forked from StrafesNET/strafe-client
implement aabb collision
This commit is contained in:
parent
a58464efb0
commit
28c3f21736
326
src/body.rs
326
src/body.rs
@ -1,4 +1,4 @@
|
||||
use crate::instruction::{InstructionEmitter, InstructionConsumer, TimedInstruction};
|
||||
use crate::{instruction::{InstructionEmitter, InstructionConsumer, TimedInstruction}, zeroes::zeroes2};
|
||||
|
||||
pub enum PhysicsInstruction {
|
||||
CollisionStart(RelativeCollision),
|
||||
@ -90,6 +90,7 @@ impl MouseInterpolationState {
|
||||
|
||||
pub struct PhysicsState {
|
||||
pub body: Body,
|
||||
pub hitbox_size: glam::Vec3,
|
||||
pub contacts: Vec<RelativeCollision>,
|
||||
//temp
|
||||
pub models_cringe_clone: Vec<Model>,
|
||||
@ -134,6 +135,16 @@ impl Aabb {
|
||||
// [0.0f32, 1., 0.],
|
||||
// [0.0f32, -1., 0.],
|
||||
// ];
|
||||
const VERTEX_DATA: [glam::Vec3; 8] = [
|
||||
glam::vec3(1., -1., -1.),
|
||||
glam::vec3(1., 1., -1.),
|
||||
glam::vec3(1., 1., 1.),
|
||||
glam::vec3(1., -1., 1.),
|
||||
glam::vec3(-1., -1., 1.),
|
||||
glam::vec3(-1., 1., 1.),
|
||||
glam::vec3(-1., 1., -1.),
|
||||
glam::vec3(-1., -1., -1.),
|
||||
];
|
||||
const VERTEX_DATA_RIGHT: [glam::Vec3; 4] = [
|
||||
glam::vec3(1., -1., -1.),
|
||||
glam::vec3(1., 1., -1.),
|
||||
@ -190,7 +201,10 @@ impl Aabb {
|
||||
AabbFace::Front => glam::vec3(0.,0.,-1.),
|
||||
}
|
||||
}
|
||||
pub fn face_vertices(face:AabbFace) -> [glam::Vec3;4] {
|
||||
pub fn unit_vertices() -> [glam::Vec3;8] {
|
||||
return Self::VERTEX_DATA;
|
||||
}
|
||||
pub fn unit_face_vertices(face:AabbFace) -> [glam::Vec3;4] {
|
||||
match face {
|
||||
AabbFace::Right => Self::VERTEX_DATA_RIGHT,
|
||||
AabbFace::Top => Self::VERTEX_DATA_TOP,
|
||||
@ -202,7 +216,8 @@ impl Aabb {
|
||||
}
|
||||
}
|
||||
|
||||
type Face = AabbFace;
|
||||
//pretend to be using what we want to eventually do
|
||||
type TreyMeshFace = AabbFace;
|
||||
type TreyMesh = Aabb;
|
||||
|
||||
pub struct Model {
|
||||
@ -215,25 +230,34 @@ impl Model {
|
||||
pub fn new(transform:glam::Mat4) -> Self {
|
||||
Self{transform}
|
||||
}
|
||||
pub fn face_vertices(&self,face:Face) -> [glam::Vec3;4] {
|
||||
Aabb::face_vertices(face)
|
||||
pub fn unit_vertices(&self) -> [glam::Vec3;8] {
|
||||
Aabb::unit_vertices()
|
||||
}
|
||||
pub fn face_mesh(&self,face:Face) -> TreyMesh {
|
||||
pub fn mesh(&self) -> TreyMesh {
|
||||
let mut aabb=Aabb::new();
|
||||
for &vertex in self.face_vertices(face).iter() {
|
||||
aabb.grow(vertex);
|
||||
for &vertex in self.unit_vertices().iter() {
|
||||
aabb.grow(glam::Vec4Swizzles::xyz(self.transform*vertex.extend(1.0)));
|
||||
}
|
||||
return aabb;
|
||||
}
|
||||
pub fn face_normal(&self,face:Face) -> glam::Vec3 {
|
||||
let mut n=glam::Vec3Swizzles::xyzz(Aabb::normal(face));
|
||||
n.w=0.0;//what a man will do to avoid writing out the components
|
||||
glam::Vec4Swizzles::xyz(self.transform*n)//this is wrong for scale
|
||||
pub fn unit_face_vertices(&self,face:TreyMeshFace) -> [glam::Vec3;4] {
|
||||
Aabb::unit_face_vertices(face)
|
||||
}
|
||||
pub fn face_mesh(&self,face:TreyMeshFace) -> TreyMesh {
|
||||
let mut aabb=Aabb::new();
|
||||
for &vertex in self.unit_face_vertices(face).iter() {
|
||||
aabb.grow(glam::Vec4Swizzles::xyz(self.transform*vertex.extend(1.0)));
|
||||
}
|
||||
return aabb;
|
||||
}
|
||||
pub fn face_normal(&self,face:TreyMeshFace) -> glam::Vec3 {
|
||||
glam::Vec4Swizzles::xyz(self.transform*Aabb::normal(face).extend(0.0))//this is wrong for scale
|
||||
}
|
||||
}
|
||||
|
||||
//need non-face (full model) variant for CanCollide false objects
|
||||
pub struct RelativeCollision {
|
||||
face: Face,//just an id
|
||||
face: TreyMeshFace,//just an id
|
||||
model: u32,//using id to avoid lifetimes
|
||||
}
|
||||
|
||||
@ -328,11 +352,250 @@ impl PhysicsState {
|
||||
//check if you are accelerating towards a walk target velocity and create an instruction
|
||||
return None;
|
||||
}
|
||||
fn predict_collision_end(&self,model:&Model) -> Option<TimedInstruction<PhysicsInstruction>> {
|
||||
fn mesh(&self) -> TreyMesh {
|
||||
let mut aabb=Aabb::new();
|
||||
for vertex in Aabb::unit_vertices(){
|
||||
aabb.grow(self.body.position+self.hitbox_size*vertex);
|
||||
}
|
||||
aabb
|
||||
}
|
||||
fn predict_collision_end(&self,model:&Model,time_limit:TIME,model_id:u32) -> Option<TimedInstruction<PhysicsInstruction>> {
|
||||
//must treat cancollide false objects differently: you may not exit through the same face you entered.
|
||||
//RelativeCollsion must reference the full model instead of a particular face
|
||||
//this is Ctrl+C Ctrl+V of predict_collision_start but with v=-v before the calc and t=-t after the calc
|
||||
//find best t
|
||||
let mut best_delta_time=time_limit-self.body.time;
|
||||
let mut best_face:Option<TreyMeshFace>=None;
|
||||
let mesh0=self.mesh();
|
||||
let mesh1=model.mesh();
|
||||
let (p,v,a)=(self.body.position,-self.body.velocity,self.body.acceleration);
|
||||
//collect x
|
||||
for &t in zeroes2(mesh0.max.x-mesh1.min.x, v.x, a.x).iter() {
|
||||
//negative t = back in time
|
||||
//must be moving towards surface to collide
|
||||
//must beat the current soonest collision time
|
||||
//must be moving towards surface
|
||||
let t_time=((-t as f64)*1_000_000_000f64) as TIME;
|
||||
if 0<=t_time&&t_time<best_delta_time&&0f32<(-v.x+a.x*t){
|
||||
let dp=self.body.extrapolated_position(self.body.time+t_time)-p;
|
||||
//faces must be overlapping
|
||||
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
|
||||
//collect valid t
|
||||
best_delta_time=t_time;
|
||||
best_face=Some(TreyMeshFace::Left);
|
||||
}
|
||||
}
|
||||
}
|
||||
for &t in zeroes2(mesh0.min.x-mesh1.max.x, v.x, a.x).iter() {
|
||||
//negative t = back in time
|
||||
//must be moving towards surface to collide
|
||||
//must beat the current soonest collision time
|
||||
//must be moving towards surface
|
||||
let t_time=((-t as f64)*1_000_000_000f64) as TIME;
|
||||
if 0<=t_time&&t_time<best_delta_time&&(-v.x+a.x*t)<0f32{
|
||||
let dp=self.body.extrapolated_position(self.body.time+t_time)-p;
|
||||
//faces must be overlapping
|
||||
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
|
||||
//collect valid t
|
||||
best_delta_time=t_time;
|
||||
best_face=Some(TreyMeshFace::Right);
|
||||
}
|
||||
}
|
||||
}
|
||||
//collect y
|
||||
for &t in zeroes2(mesh0.max.y-mesh1.min.y, v.y, a.y).iter() {
|
||||
//negative t = back in time
|
||||
//must be moving towards surface to collide
|
||||
//must beat the current soonest collision time
|
||||
//must be moving towards surface
|
||||
let t_time=((-t as f64)*1_000_000_000f64) as TIME;
|
||||
if 0<=t_time&&t_time<best_delta_time&&0f32<(-v.y+a.y*t){
|
||||
let dp=self.body.extrapolated_position(self.body.time+t_time)-p;
|
||||
//faces must be overlapping
|
||||
if mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
|
||||
//collect valid t
|
||||
best_delta_time=t_time;
|
||||
best_face=Some(TreyMeshFace::Bottom);
|
||||
}
|
||||
}
|
||||
}
|
||||
for &t in zeroes2(mesh0.min.y-mesh1.max.y, v.y, a.y).iter() {
|
||||
//negative t = back in time
|
||||
//must be moving towards surface to collide
|
||||
//must beat the current soonest collision time
|
||||
//must be moving towards surface
|
||||
let t_time=((-t as f64)*1_000_000_000f64) as TIME;
|
||||
if 0<=t_time&&t_time<best_delta_time&&(-v.y+a.y*t)<0f32{
|
||||
let dp=self.body.extrapolated_position(self.body.time+t_time)-p;
|
||||
//faces must be overlapping
|
||||
if mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
|
||||
//collect valid t
|
||||
best_delta_time=t_time;
|
||||
best_face=Some(TreyMeshFace::Top);
|
||||
}
|
||||
}
|
||||
}
|
||||
//collect z
|
||||
for &t in zeroes2(mesh0.max.z-mesh1.min.z, v.z, a.z).iter() {
|
||||
//negative t = back in time
|
||||
//must be moving towards surface to collide
|
||||
//must beat the current soonest collision time
|
||||
//must be moving towards surface
|
||||
let t_time=((-t as f64)*1_000_000_000f64) as TIME;
|
||||
if 0<=t_time&&t_time<best_delta_time&&0f32<(-v.z+a.z*t){
|
||||
let dp=self.body.extrapolated_position(self.body.time+t_time)-p;
|
||||
//faces must be overlapping
|
||||
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x {
|
||||
//collect valid t
|
||||
best_delta_time=t_time;
|
||||
best_face=Some(TreyMeshFace::Front);
|
||||
}
|
||||
}
|
||||
}
|
||||
for &t in zeroes2(mesh0.min.z-mesh1.max.z, v.z, a.z).iter() {
|
||||
//negative t = back in time
|
||||
//must be moving towards surface to collide
|
||||
//must beat the current soonest collision time
|
||||
//must be moving towards surface
|
||||
let t_time=((-t as f64)*1_000_000_000f64) as TIME;
|
||||
if 0<=t_time&&t_time<best_delta_time&&(-v.z+a.z*t)<0f32{
|
||||
let dp=self.body.extrapolated_position(self.body.time+t_time)-p;
|
||||
//faces must be overlapping
|
||||
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x {
|
||||
//collect valid t
|
||||
best_delta_time=t_time;
|
||||
best_face=Some(TreyMeshFace::Back);
|
||||
}
|
||||
}
|
||||
}
|
||||
//generate instruction
|
||||
if let Some(face) = best_face{
|
||||
return Some(TimedInstruction {
|
||||
time: self.body.time+best_delta_time,
|
||||
instruction: PhysicsInstruction::CollisionStart(RelativeCollision {
|
||||
face,
|
||||
model: model_id
|
||||
})
|
||||
})
|
||||
}
|
||||
None
|
||||
}
|
||||
fn predict_collision_start(&self,model:&Model) -> Option<TimedInstruction<PhysicsInstruction>> {
|
||||
fn predict_collision_start(&self,model:&Model,time_limit:TIME,model_id:u32) -> Option<TimedInstruction<PhysicsInstruction>> {
|
||||
//find best t
|
||||
let mut best_delta_time=time_limit-self.body.time;
|
||||
let mut best_face:Option<TreyMeshFace>=None;
|
||||
let mesh0=self.mesh();
|
||||
let mesh1=model.mesh();
|
||||
let (p,v,a)=(self.body.position,self.body.velocity,self.body.acceleration);
|
||||
//collect x
|
||||
for &t in zeroes2(mesh0.max.x-mesh1.min.x, v.x, a.x).iter() {
|
||||
//negative t = back in time
|
||||
//must be moving towards surface to collide
|
||||
//must beat the current soonest collision time
|
||||
//must be moving towards surface
|
||||
let t_time=((t as f64)*1_000_000_000f64) as TIME;
|
||||
if 0<=t_time&&t_time<best_delta_time&&0f32<v.x+a.x*t{
|
||||
let dp=self.body.extrapolated_position(self.body.time+t_time)-p;
|
||||
//faces must be overlapping
|
||||
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
|
||||
//collect valid t
|
||||
best_delta_time=t_time;
|
||||
best_face=Some(TreyMeshFace::Left);
|
||||
}
|
||||
}
|
||||
}
|
||||
for &t in zeroes2(mesh0.min.x-mesh1.max.x, v.x, a.x).iter() {
|
||||
//negative t = back in time
|
||||
//must be moving towards surface to collide
|
||||
//must beat the current soonest collision time
|
||||
//must be moving towards surface
|
||||
let t_time=((t as f64)*1_000_000_000f64) as TIME;
|
||||
if 0<=t_time&&t_time<best_delta_time&&v.x+a.x*t<0f32{
|
||||
let dp=self.body.extrapolated_position(self.body.time+t_time)-p;
|
||||
//faces must be overlapping
|
||||
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
|
||||
//collect valid t
|
||||
best_delta_time=t_time;
|
||||
best_face=Some(TreyMeshFace::Right);
|
||||
}
|
||||
}
|
||||
}
|
||||
//collect y
|
||||
for &t in zeroes2(mesh0.max.y-mesh1.min.y, v.y, a.y).iter() {
|
||||
//negative t = back in time
|
||||
//must be moving towards surface to collide
|
||||
//must beat the current soonest collision time
|
||||
//must be moving towards surface
|
||||
let t_time=((t as f64)*1_000_000_000f64) as TIME;
|
||||
if 0<=t_time&&t_time<best_delta_time&&0f32<v.y+a.y*t{
|
||||
let dp=self.body.extrapolated_position(self.body.time+t_time)-p;
|
||||
//faces must be overlapping
|
||||
if mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
|
||||
//collect valid t
|
||||
best_delta_time=t_time;
|
||||
best_face=Some(TreyMeshFace::Bottom);
|
||||
}
|
||||
}
|
||||
}
|
||||
for &t in zeroes2(mesh0.min.y-mesh1.max.y, v.y, a.y).iter() {
|
||||
//negative t = back in time
|
||||
//must be moving towards surface to collide
|
||||
//must beat the current soonest collision time
|
||||
//must be moving towards surface
|
||||
let t_time=((t as f64)*1_000_000_000f64) as TIME;
|
||||
if 0<=t_time&&t_time<best_delta_time&&v.y+a.y*t<0f32{
|
||||
let dp=self.body.extrapolated_position(self.body.time+t_time)-p;
|
||||
//faces must be overlapping
|
||||
if mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
|
||||
//collect valid t
|
||||
best_delta_time=t_time;
|
||||
best_face=Some(TreyMeshFace::Top);
|
||||
}
|
||||
}
|
||||
}
|
||||
//collect z
|
||||
for &t in zeroes2(mesh0.max.z-mesh1.min.z, v.z, a.z).iter() {
|
||||
//negative t = back in time
|
||||
//must be moving towards surface to collide
|
||||
//must beat the current soonest collision time
|
||||
//must be moving towards surface
|
||||
let t_time=((t as f64)*1_000_000_000f64) as TIME;
|
||||
if 0<=t_time&&t_time<best_delta_time&&0f32<v.z+a.z*t{
|
||||
let dp=self.body.extrapolated_position(self.body.time+t_time)-p;
|
||||
//faces must be overlapping
|
||||
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x {
|
||||
//collect valid t
|
||||
best_delta_time=t_time;
|
||||
best_face=Some(TreyMeshFace::Front);
|
||||
}
|
||||
}
|
||||
}
|
||||
for &t in zeroes2(mesh0.min.z-mesh1.max.z, v.z, a.z).iter() {
|
||||
//negative t = back in time
|
||||
//must be moving towards surface to collide
|
||||
//must beat the current soonest collision time
|
||||
//must be moving towards surface
|
||||
let t_time=((t as f64)*1_000_000_000f64) as TIME;
|
||||
if 0<=t_time&&t_time<best_delta_time&&v.z+a.z*t<0f32{
|
||||
let dp=self.body.extrapolated_position(self.body.time+t_time)-p;
|
||||
//faces must be overlapping
|
||||
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x {
|
||||
//collect valid t
|
||||
best_delta_time=t_time;
|
||||
best_face=Some(TreyMeshFace::Back);
|
||||
}
|
||||
}
|
||||
}
|
||||
//generate instruction
|
||||
if let Some(face) = best_face{
|
||||
return Some(TimedInstruction {
|
||||
time: self.body.time+best_delta_time,
|
||||
instruction: PhysicsInstruction::CollisionStart(RelativeCollision {
|
||||
face,
|
||||
model: model_id
|
||||
})
|
||||
})
|
||||
}
|
||||
None
|
||||
}
|
||||
}
|
||||
@ -352,11 +615,11 @@ impl crate::instruction::InstructionEmitter<PhysicsInstruction> for PhysicsState
|
||||
}
|
||||
//check for collision stop instructions with curent contacts
|
||||
for collision_data in self.contacts.iter() {
|
||||
collector.collect(self.predict_collision_end(self.models_cringe_clone.get(collision_data.model as usize).unwrap()));
|
||||
collector.collect(self.predict_collision_end(self.models_cringe_clone.get(collision_data.model as usize).unwrap(),time_limit,collision_data.model));
|
||||
}
|
||||
//check for collision start instructions (against every part in the game with no optimization!!)
|
||||
for model in &self.models_cringe_clone {
|
||||
collector.collect(self.predict_collision_start(model));
|
||||
for (i,model) in self.models_cringe_clone.iter().enumerate() {
|
||||
collector.collect(self.predict_collision_start(model,time_limit,i as u32));
|
||||
}
|
||||
if self.grounded {
|
||||
//walk maintenance
|
||||
@ -374,8 +637,31 @@ impl crate::instruction::InstructionConsumer<PhysicsInstruction> for PhysicsStat
|
||||
//mutate position and velocity and time
|
||||
self.advance_time(ins.time);//should this be in run?
|
||||
match ins.instruction {
|
||||
PhysicsInstruction::CollisionStart(_) => todo!(),
|
||||
PhysicsInstruction::CollisionEnd(_) => todo!(),
|
||||
PhysicsInstruction::CollisionStart(c) => {
|
||||
//flatten v
|
||||
let n=c.normal(&self.models_cringe_clone);
|
||||
let d=self.body.velocity.dot(n)/n.length_squared();
|
||||
self.body.velocity-=d*n;
|
||||
//check ground
|
||||
match c.face {
|
||||
AabbFace::Top => {
|
||||
//ground
|
||||
self.grounded=true;
|
||||
self.body.acceleration=glam::Vec3::ZERO;
|
||||
},
|
||||
_ => (),
|
||||
}
|
||||
},
|
||||
PhysicsInstruction::CollisionEnd(c) => {
|
||||
//check ground
|
||||
match c.face {
|
||||
AabbFace::Top => {
|
||||
//ground
|
||||
self.body.acceleration=self.gravity;
|
||||
},
|
||||
_ => (),
|
||||
}
|
||||
},
|
||||
PhysicsInstruction::StrafeTick => {
|
||||
//let control_dir=self.get_control_dir();//this should respect your mouse interpolation settings
|
||||
let d=self.body.velocity.dot(self.temp_control_dir);
|
||||
|
@ -307,6 +307,7 @@ impl strafe_client::framework::Example for Skybox {
|
||||
contacts: Vec::<strafe_client::body::RelativeCollision>::new(),
|
||||
models_cringe_clone: modeldatas.iter().map(|m|strafe_client::body::Model::new(m.transform)).collect(),
|
||||
walk_target_velocity: glam::Vec3::ZERO,
|
||||
hitbox_size: glam::vec3(2.0,5.0,2.0),
|
||||
};
|
||||
|
||||
let camera_uniforms = camera.to_uniform_data(physics.body.extrapolated_position(0));
|
||||
|
Loading…
Reference in New Issue
Block a user