implement aabb collision

This commit is contained in:
Quaternions 2023-09-18 13:20:51 -07:00
parent a58464efb0
commit 28c3f21736
2 changed files with 307 additions and 20 deletions

View File

@ -1,4 +1,4 @@
use crate::instruction::{InstructionEmitter, InstructionConsumer, TimedInstruction}; use crate::{instruction::{InstructionEmitter, InstructionConsumer, TimedInstruction}, zeroes::zeroes2};
pub enum PhysicsInstruction { pub enum PhysicsInstruction {
CollisionStart(RelativeCollision), CollisionStart(RelativeCollision),
@ -90,6 +90,7 @@ impl MouseInterpolationState {
pub struct PhysicsState { pub struct PhysicsState {
pub body: Body, pub body: Body,
pub hitbox_size: glam::Vec3,
pub contacts: Vec<RelativeCollision>, pub contacts: Vec<RelativeCollision>,
//temp //temp
pub models_cringe_clone: Vec<Model>, pub models_cringe_clone: Vec<Model>,
@ -134,6 +135,16 @@ impl Aabb {
// [0.0f32, 1., 0.], // [0.0f32, 1., 0.],
// [0.0f32, -1., 0.], // [0.0f32, -1., 0.],
// ]; // ];
const VERTEX_DATA: [glam::Vec3; 8] = [
glam::vec3(1., -1., -1.),
glam::vec3(1., 1., -1.),
glam::vec3(1., 1., 1.),
glam::vec3(1., -1., 1.),
glam::vec3(-1., -1., 1.),
glam::vec3(-1., 1., 1.),
glam::vec3(-1., 1., -1.),
glam::vec3(-1., -1., -1.),
];
const VERTEX_DATA_RIGHT: [glam::Vec3; 4] = [ const VERTEX_DATA_RIGHT: [glam::Vec3; 4] = [
glam::vec3(1., -1., -1.), glam::vec3(1., -1., -1.),
glam::vec3(1., 1., -1.), glam::vec3(1., 1., -1.),
@ -190,7 +201,10 @@ impl Aabb {
AabbFace::Front => glam::vec3(0.,0.,-1.), AabbFace::Front => glam::vec3(0.,0.,-1.),
} }
} }
pub fn face_vertices(face:AabbFace) -> [glam::Vec3;4] { pub fn unit_vertices() -> [glam::Vec3;8] {
return Self::VERTEX_DATA;
}
pub fn unit_face_vertices(face:AabbFace) -> [glam::Vec3;4] {
match face { match face {
AabbFace::Right => Self::VERTEX_DATA_RIGHT, AabbFace::Right => Self::VERTEX_DATA_RIGHT,
AabbFace::Top => Self::VERTEX_DATA_TOP, AabbFace::Top => Self::VERTEX_DATA_TOP,
@ -202,7 +216,8 @@ impl Aabb {
} }
} }
type Face = AabbFace; //pretend to be using what we want to eventually do
type TreyMeshFace = AabbFace;
type TreyMesh = Aabb; type TreyMesh = Aabb;
pub struct Model { pub struct Model {
@ -215,25 +230,34 @@ impl Model {
pub fn new(transform:glam::Mat4) -> Self { pub fn new(transform:glam::Mat4) -> Self {
Self{transform} Self{transform}
} }
pub fn face_vertices(&self,face:Face) -> [glam::Vec3;4] { pub fn unit_vertices(&self) -> [glam::Vec3;8] {
Aabb::face_vertices(face) Aabb::unit_vertices()
} }
pub fn face_mesh(&self,face:Face) -> TreyMesh { pub fn mesh(&self) -> TreyMesh {
let mut aabb=Aabb::new(); let mut aabb=Aabb::new();
for &vertex in self.face_vertices(face).iter() { for &vertex in self.unit_vertices().iter() {
aabb.grow(vertex); aabb.grow(glam::Vec4Swizzles::xyz(self.transform*vertex.extend(1.0)));
} }
return aabb; return aabb;
} }
pub fn face_normal(&self,face:Face) -> glam::Vec3 { pub fn unit_face_vertices(&self,face:TreyMeshFace) -> [glam::Vec3;4] {
let mut n=glam::Vec3Swizzles::xyzz(Aabb::normal(face)); Aabb::unit_face_vertices(face)
n.w=0.0;//what a man will do to avoid writing out the components }
glam::Vec4Swizzles::xyz(self.transform*n)//this is wrong for scale pub fn face_mesh(&self,face:TreyMeshFace) -> TreyMesh {
let mut aabb=Aabb::new();
for &vertex in self.unit_face_vertices(face).iter() {
aabb.grow(glam::Vec4Swizzles::xyz(self.transform*vertex.extend(1.0)));
}
return aabb;
}
pub fn face_normal(&self,face:TreyMeshFace) -> glam::Vec3 {
glam::Vec4Swizzles::xyz(self.transform*Aabb::normal(face).extend(0.0))//this is wrong for scale
} }
} }
//need non-face (full model) variant for CanCollide false objects
pub struct RelativeCollision { pub struct RelativeCollision {
face: Face,//just an id face: TreyMeshFace,//just an id
model: u32,//using id to avoid lifetimes model: u32,//using id to avoid lifetimes
} }
@ -328,11 +352,250 @@ impl PhysicsState {
//check if you are accelerating towards a walk target velocity and create an instruction //check if you are accelerating towards a walk target velocity and create an instruction
return None; return None;
} }
fn predict_collision_end(&self,model:&Model) -> Option<TimedInstruction<PhysicsInstruction>> { fn mesh(&self) -> TreyMesh {
let mut aabb=Aabb::new();
for vertex in Aabb::unit_vertices(){
aabb.grow(self.body.position+self.hitbox_size*vertex);
}
aabb
}
fn predict_collision_end(&self,model:&Model,time_limit:TIME,model_id:u32) -> Option<TimedInstruction<PhysicsInstruction>> {
//must treat cancollide false objects differently: you may not exit through the same face you entered. //must treat cancollide false objects differently: you may not exit through the same face you entered.
//RelativeCollsion must reference the full model instead of a particular face
//this is Ctrl+C Ctrl+V of predict_collision_start but with v=-v before the calc and t=-t after the calc
//find best t
let mut best_delta_time=time_limit-self.body.time;
let mut best_face:Option<TreyMeshFace>=None;
let mesh0=self.mesh();
let mesh1=model.mesh();
let (p,v,a)=(self.body.position,-self.body.velocity,self.body.acceleration);
//collect x
for &t in zeroes2(mesh0.max.x-mesh1.min.x, v.x, a.x).iter() {
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
let t_time=((-t as f64)*1_000_000_000f64) as TIME;
if 0<=t_time&&t_time<best_delta_time&&0f32<(-v.x+a.x*t){
let dp=self.body.extrapolated_position(self.body.time+t_time)-p;
//faces must be overlapping
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
//collect valid t
best_delta_time=t_time;
best_face=Some(TreyMeshFace::Left);
}
}
}
for &t in zeroes2(mesh0.min.x-mesh1.max.x, v.x, a.x).iter() {
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
let t_time=((-t as f64)*1_000_000_000f64) as TIME;
if 0<=t_time&&t_time<best_delta_time&&(-v.x+a.x*t)<0f32{
let dp=self.body.extrapolated_position(self.body.time+t_time)-p;
//faces must be overlapping
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
//collect valid t
best_delta_time=t_time;
best_face=Some(TreyMeshFace::Right);
}
}
}
//collect y
for &t in zeroes2(mesh0.max.y-mesh1.min.y, v.y, a.y).iter() {
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
let t_time=((-t as f64)*1_000_000_000f64) as TIME;
if 0<=t_time&&t_time<best_delta_time&&0f32<(-v.y+a.y*t){
let dp=self.body.extrapolated_position(self.body.time+t_time)-p;
//faces must be overlapping
if mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
//collect valid t
best_delta_time=t_time;
best_face=Some(TreyMeshFace::Bottom);
}
}
}
for &t in zeroes2(mesh0.min.y-mesh1.max.y, v.y, a.y).iter() {
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
let t_time=((-t as f64)*1_000_000_000f64) as TIME;
if 0<=t_time&&t_time<best_delta_time&&(-v.y+a.y*t)<0f32{
let dp=self.body.extrapolated_position(self.body.time+t_time)-p;
//faces must be overlapping
if mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
//collect valid t
best_delta_time=t_time;
best_face=Some(TreyMeshFace::Top);
}
}
}
//collect z
for &t in zeroes2(mesh0.max.z-mesh1.min.z, v.z, a.z).iter() {
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
let t_time=((-t as f64)*1_000_000_000f64) as TIME;
if 0<=t_time&&t_time<best_delta_time&&0f32<(-v.z+a.z*t){
let dp=self.body.extrapolated_position(self.body.time+t_time)-p;
//faces must be overlapping
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x {
//collect valid t
best_delta_time=t_time;
best_face=Some(TreyMeshFace::Front);
}
}
}
for &t in zeroes2(mesh0.min.z-mesh1.max.z, v.z, a.z).iter() {
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
let t_time=((-t as f64)*1_000_000_000f64) as TIME;
if 0<=t_time&&t_time<best_delta_time&&(-v.z+a.z*t)<0f32{
let dp=self.body.extrapolated_position(self.body.time+t_time)-p;
//faces must be overlapping
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x {
//collect valid t
best_delta_time=t_time;
best_face=Some(TreyMeshFace::Back);
}
}
}
//generate instruction
if let Some(face) = best_face{
return Some(TimedInstruction {
time: self.body.time+best_delta_time,
instruction: PhysicsInstruction::CollisionStart(RelativeCollision {
face,
model: model_id
})
})
}
None None
} }
fn predict_collision_start(&self,model:&Model) -> Option<TimedInstruction<PhysicsInstruction>> { fn predict_collision_start(&self,model:&Model,time_limit:TIME,model_id:u32) -> Option<TimedInstruction<PhysicsInstruction>> {
//find best t
let mut best_delta_time=time_limit-self.body.time;
let mut best_face:Option<TreyMeshFace>=None;
let mesh0=self.mesh();
let mesh1=model.mesh();
let (p,v,a)=(self.body.position,self.body.velocity,self.body.acceleration);
//collect x
for &t in zeroes2(mesh0.max.x-mesh1.min.x, v.x, a.x).iter() {
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
let t_time=((t as f64)*1_000_000_000f64) as TIME;
if 0<=t_time&&t_time<best_delta_time&&0f32<v.x+a.x*t{
let dp=self.body.extrapolated_position(self.body.time+t_time)-p;
//faces must be overlapping
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
//collect valid t
best_delta_time=t_time;
best_face=Some(TreyMeshFace::Left);
}
}
}
for &t in zeroes2(mesh0.min.x-mesh1.max.x, v.x, a.x).iter() {
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
let t_time=((t as f64)*1_000_000_000f64) as TIME;
if 0<=t_time&&t_time<best_delta_time&&v.x+a.x*t<0f32{
let dp=self.body.extrapolated_position(self.body.time+t_time)-p;
//faces must be overlapping
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
//collect valid t
best_delta_time=t_time;
best_face=Some(TreyMeshFace::Right);
}
}
}
//collect y
for &t in zeroes2(mesh0.max.y-mesh1.min.y, v.y, a.y).iter() {
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
let t_time=((t as f64)*1_000_000_000f64) as TIME;
if 0<=t_time&&t_time<best_delta_time&&0f32<v.y+a.y*t{
let dp=self.body.extrapolated_position(self.body.time+t_time)-p;
//faces must be overlapping
if mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
//collect valid t
best_delta_time=t_time;
best_face=Some(TreyMeshFace::Bottom);
}
}
}
for &t in zeroes2(mesh0.min.y-mesh1.max.y, v.y, a.y).iter() {
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
let t_time=((t as f64)*1_000_000_000f64) as TIME;
if 0<=t_time&&t_time<best_delta_time&&v.y+a.y*t<0f32{
let dp=self.body.extrapolated_position(self.body.time+t_time)-p;
//faces must be overlapping
if mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
//collect valid t
best_delta_time=t_time;
best_face=Some(TreyMeshFace::Top);
}
}
}
//collect z
for &t in zeroes2(mesh0.max.z-mesh1.min.z, v.z, a.z).iter() {
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
let t_time=((t as f64)*1_000_000_000f64) as TIME;
if 0<=t_time&&t_time<best_delta_time&&0f32<v.z+a.z*t{
let dp=self.body.extrapolated_position(self.body.time+t_time)-p;
//faces must be overlapping
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x {
//collect valid t
best_delta_time=t_time;
best_face=Some(TreyMeshFace::Front);
}
}
}
for &t in zeroes2(mesh0.min.z-mesh1.max.z, v.z, a.z).iter() {
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
let t_time=((t as f64)*1_000_000_000f64) as TIME;
if 0<=t_time&&t_time<best_delta_time&&v.z+a.z*t<0f32{
let dp=self.body.extrapolated_position(self.body.time+t_time)-p;
//faces must be overlapping
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x {
//collect valid t
best_delta_time=t_time;
best_face=Some(TreyMeshFace::Back);
}
}
}
//generate instruction
if let Some(face) = best_face{
return Some(TimedInstruction {
time: self.body.time+best_delta_time,
instruction: PhysicsInstruction::CollisionStart(RelativeCollision {
face,
model: model_id
})
})
}
None None
} }
} }
@ -352,11 +615,11 @@ impl crate::instruction::InstructionEmitter<PhysicsInstruction> for PhysicsState
} }
//check for collision stop instructions with curent contacts //check for collision stop instructions with curent contacts
for collision_data in self.contacts.iter() { for collision_data in self.contacts.iter() {
collector.collect(self.predict_collision_end(self.models_cringe_clone.get(collision_data.model as usize).unwrap())); collector.collect(self.predict_collision_end(self.models_cringe_clone.get(collision_data.model as usize).unwrap(),time_limit,collision_data.model));
} }
//check for collision start instructions (against every part in the game with no optimization!!) //check for collision start instructions (against every part in the game with no optimization!!)
for model in &self.models_cringe_clone { for (i,model) in self.models_cringe_clone.iter().enumerate() {
collector.collect(self.predict_collision_start(model)); collector.collect(self.predict_collision_start(model,time_limit,i as u32));
} }
if self.grounded { if self.grounded {
//walk maintenance //walk maintenance
@ -374,8 +637,31 @@ impl crate::instruction::InstructionConsumer<PhysicsInstruction> for PhysicsStat
//mutate position and velocity and time //mutate position and velocity and time
self.advance_time(ins.time);//should this be in run? self.advance_time(ins.time);//should this be in run?
match ins.instruction { match ins.instruction {
PhysicsInstruction::CollisionStart(_) => todo!(), PhysicsInstruction::CollisionStart(c) => {
PhysicsInstruction::CollisionEnd(_) => todo!(), //flatten v
let n=c.normal(&self.models_cringe_clone);
let d=self.body.velocity.dot(n)/n.length_squared();
self.body.velocity-=d*n;
//check ground
match c.face {
AabbFace::Top => {
//ground
self.grounded=true;
self.body.acceleration=glam::Vec3::ZERO;
},
_ => (),
}
},
PhysicsInstruction::CollisionEnd(c) => {
//check ground
match c.face {
AabbFace::Top => {
//ground
self.body.acceleration=self.gravity;
},
_ => (),
}
},
PhysicsInstruction::StrafeTick => { PhysicsInstruction::StrafeTick => {
//let control_dir=self.get_control_dir();//this should respect your mouse interpolation settings //let control_dir=self.get_control_dir();//this should respect your mouse interpolation settings
let d=self.body.velocity.dot(self.temp_control_dir); let d=self.body.velocity.dot(self.temp_control_dir);

View File

@ -307,6 +307,7 @@ impl strafe_client::framework::Example for Skybox {
contacts: Vec::<strafe_client::body::RelativeCollision>::new(), contacts: Vec::<strafe_client::body::RelativeCollision>::new(),
models_cringe_clone: modeldatas.iter().map(|m|strafe_client::body::Model::new(m.transform)).collect(), models_cringe_clone: modeldatas.iter().map(|m|strafe_client::body::Model::new(m.transform)).collect(),
walk_target_velocity: glam::Vec3::ZERO, walk_target_velocity: glam::Vec3::ZERO,
hitbox_size: glam::vec3(2.0,5.0,2.0),
}; };
let camera_uniforms = camera.to_uniform_data(physics.body.extrapolated_position(0)); let camera_uniforms = camera.to_uniform_data(physics.body.extrapolated_position(0));