strafe-client/src/main.rs

600 lines
17 KiB
Rust

// Copyright (c) 2016 The vulkano developers
// Licensed under the Apache License, Version 2.0
// <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT
// license <LICENSE-MIT or https://opensource.org/licenses/MIT>,
// at your option. All files in the project carrying such
// notice may not be copied, modified, or distributed except
// according to those terms.
use cgmath::{Matrix3, Matrix4, Rad, Vector2, Vector3, Rotation, Quaternion, Euler, SquareMatrix};
use strafe_client::{Normal, Position, INDICES, NORMALS, POSITIONS};
use std::{sync::Arc, time::Instant};
use vulkano::{
buffer::{
allocator::{SubbufferAllocator, SubbufferAllocatorCreateInfo},
Buffer, BufferCreateInfo, BufferUsage,
},
command_buffer::{
allocator::StandardCommandBufferAllocator, AutoCommandBufferBuilder, CommandBufferUsage,
RenderPassBeginInfo, SubpassContents,
},
descriptor_set::{
allocator::StandardDescriptorSetAllocator, PersistentDescriptorSet, WriteDescriptorSet,
},
device::{
physical::PhysicalDeviceType, Device, DeviceCreateInfo, DeviceExtensions, DeviceOwned,
QueueCreateInfo, QueueFlags,
},
format::Format,
image::{view::ImageView, AttachmentImage, ImageAccess, ImageUsage, SwapchainImage},
instance::{Instance, InstanceCreateInfo},
memory::allocator::{AllocationCreateInfo, MemoryUsage, StandardMemoryAllocator},
pipeline::{
graphics::{
depth_stencil::DepthStencilState,
input_assembly::InputAssemblyState,
vertex_input::Vertex,
viewport::{Viewport, ViewportState},
},
GraphicsPipeline, Pipeline, PipelineBindPoint,
},
render_pass::{Framebuffer, FramebufferCreateInfo, RenderPass, Subpass},
shader::ShaderModule,
swapchain::{
acquire_next_image, AcquireError, Swapchain, SwapchainCreateInfo, SwapchainCreationError,
SwapchainPresentInfo,
},
sync::{self, FlushError, GpuFuture},
VulkanLibrary,
};
use vulkano_win::VkSurfaceBuild;
use winit::{
event::{ElementState,KeyboardInput,VirtualKeyCode,Event, WindowEvent, DeviceEvent},
event_loop::{ControlFlow, EventLoop},
window::{Window, WindowBuilder},
};
const CONTROL_MOVEFORWARD:u32 = 0b00000001;
const CONTROL_MOVEBACK:u32 = 0b00000010;
const CONTROL_MOVERIGHT:u32 = 0b00000100;
const CONTROL_MOVELEFT:u32 = 0b00001000;
const CONTROL_MOVEUP:u32 = 0b00010000;
const CONTROL_MOVEDOWN:u32 = 0b00100000;
//const CONTROL_JUMP:u32 = 0b01000000;
//const CONTROL_ZOOM:u32 = 0b10000000;
const FORWARD_DIR:Vector3<i8> = Vector3::new(0,0,-1);
const RIGHT_DIR:Vector3<i8> = Vector3::new(1,0,0);
const UP_DIR:Vector3<i8> = Vector3::new(0,-1,0);
fn get_control_dir(controls: u32) -> Vector3<f64>{
//don't get fancy just do it
let mut control_dir:Vector3<i8> = Vector3::new(0,0,0);
if controls & CONTROL_MOVEFORWARD == CONTROL_MOVEFORWARD {
control_dir+=FORWARD_DIR;
}
if controls & CONTROL_MOVEBACK == CONTROL_MOVEBACK {
control_dir+=-FORWARD_DIR;
}
if controls & CONTROL_MOVELEFT == CONTROL_MOVELEFT {
control_dir+=-RIGHT_DIR;
}
if controls & CONTROL_MOVERIGHT == CONTROL_MOVERIGHT {
control_dir+=RIGHT_DIR;
}
if controls & CONTROL_MOVEUP == CONTROL_MOVEUP {
control_dir+=UP_DIR;
}
if controls & CONTROL_MOVEDOWN == CONTROL_MOVEDOWN {
control_dir+=-UP_DIR;
}
return control_dir.cast().unwrap()
}
fn main() {
// The start of this example is exactly the same as `triangle`. You should read the `triangle`
// example if you haven't done so yet.
let library = VulkanLibrary::new().unwrap();
let required_extensions = vulkano_win::required_extensions(&library);
let instance = Instance::new(
library,
InstanceCreateInfo {
enabled_extensions: required_extensions,
enumerate_portability: true,
..Default::default()
},
)
.unwrap();
let event_loop = EventLoop::new();
let surface = WindowBuilder::new()
.build_vk_surface(&event_loop, instance.clone())
.unwrap();
let device_extensions = DeviceExtensions {
khr_swapchain: true,
..DeviceExtensions::empty()
};
let (physical_device, queue_family_index) = instance
.enumerate_physical_devices()
.unwrap()
.filter(|p| p.supported_extensions().contains(&device_extensions))
.filter_map(|p| {
p.queue_family_properties()
.iter()
.enumerate()
.position(|(i, q)| {
q.queue_flags.intersects(QueueFlags::GRAPHICS)
&& p.surface_support(i as u32, &surface).unwrap_or(false)
})
.map(|i| (p, i as u32))
})
.min_by_key(|(p, _)| match p.properties().device_type {
PhysicalDeviceType::DiscreteGpu => 0,
PhysicalDeviceType::IntegratedGpu => 1,
PhysicalDeviceType::VirtualGpu => 2,
PhysicalDeviceType::Cpu => 3,
PhysicalDeviceType::Other => 4,
_ => 5,
})
.unwrap();
println!(
"Using device: {} (type: {:?})",
physical_device.properties().device_name,
physical_device.properties().device_type,
);
let (device, mut queues) = Device::new(
physical_device,
DeviceCreateInfo {
enabled_extensions: device_extensions,
queue_create_infos: vec![QueueCreateInfo {
queue_family_index,
..Default::default()
}],
..Default::default()
},
)
.unwrap();
let queue = queues.next().unwrap();
let (mut swapchain, images) = {
let surface_capabilities = device
.physical_device()
.surface_capabilities(&surface, Default::default())
.unwrap();
let image_format = Some(
device
.physical_device()
.surface_formats(&surface, Default::default())
.unwrap()[0]
.0,
);
let window = surface.object().unwrap().downcast_ref::<Window>().unwrap();
Swapchain::new(
device.clone(),
surface.clone(),
SwapchainCreateInfo {
min_image_count: surface_capabilities.min_image_count,
image_format,
image_extent: window.inner_size().into(),
image_usage: ImageUsage::COLOR_ATTACHMENT,
composite_alpha: surface_capabilities
.supported_composite_alpha
.into_iter()
.next()
.unwrap(),
..Default::default()
},
)
.unwrap()
};
let memory_allocator = Arc::new(StandardMemoryAllocator::new_default(device.clone()));
let vertex_buffer = Buffer::from_iter(
&memory_allocator,
BufferCreateInfo {
usage: BufferUsage::VERTEX_BUFFER,
..Default::default()
},
AllocationCreateInfo {
usage: MemoryUsage::Upload,
..Default::default()
},
POSITIONS,
)
.unwrap();
let normals_buffer = Buffer::from_iter(
&memory_allocator,
BufferCreateInfo {
usage: BufferUsage::VERTEX_BUFFER,
..Default::default()
},
AllocationCreateInfo {
usage: MemoryUsage::Upload,
..Default::default()
},
NORMALS,
)
.unwrap();
let index_buffer = Buffer::from_iter(
&memory_allocator,
BufferCreateInfo {
usage: BufferUsage::INDEX_BUFFER,
..Default::default()
},
AllocationCreateInfo {
usage: MemoryUsage::Upload,
..Default::default()
},
INDICES,
)
.unwrap();
let uniform_buffer = SubbufferAllocator::new(
memory_allocator.clone(),
SubbufferAllocatorCreateInfo {
buffer_usage: BufferUsage::UNIFORM_BUFFER,
..Default::default()
},
);
let vs = vs::load(device.clone()).unwrap();
let fs = fs::load(device.clone()).unwrap();
let render_pass = vulkano::single_pass_renderpass!(
device.clone(),
attachments: {
color: {
load: Clear,
store: Store,
format: swapchain.image_format(),
samples: 1,
},
depth: {
load: Clear,
store: DontCare,
format: Format::D16_UNORM,
samples: 1,
},
},
pass: {
color: [color],
depth_stencil: {depth},
},
)
.unwrap();
let (mut pipeline, mut framebuffers) =
window_size_dependent_setup(&memory_allocator, &vs, &fs, &images, render_pass.clone());
let mut recreate_swapchain = false;
let mut previous_frame_end = Some(sync::now(device.clone()).boxed());
let rotation_start = Instant::now();
let descriptor_set_allocator = StandardDescriptorSetAllocator::new(device.clone());
let command_buffer_allocator =
StandardCommandBufferAllocator::new(device.clone(), Default::default());
let mut time = Instant::now();
//polution
let mut mouse = Vector2::new(0.0,0.0);
let mut pos = Vector3::new(0.0,0.0,0.0);
let mut controls:u32 = 0;
let fly_speed = 0.05;
event_loop.run(move |event, _, control_flow| {
match event {
Event::WindowEvent {
event: WindowEvent::CloseRequested,
..
} => {
*control_flow = ControlFlow::Exit;
}
Event::WindowEvent {
event: WindowEvent::Resized(_),
..
} => {
recreate_swapchain = true;
}
Event::DeviceEvent {
event:
DeviceEvent::MouseMotion {
delta,
},
..
} => {
mouse+=Vector2::from(delta);
}
Event::WindowEvent {
event:
WindowEvent::KeyboardInput {
input:
KeyboardInput {
state,
virtual_keycode: Some(keycode),
..
},
..
},
..
} => {
match (state,keycode) {
(k,VirtualKeyCode::W) => match k {
ElementState::Pressed => controls|=CONTROL_MOVEFORWARD,
ElementState::Released => controls&=!CONTROL_MOVEFORWARD,
}
(k,VirtualKeyCode::A) => match k {
ElementState::Pressed => controls|=CONTROL_MOVELEFT,
ElementState::Released => controls&=!CONTROL_MOVELEFT,
}
(k,VirtualKeyCode::S) => match k {
ElementState::Pressed => controls|=CONTROL_MOVEBACK,
ElementState::Released => controls&=!CONTROL_MOVEBACK,
}
(k,VirtualKeyCode::D) => match k {
ElementState::Pressed => controls|=CONTROL_MOVERIGHT,
ElementState::Released => controls&=!CONTROL_MOVERIGHT,
}
(k,VirtualKeyCode::E) => match k {
ElementState::Pressed => controls|=CONTROL_MOVEUP,
ElementState::Released => controls&=!CONTROL_MOVEUP,
}
(k,VirtualKeyCode::Q) => match k {
ElementState::Pressed => controls|=CONTROL_MOVEDOWN,
ElementState::Released => controls&=!CONTROL_MOVEDOWN,
}
(k,VirtualKeyCode::Tab) => match k {
ElementState::Pressed => {
let window = surface.object().unwrap().downcast_ref::<Window>().unwrap();
let garb = window.set_cursor_grab(winit::window::CursorGrabMode::None);
match garb {
Err(err) => println!("set_cursor_grab error: {}",err),
_ => (),
}
}
ElementState::Released => {
let window = surface.object().unwrap().downcast_ref::<Window>().unwrap();
let garb = window.set_cursor_grab(winit::window::CursorGrabMode::Locked);
match garb {
Err(err) => println!("set_cursor_grab error: {}",err),
_ => (),
}
}
}
_ => (),
}
}
_ => (),
}
let time_now = Instant::now();
let dt = (time_now-time).as_secs_f64();
if dt > 1.0 / 120.0 {
time = time_now;
let angles = Euler{x:Rad(mouse.y/1024.),y:Rad(mouse.x/-1024.),z:Rad(0.0)};
let orientation=Quaternion::from(angles);
pos += orientation.rotate_vector(get_control_dir(controls))*fly_speed;
let window = surface.object().unwrap().downcast_ref::<Window>().unwrap();
let dimensions = window.inner_size();
if dimensions.width == 0 || dimensions.height == 0 {
return;
}
previous_frame_end.as_mut().unwrap().cleanup_finished();
if recreate_swapchain {
let (new_swapchain, new_images) =
match swapchain.recreate(SwapchainCreateInfo {
image_extent: dimensions.into(),
..swapchain.create_info()
}) {
Ok(r) => r,
Err(SwapchainCreationError::ImageExtentNotSupported { .. }) => return,
Err(e) => panic!("failed to recreate swapchain: {e}"),
};
swapchain = new_swapchain;
let (new_pipeline, new_framebuffers) = window_size_dependent_setup(
&memory_allocator,
&vs,
&fs,
&new_images,
render_pass.clone(),
);
pipeline = new_pipeline;
framebuffers = new_framebuffers;
recreate_swapchain = false;
}
let uniform_buffer_subbuffer = {
let elapsed = rotation_start.elapsed();
let rotation =
elapsed.as_secs() as f64 + elapsed.subsec_nanos() as f64 / 1_000_000_000.0;
let rotation = Matrix3::from_angle_y(Rad(rotation as f32));
// note: this teapot was meant for OpenGL where the origin is at the lower left
// instead the origin is at the upper left in Vulkan, so we reverse the Y axis
let aspect_ratio =
swapchain.image_extent()[0] as f32 / swapchain.image_extent()[1] as f32;
let proj = cgmath::perspective(
Rad(std::f32::consts::FRAC_PI_2),
aspect_ratio,
0.01,
100.0,
);
let view = Matrix4::from_translation(pos)*Matrix4::from(angles);
let scale = Matrix4::from_scale(-0.01);
// Matrix4::from_translation(Vector3 { x: 0.0, y: 0.0, z: 0.0 }) *
let uniform_data = vs::Data {
world: (Matrix4::from(rotation) * scale).into(),
view: view.invert().unwrap().cast::<f32>().unwrap().into(),
proj: proj.into(),
};
let subbuffer = uniform_buffer.allocate_sized().unwrap();
*subbuffer.write().unwrap() = uniform_data;
subbuffer
};
let layout = pipeline.layout().set_layouts().get(0).unwrap();
let set = PersistentDescriptorSet::new(
&descriptor_set_allocator,
layout.clone(),
[WriteDescriptorSet::buffer(0, uniform_buffer_subbuffer)],
)
.unwrap();
let (image_index, suboptimal, acquire_future) =
match acquire_next_image(swapchain.clone(), None) {
Ok(r) => r,
Err(AcquireError::OutOfDate) => {
recreate_swapchain = true;
return;
}
Err(e) => panic!("failed to acquire next image: {e}"),
};
if suboptimal {
recreate_swapchain = true;
}
let mut builder = AutoCommandBufferBuilder::primary(
&command_buffer_allocator,
queue.queue_family_index(),
CommandBufferUsage::OneTimeSubmit,
)
.unwrap();
builder
.begin_render_pass(
RenderPassBeginInfo {
clear_values: vec![
Some([0.0, 0.0, 1.0, 1.0].into()),
Some(1f32.into()),
],
..RenderPassBeginInfo::framebuffer(
framebuffers[image_index as usize].clone(),
)
},
SubpassContents::Inline,
)
.unwrap()
.bind_pipeline_graphics(pipeline.clone())
.bind_descriptor_sets(
PipelineBindPoint::Graphics,
pipeline.layout().clone(),
0,
set,
)
.bind_vertex_buffers(0, (vertex_buffer.clone(), normals_buffer.clone()))
.bind_index_buffer(index_buffer.clone())
.draw_indexed(index_buffer.len() as u32, 1, 0, 0, 0)
.unwrap()
.end_render_pass()
.unwrap();
let command_buffer = builder.build().unwrap();
let future = previous_frame_end
.take()
.unwrap()
.join(acquire_future)
.then_execute(queue.clone(), command_buffer)
.unwrap()
.then_swapchain_present(
queue.clone(),
SwapchainPresentInfo::swapchain_image_index(swapchain.clone(), image_index),
)
.then_signal_fence_and_flush();
match future {
Ok(future) => {
previous_frame_end = Some(future.boxed());
}
Err(FlushError::OutOfDate) => {
recreate_swapchain = true;
previous_frame_end = Some(sync::now(device.clone()).boxed());
}
Err(e) => {
println!("failed to flush future: {e}");
previous_frame_end = Some(sync::now(device.clone()).boxed());
}
}
}
});
}
/// This function is called once during initialization, then again whenever the window is resized.
fn window_size_dependent_setup(
memory_allocator: &StandardMemoryAllocator,
vs: &ShaderModule,
fs: &ShaderModule,
images: &[Arc<SwapchainImage>],
render_pass: Arc<RenderPass>,
) -> (Arc<GraphicsPipeline>, Vec<Arc<Framebuffer>>) {
let dimensions = images[0].dimensions().width_height();
let depth_buffer = ImageView::new_default(
AttachmentImage::transient(memory_allocator, dimensions, Format::D16_UNORM).unwrap(),
)
.unwrap();
let framebuffers = images
.iter()
.map(|image| {
let view = ImageView::new_default(image.clone()).unwrap();
Framebuffer::new(
render_pass.clone(),
FramebufferCreateInfo {
attachments: vec![view, depth_buffer.clone()],
..Default::default()
},
)
.unwrap()
})
.collect::<Vec<_>>();
// In the triangle example we use a dynamic viewport, as its a simple example. However in the
// teapot example, we recreate the pipelines with a hardcoded viewport instead. This allows the
// driver to optimize things, at the cost of slower window resizes.
// https://computergraphics.stackexchange.com/questions/5742/vulkan-best-way-of-updating-pipeline-viewport
let pipeline = GraphicsPipeline::start()
.vertex_input_state([Position::per_vertex(), Normal::per_vertex()])
.vertex_shader(vs.entry_point("main").unwrap(), ())
.input_assembly_state(InputAssemblyState::new())
.viewport_state(ViewportState::viewport_fixed_scissor_irrelevant([
Viewport {
origin: [0.0, 0.0],
dimensions: [dimensions[0] as f32, dimensions[1] as f32],
depth_range: 0.0..1.0,
},
]))
.fragment_shader(fs.entry_point("main").unwrap(), ())
.depth_stencil_state(DepthStencilState::simple_depth_test())
.render_pass(Subpass::from(render_pass, 0).unwrap())
.build(memory_allocator.device().clone())
.unwrap();
(pipeline, framebuffers)
}
mod vs {
vulkano_shaders::shader! {
ty: "vertex",
path: "src/vert.glsl",
}
}
mod fs {
vulkano_shaders::shader! {
ty: "fragment",
path: "src/frag.glsl",
}
}