rework predict_collision_end

This commit is contained in:
Quaternions 2023-09-18 18:06:03 -07:00
parent 3a0b3900ec
commit ad7abbdf1c
2 changed files with 166 additions and 141 deletions

View File

@ -20,8 +20,6 @@ pub struct Body {
velocity: glam::Vec3,//I64 where 2^32 = 1 u/s velocity: glam::Vec3,//I64 where 2^32 = 1 u/s
acceleration: glam::Vec3,//I64 where 2^32 = 1 u/s/s acceleration: glam::Vec3,//I64 where 2^32 = 1 u/s/s
time: TIME,//nanoseconds x xxxxD! time: TIME,//nanoseconds x xxxxD!
//origin_time = timestamp of position and velocity
//processed_time = starting time for new events. prevents colliding with the analytic euqation in the past
} }
pub enum MoveRestriction { pub enum MoveRestriction {
@ -260,7 +258,7 @@ impl Model {
//need non-face (full model) variant for CanCollide false objects //need non-face (full model) variant for CanCollide false objects
//OR have a separate list from contacts for model intersection //OR have a separate list from contacts for model intersection
#[derive(Eq, Hash, PartialEq)] #[derive(Clone,Eq,Hash,PartialEq)]
pub struct RelativeCollision { pub struct RelativeCollision {
face: TreyMeshFace,//just an id face: TreyMeshFace,//just an id
model: u32,//using id to avoid lifetimes model: u32,//using id to avoid lifetimes
@ -303,9 +301,9 @@ impl Body {
impl PhysicsState { impl PhysicsState {
//tickless gaming //tickless gaming
pub fn run(&mut self, time: TIME){ pub fn run(&mut self, time_limit:TIME){
//prepare is ommitted - everything is done via instructions. //prepare is ommitted - everything is done via instructions.
while let Some(instruction) = self.next_instruction(time) {//collect while let Some(instruction) = self.next_instruction(time_limit) {//collect
//advance //advance
//self.advance_time(instruction.time); //self.advance_time(instruction.time);
//process //process
@ -369,229 +367,256 @@ impl PhysicsState {
} }
aabb aabb
} }
fn predict_collision_end(&self,model:&Model,time_limit:TIME,model_id:u32) -> Option<TimedInstruction<PhysicsInstruction>> { fn predict_collision_end(&self,time:TIME,time_limit:TIME,collision_data:&RelativeCollision) -> Option<TimedInstruction<PhysicsInstruction>> {
//must treat cancollide false objects differently: you may not exit through the same face you entered. //must treat cancollide false objects differently: you may not exit through the same face you entered.
//RelativeCollsion must reference the full model instead of a particular face //RelativeCollsion must reference the full model instead of a particular face
//this is Ctrl+C Ctrl+V of predict_collision_start but with v=-v before the calc and t=-t after the calc //this is Ctrl+C Ctrl+V of predict_collision_start but with v=-v before the calc and t=-t after the calc
//find best t //find best t
let mut best_delta_time=time_limit-self.body.time; let mut best_time=time_limit;
let mut best_face:Option<TreyMeshFace>=None; let mut exit_face:Option<TreyMeshFace>=None;
let mesh0=self.mesh(); let mesh0=self.mesh();
let mesh1=model.mesh(); let mesh1=self.models_cringe_clone.get(collision_data.model as usize).unwrap().mesh();
let (p,v,a)=(self.body.position,-self.body.velocity,self.body.acceleration); let (v,a)=(-self.body.velocity,self.body.acceleration);
//collect x //collect x
for t in zeroes2(mesh0.max.x-mesh1.min.x, v.x, a.x) { match collision_data.face {
//negative t = back in time AabbFace::Top|AabbFace::Back|AabbFace::Bottom|AabbFace::Front=>{
//must be moving towards surface to collide for t in zeroes2(mesh0.max.x-mesh1.min.x,v.x,a.x) {
//must beat the current soonest collision time //negative t = back in time
//must be moving towards surface //must be moving towards surface to collide
let t_time=((-t as f64)*1_000_000_000f64) as TIME; //must beat the current soonest collision time
if 0<=t_time&&t_time<best_delta_time&&0f32<(-v.x+a.x*t){ //must be moving towards surface
let dp=self.body.extrapolated_position(self.body.time+t_time)-p; let t_time=self.body.time+((-t as f64)*1_000_000_000f64) as TIME;
//faces must be overlapping if time<=t_time&&t_time<best_time&&0f32<(-v.x+a.x*t){
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z { //collect valid t
//collect valid t best_time=t_time;
best_delta_time=t_time; exit_face=Some(TreyMeshFace::Left);
best_face=Some(TreyMeshFace::Left); }
} }
} for t in zeroes2(mesh0.min.x-mesh1.max.x,v.x,a.x) {
} //negative t = back in time
for t in zeroes2(mesh0.min.x-mesh1.max.x, v.x, a.x) { //must be moving towards surface to collide
//negative t = back in time //must beat the current soonest collision time
//must be moving towards surface to collide //must be moving towards surface
//must beat the current soonest collision time let t_time=self.body.time+((-t as f64)*1_000_000_000f64) as TIME;
//must be moving towards surface if time<=t_time&&t_time<best_time&&(-v.x+a.x*t)<0f32{
let t_time=((-t as f64)*1_000_000_000f64) as TIME; //collect valid t
if 0<=t_time&&t_time<best_delta_time&&(-v.x+a.x*t)<0f32{ best_time=t_time;
let dp=self.body.extrapolated_position(self.body.time+t_time)-p; exit_face=Some(TreyMeshFace::Right);
//faces must be overlapping }
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
//collect valid t
best_delta_time=t_time;
best_face=Some(TreyMeshFace::Right);
} }
} },
AabbFace::Left=>{
//generate event if v.x<0||a.x<0
if -v.x<0f32{
best_time=time;
exit_face=Some(TreyMeshFace::Left);
}
},
AabbFace::Right=>{
//generate event if 0<v.x||0<a.x
if 0f32<(-v.x){
best_time=time;
exit_face=Some(TreyMeshFace::Right);
}
},
} }
//collect y //collect y
for t in zeroes2(mesh0.max.y-mesh1.min.y, v.y, a.y) { match collision_data.face {
//negative t = back in time AabbFace::Left|AabbFace::Back|AabbFace::Right|AabbFace::Front=>{
//must be moving towards surface to collide for t in zeroes2(mesh0.max.y-mesh1.min.y,v.y,a.y) {
//must beat the current soonest collision time //negative t = back in time
//must be moving towards surface //must be moving towards surface to collide
let t_time=((-t as f64)*1_000_000_000f64) as TIME; //must beat the current soonest collision time
if 0<=t_time&&t_time<best_delta_time&&0f32<(-v.y+a.y*t){ //must be moving towards surface
let dp=self.body.extrapolated_position(self.body.time+t_time)-p; let t_time=self.body.time+((-t as f64)*1_000_000_000f64) as TIME;
//faces must be overlapping if time<=t_time&&t_time<best_time&&0f32<(-v.y+a.y*t){
if mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z { //collect valid t
//collect valid t best_time=t_time;
best_delta_time=t_time; exit_face=Some(TreyMeshFace::Bottom);
best_face=Some(TreyMeshFace::Bottom); }
} }
} for t in zeroes2(mesh0.min.y-mesh1.max.y,v.y,a.y) {
} //negative t = back in time
for t in zeroes2(mesh0.min.y-mesh1.max.y, v.y, a.y) { //must be moving towards surface to collide
//negative t = back in time //must beat the current soonest collision time
//must be moving towards surface to collide //must be moving towards surface
//must beat the current soonest collision time let t_time=self.body.time+((-t as f64)*1_000_000_000f64) as TIME;
//must be moving towards surface if time<=t_time&&t_time<best_time&&(-v.y+a.y*t)<0f32{
let t_time=((-t as f64)*1_000_000_000f64) as TIME; //collect valid t
if 0<=t_time&&t_time<best_delta_time&&(-v.y+a.y*t)<0f32{ best_time=t_time;
let dp=self.body.extrapolated_position(self.body.time+t_time)-p; exit_face=Some(TreyMeshFace::Top);
//faces must be overlapping }
if mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
//collect valid t
best_delta_time=t_time;
best_face=Some(TreyMeshFace::Top);
} }
} },
AabbFace::Bottom=>{
//generate event if v.y<0||a.y<0
if -v.y<0f32{
best_time=time;
exit_face=Some(TreyMeshFace::Bottom);
}
},
AabbFace::Top=>{
//generate event if 0<v.y||0<a.y
if 0f32<(-v.y){
best_time=time;
exit_face=Some(TreyMeshFace::Top);
}
},
} }
//collect z //collect z
for t in zeroes2(mesh0.max.z-mesh1.min.z, v.z, a.z) { match collision_data.face {
//negative t = back in time AabbFace::Left|AabbFace::Bottom|AabbFace::Right|AabbFace::Top=>{
//must be moving towards surface to collide for t in zeroes2(mesh0.max.z-mesh1.min.z,v.z,a.z) {
//must beat the current soonest collision time //negative t = back in time
//must be moving towards surface //must be moving towards surface to collide
let t_time=((-t as f64)*1_000_000_000f64) as TIME; //must beat the current soonest collision time
if 0<=t_time&&t_time<best_delta_time&&0f32<(-v.z+a.z*t){ //must be moving towards surface
let dp=self.body.extrapolated_position(self.body.time+t_time)-p; let t_time=self.body.time+((-t as f64)*1_000_000_000f64) as TIME;
//faces must be overlapping if time<=t_time&&t_time<best_time&&0f32<(-v.z+a.z*t){
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x { //collect valid t
//collect valid t best_time=t_time;
best_delta_time=t_time; exit_face=Some(TreyMeshFace::Front);
best_face=Some(TreyMeshFace::Front); }
} }
} for t in zeroes2(mesh0.min.z-mesh1.max.z,v.z,a.z) {
} //negative t = back in time
for t in zeroes2(mesh0.min.z-mesh1.max.z, v.z, a.z) { //must be moving towards surface to collide
//negative t = back in time //must beat the current soonest collision time
//must be moving towards surface to collide //must be moving towards surface
//must beat the current soonest collision time let t_time=self.body.time+((-t as f64)*1_000_000_000f64) as TIME;
//must be moving towards surface if time<=t_time&&t_time<best_time&&(-v.z+a.z*t)<0f32{
let t_time=((-t as f64)*1_000_000_000f64) as TIME; //collect valid t
if 0<=t_time&&t_time<best_delta_time&&(-v.z+a.z*t)<0f32{ best_time=t_time;
let dp=self.body.extrapolated_position(self.body.time+t_time)-p; exit_face=Some(TreyMeshFace::Back);
//faces must be overlapping }
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x {
//collect valid t
best_delta_time=t_time;
best_face=Some(TreyMeshFace::Back);
} }
} },
AabbFace::Front=>{
//generate event if v.z<0||a.z<0
if -v.z<0f32{
best_time=time;
exit_face=Some(TreyMeshFace::Front);
}
},
AabbFace::Back=>{
//generate event if 0<v.z||0<a.z
if 0f32<(-v.z){
best_time=time;
exit_face=Some(TreyMeshFace::Back);
}
},
} }
//generate instruction //generate instruction
if let Some(face) = best_face{ if let Some(face) = exit_face{
return Some(TimedInstruction { return Some(TimedInstruction {
time: self.body.time+best_delta_time, time: best_time,
instruction: PhysicsInstruction::CollisionStart(RelativeCollision { instruction: PhysicsInstruction::CollisionEnd(collision_data.clone())
face,
model: model_id
})
}) })
} }
None None
} }
fn predict_collision_start(&self,model:&Model,time_limit:TIME,model_id:u32) -> Option<TimedInstruction<PhysicsInstruction>> { fn predict_collision_start(&self,time:TIME,time_limit:TIME,model_id:u32) -> Option<TimedInstruction<PhysicsInstruction>> {
//find best t //find best t
let mut best_delta_time=time_limit-self.body.time; let mut best_time=time_limit;
let mut best_face:Option<TreyMeshFace>=None; let mut best_face:Option<TreyMeshFace>=None;
let mesh0=self.mesh(); let mesh0=self.mesh();
let mesh1=model.mesh(); let mesh1=self.models_cringe_clone.get(model_id as usize).unwrap().mesh();
let (p,v,a)=(self.body.position,self.body.velocity,self.body.acceleration); let (p,v,a)=(self.body.position,self.body.velocity,self.body.acceleration);
//collect x //collect x
for t in zeroes2(mesh0.max.x-mesh1.min.x, v.x, a.x) { for t in zeroes2(mesh0.max.x-mesh1.min.x,v.x,a.x) {
//negative t = back in time //negative t = back in time
//must be moving towards surface to collide //must be moving towards surface to collide
//must beat the current soonest collision time //must beat the current soonest collision time
//must be moving towards surface //must be moving towards surface
let t_time=((t as f64)*1_000_000_000f64) as TIME; let t_time=self.body.time+((t as f64)*1_000_000_000f64) as TIME;
if 0<=t_time&&t_time<best_delta_time&&0f32<v.x+a.x*t{ if time<=t_time&&t_time<best_time&&0f32<v.x+a.x*t{
let dp=self.body.extrapolated_position(self.body.time+t_time)-p; let dp=self.body.extrapolated_position(t_time)-p;
//faces must be overlapping //faces must be overlapping
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z { if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
//collect valid t //collect valid t
best_delta_time=t_time; best_time=t_time;
best_face=Some(TreyMeshFace::Left); best_face=Some(TreyMeshFace::Left);
} }
} }
} }
for t in zeroes2(mesh0.min.x-mesh1.max.x, v.x, a.x) { for t in zeroes2(mesh0.min.x-mesh1.max.x,v.x,a.x) {
//negative t = back in time //negative t = back in time
//must be moving towards surface to collide //must be moving towards surface to collide
//must beat the current soonest collision time //must beat the current soonest collision time
//must be moving towards surface //must be moving towards surface
let t_time=((t as f64)*1_000_000_000f64) as TIME; let t_time=self.body.time+((t as f64)*1_000_000_000f64) as TIME;
if 0<=t_time&&t_time<best_delta_time&&v.x+a.x*t<0f32{ if time<=t_time&&t_time<best_time&&v.x+a.x*t<0f32{
let dp=self.body.extrapolated_position(self.body.time+t_time)-p; let dp=self.body.extrapolated_position(t_time)-p;
//faces must be overlapping //faces must be overlapping
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z { if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
//collect valid t //collect valid t
best_delta_time=t_time; best_time=t_time;
best_face=Some(TreyMeshFace::Right); best_face=Some(TreyMeshFace::Right);
} }
} }
} }
//collect y //collect y
for t in zeroes2(mesh0.max.y-mesh1.min.y, v.y, a.y) { for t in zeroes2(mesh0.max.y-mesh1.min.y,v.y,a.y) {
//negative t = back in time //negative t = back in time
//must be moving towards surface to collide //must be moving towards surface to collide
//must beat the current soonest collision time //must beat the current soonest collision time
//must be moving towards surface //must be moving towards surface
let t_time=((t as f64)*1_000_000_000f64) as TIME; let t_time=self.body.time+((t as f64)*1_000_000_000f64) as TIME;
if 0<=t_time&&t_time<best_delta_time&&0f32<v.y+a.y*t{ if time<=t_time&&t_time<best_time&&0f32<v.y+a.y*t{
let dp=self.body.extrapolated_position(self.body.time+t_time)-p; let dp=self.body.extrapolated_position(t_time)-p;
//faces must be overlapping //faces must be overlapping
if mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z { if mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
//collect valid t //collect valid t
best_delta_time=t_time; best_time=t_time;
best_face=Some(TreyMeshFace::Bottom); best_face=Some(TreyMeshFace::Bottom);
} }
} }
} }
for t in zeroes2(mesh0.min.y-mesh1.max.y, v.y, a.y) { for t in zeroes2(mesh0.min.y-mesh1.max.y,v.y,a.y) {
//negative t = back in time //negative t = back in time
//must be moving towards surface to collide //must be moving towards surface to collide
//must beat the current soonest collision time //must beat the current soonest collision time
//must be moving towards surface //must be moving towards surface
let t_time=((t as f64)*1_000_000_000f64) as TIME; let t_time=self.body.time+((t as f64)*1_000_000_000f64) as TIME;
if 0<=t_time&&t_time<best_delta_time&&v.y+a.y*t<0f32{ if time<=t_time&&t_time<best_time&&v.y+a.y*t<0f32{
let dp=self.body.extrapolated_position(self.body.time+t_time)-p; let dp=self.body.extrapolated_position(t_time)-p;
//faces must be overlapping //faces must be overlapping
if mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z { if mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
//collect valid t //collect valid t
best_delta_time=t_time; best_time=t_time;
best_face=Some(TreyMeshFace::Top); best_face=Some(TreyMeshFace::Top);
} }
} }
} }
//collect z //collect z
for t in zeroes2(mesh0.max.z-mesh1.min.z, v.z, a.z) { for t in zeroes2(mesh0.max.z-mesh1.min.z,v.z,a.z) {
//negative t = back in time //negative t = back in time
//must be moving towards surface to collide //must be moving towards surface to collide
//must beat the current soonest collision time //must beat the current soonest collision time
//must be moving towards surface //must be moving towards surface
let t_time=((t as f64)*1_000_000_000f64) as TIME; let t_time=self.body.time+((t as f64)*1_000_000_000f64) as TIME;
if 0<=t_time&&t_time<best_delta_time&&0f32<v.z+a.z*t{ if time<=t_time&&t_time<best_time&&0f32<v.z+a.z*t{
let dp=self.body.extrapolated_position(self.body.time+t_time)-p; let dp=self.body.extrapolated_position(t_time)-p;
//faces must be overlapping //faces must be overlapping
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x { if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x {
//collect valid t //collect valid t
best_delta_time=t_time; best_time=t_time;
best_face=Some(TreyMeshFace::Front); best_face=Some(TreyMeshFace::Front);
} }
} }
} }
for t in zeroes2(mesh0.min.z-mesh1.max.z, v.z, a.z) { for t in zeroes2(mesh0.min.z-mesh1.max.z,v.z,a.z) {
//negative t = back in time //negative t = back in time
//must be moving towards surface to collide //must be moving towards surface to collide
//must beat the current soonest collision time //must beat the current soonest collision time
//must be moving towards surface //must be moving towards surface
let t_time=((t as f64)*1_000_000_000f64) as TIME; let t_time=self.body.time+((t as f64)*1_000_000_000f64) as TIME;
if 0<=t_time&&t_time<best_delta_time&&v.z+a.z*t<0f32{ if time<=t_time&&t_time<best_time&&v.z+a.z*t<0f32{
let dp=self.body.extrapolated_position(self.body.time+t_time)-p; let dp=self.body.extrapolated_position(t_time)-p;
//faces must be overlapping //faces must be overlapping
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x { if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x {
//collect valid t //collect valid t
best_delta_time=t_time; best_time=t_time;
best_face=Some(TreyMeshFace::Back); best_face=Some(TreyMeshFace::Back);
} }
} }
@ -599,7 +624,7 @@ impl PhysicsState {
//generate instruction //generate instruction
if let Some(face) = best_face{ if let Some(face) = best_face{
return Some(TimedInstruction { return Some(TimedInstruction {
time: self.body.time+best_delta_time, time: best_time,
instruction: PhysicsInstruction::CollisionStart(RelativeCollision { instruction: PhysicsInstruction::CollisionStart(RelativeCollision {
face, face,
model: model_id model: model_id
@ -625,11 +650,11 @@ impl crate::instruction::InstructionEmitter<PhysicsInstruction> for PhysicsState
} }
//check for collision stop instructions with curent contacts //check for collision stop instructions with curent contacts
for collision_data in self.contacts.iter() { for collision_data in self.contacts.iter() {
collector.collect(self.predict_collision_end(self.models_cringe_clone.get(collision_data.model as usize).unwrap(),time_limit,collision_data.model)); collector.collect(self.predict_collision_end(self.time,time_limit,collision_data));
} }
//check for collision start instructions (against every part in the game with no optimization!!) //check for collision start instructions (against every part in the game with no optimization!!)
for (i,model) in self.models_cringe_clone.iter().enumerate() { for i in 0..self.models_cringe_clone.len() {
collector.collect(self.predict_collision_start(model,time_limit,i as u32)); collector.collect(self.predict_collision_start(self.time,time_limit,i as u32));
} }
if self.grounded { if self.grounded {
//walk maintenance //walk maintenance

View File

@ -4,7 +4,7 @@ pub struct TimedInstruction<I> {
} }
pub trait InstructionEmitter<I> { pub trait InstructionEmitter<I> {
fn next_instruction(&self, time:crate::body::TIME) -> Option<TimedInstruction<I>>; fn next_instruction(&self, time_limit:crate::body::TIME) -> Option<TimedInstruction<I>>;
} }
pub trait InstructionConsumer<I> { pub trait InstructionConsumer<I> {
fn process_instruction(&mut self, instruction:TimedInstruction<I>); fn process_instruction(&mut self, instruction:TimedInstruction<I>);