4,128>; fn face_nd(&self,face_id:SubmeshFaceId)->(Self::Normal,Self::Offset){ let (n,d)=self.view.face_nd(face_id); let transformed_n=self.transform.normal*n; let transformed_d=d*self.transform.det+transformed_n.dot(self.transform.vertex.translation); (transformed_n,transformed_d) } fn vert(&self,vert_id:SubmeshVertId)->Planar64Vec3{ self.transform.vertex.transform_point3(self.view.vert(vert_id)).fix_1() } #[inline] fn face_edges(&self,face_id:SubmeshFaceId)->Cow>{ self.view.face_edges(face_id) } #[inline] fn edge_faces(&self,edge_id:SubmeshEdgeId)->Cow<[SubmeshFaceId;2]>{ self.view.edge_faces(edge_id) } #[inline] fn edge_verts(&self,edge_id:SubmeshEdgeId)->Cow<[SubmeshVertId;2]>{ self.view.edge_verts(edge_id) } #[inline] fn vert_edges(&self,vert_id:SubmeshVertId)->Cow>{ self.view.vert_edges(vert_id) } #[inline] fn vert_faces(&self,vert_id:SubmeshVertId)->Cow>{ self.view.vert_faces(vert_id) } } //Note that a face on a minkowski mesh refers to a pair of fevs on the meshes it's summed from //(face,vertex) //(edge,edge) //(vertex,face) #[derive(Clone,Copy,Debug)] pub enum MinkowskiVert{ VertVert(SubmeshVertId,SubmeshVertId), } #[derive(Clone,Copy,Debug)] pub enum MinkowskiEdge{ VertEdge(SubmeshVertId,SubmeshEdgeId), EdgeVert(SubmeshEdgeId,SubmeshVertId), //EdgeEdge when edges are parallel } impl UndirectedEdge for MinkowskiEdge{ type DirectedEdge=MinkowskiDirectedEdge; fn as_directed(&self,parity:bool)->Self::DirectedEdge{ match self{ MinkowskiEdge::VertEdge(v0,e1)=>MinkowskiDirectedEdge::VertEdge(*v0,e1.as_directed(parity)), MinkowskiEdge::EdgeVert(e0,v1)=>MinkowskiDirectedEdge::EdgeVert(e0.as_directed(parity),*v1), } } } #[derive(Clone,Copy,Debug)] pub enum MinkowskiDirectedEdge{ VertEdge(SubmeshVertId,SubmeshDirectedEdgeId), EdgeVert(SubmeshDirectedEdgeId,SubmeshVertId), //EdgeEdge when edges are parallel } impl DirectedEdge for MinkowskiDirectedEdge{ type UndirectedEdge=MinkowskiEdge; fn as_undirected(&self)->Self::UndirectedEdge{ match self{ MinkowskiDirectedEdge::VertEdge(v0,e1)=>MinkowskiEdge::VertEdge(*v0,e1.as_undirected()), MinkowskiDirectedEdge::EdgeVert(e0,v1)=>MinkowskiEdge::EdgeVert(e0.as_undirected(),*v1), } } fn parity(&self)->bool{ match self{ MinkowskiDirectedEdge::VertEdge(_,e) |MinkowskiDirectedEdge::EdgeVert(e,_)=>e.parity(), } } } #[derive(Clone,Copy,Debug,Hash,Eq,PartialEq)] pub enum MinkowskiFace{ VertFace(SubmeshVertId,SubmeshFaceId), EdgeEdge(SubmeshEdgeId,SubmeshEdgeId,bool), FaceVert(SubmeshFaceId,SubmeshVertId), //EdgeFace //FaceEdge //FaceFace } pub struct MinkowskiMesh<'a>{ mesh0:TransformedMesh<'a>, mesh1:TransformedMesh<'a>, } //infinity fev algorithm state transition #[derive(Debug)] enum Transition{ Done,//found closest vert, no edges are better Vert(MinkowskiVert),//transition to vert } enum EV{ Vert(MinkowskiVert), Edge(MinkowskiEdge), } pub type GigaTime=Ratio,Fixed<4,128>>; impl MinkowskiMesh<'_>{ pub fn minkowski_sum<'a>(mesh0:TransformedMesh<'a>,mesh1:TransformedMesh<'a>)->MinkowskiMesh<'a>{ MinkowskiMesh{ mesh0, mesh1, } } fn farthest_vert(&self,dir:Planar64Vec3)->MinkowskiVert{ MinkowskiVert::VertVert(self.mesh0.farthest_vert(dir),self.mesh1.farthest_vert(-dir)) } fn next_transition_vert(&self,vert_id:MinkowskiVert,best_distance_squared:&mut Fixed<2,64>,infinity_dir:Planar64Vec3,point:Planar64Vec3)->Transition{ let mut best_transition=Transition::Done; for &directed_edge_id in self.vert_edges(vert_id).iter(){ let edge_n=self.directed_edge_n(directed_edge_id); //is boundary uncrossable by a crawl from infinity let edge_verts=self.edge_verts(directed_edge_id.as_undirected()); //select opposite vertex let test_vert_id=edge_verts[directed_edge_id.parity() as usize]; //test if it's closer let diff=point-self.vert(test_vert_id); if edge_n.dot(infinity_dir).is_zero(){ let distance_squared=diff.dot(diff); if distance_squared<*best_distance_squared{ best_transition=Transition::Vert(test_vert_id); *best_distance_squared=distance_squared; } } } best_transition } fn final_ev(&self,vert_id:MinkowskiVert,best_distance_squared:&mut Fixed<2,64>,infinity_dir:Planar64Vec3,point:Planar64Vec3)->EV{ let mut best_transition=EV::Vert(vert_id); let diff=point-self.vert(vert_id); for &directed_edge_id in self.vert_edges(vert_id).iter(){ let edge_n=self.directed_edge_n(directed_edge_id); //is boundary uncrossable by a crawl from infinity //check if time of collision is outside Time::MIN..Time::MAX if edge_n.dot(infinity_dir).is_zero(){ let d=edge_n.dot(diff); //test the edge let edge_nn=edge_n.dot(edge_n); if !d.is_negative()&&d<=edge_nn{ let distance_squared={ let c=diff.cross(edge_n); (c.dot(c)/edge_nn).divide().fix_2() }; if distance_squared<=*best_distance_squared{ best_transition=EV::Edge(directed_edge_id.as_undirected()); *best_distance_squared=distance_squared; } } } } best_transition } fn crawl_boundaries(&self,mut vert_id:MinkowskiVert,infinity_dir:Planar64Vec3,point:Planar64Vec3)->EV{ let mut best_distance_squared={ let diff=point-self.vert(vert_id); diff.dot(diff) }; loop{ match self.next_transition_vert(vert_id,&mut best_distance_squared,infinity_dir,point){ Transition::Done=>return self.final_ev(vert_id,&mut best_distance_squared,infinity_dir,point), Transition::Vert(new_vert_id)=>vert_id=new_vert_id, } } } /// This function drops a vertex down to an edge or a face if the path from infinity did not cross any vertex-edge boundaries but the point is supposed to have already crossed a boundary down from a vertex fn infinity_fev(&self,infinity_dir:Planar64Vec3,point:Planar64Vec3)->FEV::{ //start on any vertex //cross uncrossable vertex-edge boundaries until you find the closest vertex or edge //cross edge-face boundary if it's uncrossable match self.crawl_boundaries(self.farthest_vert(infinity_dir),infinity_dir,point){ //if a vert is returned, it is the closest point to the infinity point EV::Vert(vert_id)=>FEV::::Vert(vert_id), EV::Edge(edge_id)=>{ //cross to face if the boundary is not crossable and we are on the wrong side let edge_n=self.edge_n(edge_id); // point is multiplied by two because vert_sum sums two vertices. let delta_pos=point*2-{ let &[v0,v1]=self.edge_verts(edge_id).borrow(); self.vert(v0)+self.vert(v1) }; for (i,&face_id) in self.edge_faces(edge_id).iter().enumerate(){ let face_n=self.face_nd(face_id).0; //edge-face boundary nd, n facing out of the face towards the edge let boundary_n=face_n.cross(edge_n)*(i as i64*2-1); let boundary_d=boundary_n.dot(delta_pos); //check if time of collision is outside Time::MIN..Time::MAX //infinity_dir can always be treated as a velocity if !boundary_d.is_positive()&&boundary_n.dot(infinity_dir).is_zero(){ //both faces cannot pass this condition, return early if one does. return FEV::::Face(face_id); } } FEV::::Edge(edge_id) }, } } fn closest_fev_not_inside(&self,mut infinity_body:crate::physics::Body)->Option>{ infinity_body.infinity_dir().map_or(None,|dir|{ let infinity_fev=self.infinity_fev(-dir,infinity_body.position); //a line is simpler to solve than a parabola infinity_body.velocity=dir; infinity_body.acceleration=vec3::ZERO; //crawl in from negative infinity along a tangent line to get the closest fev // TODO: change crawl_fev args to delta time? Optional values? match crate::face_crawler::crawl_fev(infinity_fev,self,&infinity_body,integer::Time::MIN/4,infinity_body.time){ crate::face_crawler::CrawlResult::Miss(fev)=>Some(fev), crate::face_crawler::CrawlResult::Hit(_,_)=>None, } }) } pub fn predict_collision_in(&self,relative_body:&crate::physics::Body,time_limit:integer::Time)->Option<(MinkowskiFace,GigaTime)>{ self.closest_fev_not_inside(relative_body.clone()).map_or(None,|fev|{ //continue forwards along the body parabola match crate::face_crawler::crawl_fev(fev,self,relative_body,relative_body.time,time_limit){ crate::face_crawler::CrawlResult::Miss(_)=>None, crate::face_crawler::CrawlResult::Hit(face,time)=>Some((face,time)), } }) } pub fn predict_collision_out(&self,relative_body:&crate::physics::Body,time_limit:integer::Time)->Option<(MinkowskiFace,GigaTime)>{ //create an extrapolated body at time_limit let infinity_body=crate::physics::Body::new( relative_body.extrapolated_position(time_limit), -relative_body.extrapolated_velocity(time_limit), relative_body.acceleration, -time_limit, ); self.closest_fev_not_inside(infinity_body).map_or(None,|fev|{ //continue backwards along the body parabola match crate::face_crawler::crawl_fev(fev,self,&-relative_body.clone(),-time_limit,-relative_body.time){ crate::face_crawler::CrawlResult::Miss(_)=>None, crate::face_crawler::CrawlResult::Hit(face,time)=>Some((face,-time)),//no need to test -timeOption<(MinkowskiEdge,GigaTime)>{ //no algorithm needed, there is only one state and two cases (Edge,None) //determine when it passes an edge ("sliding off" case) let mut best_time={ let r=(time_limit-relative_body.time).to_ratio(); Ratio::new(r.num.fix_4(),r.den.fix_4()) }; let mut best_edge=None; let face_n=self.face_nd(contact_face_id).0; for &directed_edge_id in self.face_edges(contact_face_id).iter(){ let edge_n=self.directed_edge_n(directed_edge_id); //f x e points in let n=face_n.cross(edge_n); let verts=self.edge_verts(directed_edge_id.as_undirected()); let d=n.dot(self.vert(verts[0])+self.vert(verts[1])); //WARNING! d outside of *2 //WARNING: truncated precision for dt in Fixed::<4,128>::zeroes2(((n.dot(relative_body.position))*2-d).fix_4(),n.dot(relative_body.velocity).fix_4()*2,n.dot(relative_body.acceleration).fix_4()){ if Ratio::new(Planar64::ZERO,Planar64::ONE).le_ratio(dt)&&dt.lt_ratio(best_time)&&n.dot(relative_body.extrapolated_velocity_ratio_dt(dt)).is_negative(){ best_time=dt; best_edge=Some(directed_edge_id); break; } } } best_edge.map(|e|(e.as_undirected(),best_time)) } fn infinity_in(&self,infinity_body:crate::physics::Body)->Option<(MinkowskiFace,GigaTime)>{ let infinity_fev=self.infinity_fev(-infinity_body.velocity,infinity_body.position); match crate::face_crawler::crawl_fev(infinity_fev,self,&infinity_body,integer::Time::MIN/4,infinity_body.time){ crate::face_crawler::CrawlResult::Miss(_)=>None, crate::face_crawler::CrawlResult::Hit(face,time)=>Some((face,time)), } } pub fn is_point_in_mesh(&self,point:Planar64Vec3)->bool{ let infinity_body=crate::physics::Body::new(point,vec3::Y,vec3::ZERO,integer::Time::ZERO); //movement must escape the mesh forwards and backwards in time, //otherwise the point is not inside the mesh self.infinity_in(infinity_body) .is_some_and(|_| self.infinity_in(-infinity_body) .is_some() ) } } impl MeshQuery for MinkowskiMesh<'_>{ type Normal=Vector3>; type Offset=Fixed<4,128>; fn face_nd(&self,face_id:MinkowskiFace)->(Self::Normal,Self::Offset){ match face_id{ MinkowskiFace::VertFace(v0,f1)=>{ let (n,d)=self.mesh1.face_nd(f1); (-n,d-n.dot(self.mesh0.vert(v0))) }, MinkowskiFace::EdgeEdge(e0,e1,parity)=>{ let edge0_n=self.mesh0.edge_n(e0); let edge1_n=self.mesh1.edge_n(e1); let &[e0v0,e0v1]=self.mesh0.edge_verts(e0).borrow(); let &[e1v0,e1v1]=self.mesh1.edge_verts(e1).borrow(); let n=edge0_n.cross(edge1_n); let e0d=n.dot(self.mesh0.vert(e0v0)+self.mesh0.vert(e0v1)); let e1d=n.dot(self.mesh1.vert(e1v0)+self.mesh1.vert(e1v1)); ((n*(parity as i64*4-2)).fix_3(),((e0d-e1d)*(parity as i64*2-1)).fix_4()) }, MinkowskiFace::FaceVert(f0,v1)=>{ let (n,d)=self.mesh0.face_nd(f0); (n,d-n.dot(self.mesh1.vert(v1))) }, } } fn vert(&self,vert_id:MinkowskiVert)->Planar64Vec3{ match vert_id{ MinkowskiVert::VertVert(v0,v1)=>{ self.mesh0.vert(v0)-self.mesh1.vert(v1) }, } } fn face_edges(&self,face_id:MinkowskiFace)->Cow>{ match face_id{ MinkowskiFace::VertFace(v0,f1)=>{ Cow::Owned(self.mesh1.face_edges(f1).iter().map(|&edge_id1|{ MinkowskiDirectedEdge::VertEdge(v0,edge_id1.reverse()) }).collect()) }, MinkowskiFace::EdgeEdge(e0,e1,parity)=>{ let e0v=self.mesh0.edge_verts(e0); let e1v=self.mesh1.edge_verts(e1); //could sort this if ordered edges are needed //probably just need to reverse this list according to parity Cow::Owned(vec![ MinkowskiDirectedEdge::VertEdge(e0v[0],e1.as_directed(parity)), MinkowskiDirectedEdge::EdgeVert(e0.as_directed(!parity),e1v[0]), MinkowskiDirectedEdge::VertEdge(e0v[1],e1.as_directed(!parity)), MinkowskiDirectedEdge::EdgeVert(e0.as_directed(parity),e1v[1]), ]) }, MinkowskiFace::FaceVert(f0,v1)=>{ Cow::Owned(self.mesh0.face_edges(f0).iter().map(|&edge_id0|{ MinkowskiDirectedEdge::EdgeVert(edge_id0,v1) }).collect()) }, } } fn edge_faces(&self,edge_id:MinkowskiEdge)->Cow<[MinkowskiFace;2]>{ match edge_id{ MinkowskiEdge::VertEdge(v0,e1)=>{ //faces are listed backwards from the minkowski mesh let v0e=self.mesh0.vert_edges(v0); let &[e1f0,e1f1]=self.mesh1.edge_faces(e1).borrow(); Cow::Owned([(e1f1,false),(e1f0,true)].map(|(edge_face_id1,face_parity)|{ let mut best_edge=None; let mut best_d:Ratio,Fixed<8,256>>=Ratio::new(Fixed::ZERO,Fixed::ONE); let edge_face1_n=self.mesh1.face_nd(edge_face_id1).0; let edge_face1_nn=edge_face1_n.dot(edge_face1_n); for &directed_edge_id0 in v0e.iter(){ let edge0_n=self.mesh0.directed_edge_n(directed_edge_id0); //must be behind other face. let d=edge_face1_n.dot(edge0_n); if d.is_negative(){ let edge0_nn=edge0_n.dot(edge0_n); // Assume not every number is huge // TODO: revisit this let dd=(d*d)/(edge_face1_nn*edge0_nn); if best_d{ //tracking index with an external variable because .enumerate() is not available let v1e=self.mesh1.vert_edges(v1); let &[e0f0,e0f1]=self.mesh0.edge_faces(e0).borrow(); Cow::Owned([(e0f0,true),(e0f1,false)].map(|(edge_face_id0,face_parity)|{ let mut best_edge=None; let mut best_d:Ratio,Fixed<8,256>>=Ratio::new(Fixed::ZERO,Fixed::ONE); let edge_face0_n=self.mesh0.face_nd(edge_face_id0).0; let edge_face0_nn=edge_face0_n.dot(edge_face0_n); for &directed_edge_id1 in v1e.iter(){ let edge1_n=self.mesh1.directed_edge_n(directed_edge_id1); let d=edge_face0_n.dot(edge1_n); if d.is_negative(){ let edge1_nn=edge1_n.dot(edge1_n); let dd=(d*d)/(edge_face0_nn*edge1_nn); if best_dCow<[MinkowskiVert;2]>{ match edge_id{ MinkowskiEdge::VertEdge(v0,e1)=>{ Cow::Owned(self.mesh1.edge_verts(e1).map(|vert_id1|{ MinkowskiVert::VertVert(v0,vert_id1) })) }, MinkowskiEdge::EdgeVert(e0,v1)=>{ Cow::Owned(self.mesh0.edge_verts(e0).map(|vert_id0|{ MinkowskiVert::VertVert(vert_id0,v1) })) }, } } fn vert_edges(&self,vert_id:MinkowskiVert)->Cow>{ match vert_id{ MinkowskiVert::VertVert(v0,v1)=>{ let mut edges=Vec::new(); //detect shared volume when the other mesh is mirrored along a test edge dir let v0f=self.mesh0.vert_faces(v0); let v1f=self.mesh1.vert_faces(v1); let v0f_n:Vec<_>=v0f.iter().map(|&face_id|self.mesh0.face_nd(face_id).0).collect(); let v1f_n:Vec<_>=v1f.iter().map(|&face_id|self.mesh1.face_nd(face_id).0).collect(); let the_len=v0f.len()+v1f.len(); for &directed_edge_id in self.mesh0.vert_edges(v0).iter(){ let n=self.mesh0.directed_edge_n(directed_edge_id); let nn=n.dot(n); // TODO: there's gotta be a better way to do this //make a set of faces let mut face_normals=Vec::with_capacity(the_len); //add mesh0 faces as-is face_normals.clone_from(&v0f_n); for face_n in &v1f_n{ //add reflected mesh1 faces face_normals.push(*face_n-(n*face_n.dot(n)*2/nn).divide().fix_3()); } if is_empty_volume(face_normals){ edges.push(MinkowskiDirectedEdge::EdgeVert(directed_edge_id,v1)); } } for &directed_edge_id in self.mesh1.vert_edges(v1).iter(){ let n=self.mesh1.directed_edge_n(directed_edge_id); let nn=n.dot(n); let mut face_normals=Vec::with_capacity(the_len); face_normals.clone_from(&v1f_n); for face_n in &v0f_n{ face_normals.push(*face_n-(n*face_n.dot(n)*2/nn).divide().fix_3()); } if is_empty_volume(face_normals){ edges.push(MinkowskiDirectedEdge::VertEdge(v0,directed_edge_id)); } } Cow::Owned(edges) }, } } fn vert_faces(&self,_vert_id:MinkowskiVert)->Cow>{ unimplemented!() } } fn is_empty_volume(normals:Vec>>)->bool{ let len=normals.len(); for i in 0..len-1{ for j in i+1..len{ let n=normals[i].cross(normals[j]); let mut d_comp=None; for k in 0..len{ if k!=i&&k!=j{ let d=n.dot(normals[k]).is_negative(); if let Some(comp)=&d_comp{ // This is testing if d_comp*d < 0 if comp^d{ return true; } }else{ d_comp=Some(d); } } } } } return false; } #[test] fn test_is_empty_volume(){ assert!(!is_empty_volume([vec3::X.fix_3(),vec3::Y.fix_3(),vec3::Z.fix_3()].to_vec())); assert!(is_empty_volume([vec3::X.fix_3(),vec3::Y.fix_3(),vec3::Z.fix_3(),vec3::NEG_X.fix_3()].to_vec())); } #[test] fn build_me_a_cube(){ let mesh=PhysicsMesh::unit_cube(); //println!("mesh={:?}",mesh); }