strafe-client/src/model_physics.rs
2023-11-10 19:13:41 -08:00

412 lines
12 KiB
Rust

use crate::integer::{Planar64,Planar64Vec3};
use std::borrow::Cow;
#[derive(Debug,Clone,Copy,Hash,Eq,PartialEq)]
pub struct VertId(usize);
#[derive(Debug,Clone,Copy,Hash,Eq,PartialEq)]
pub struct EdgeId(usize);
#[derive(Debug,Clone,Copy,Hash,Eq,PartialEq)]
pub struct FaceId(usize);
//Vertex <-> Edge <-> Face -> Collide
pub enum FEV<F,E,V>{
Face(F),
Edge(E),
Vert(V),
}
//use Unit32 #[repr(C)] for map files
struct Face{
normal:Planar64Vec3,
dot:Planar64,
}
struct Vert(Planar64Vec3);
struct FaceRefs{
edges:Vec<(EdgeId,FaceId)>,
//verts:Vec<VertId>,
}
struct EdgeRefs{
faces:[FaceId;2],//left, right
verts:[VertId;2],//bottom, top
}
struct VertRefs{
//faces:Vec<FaceId>,
edges:Vec<EdgeId>,
}
pub struct PhysicsMesh{
faces:Vec<Face>,
verts:Vec<Vert>,
face_topology:Vec<FaceRefs>,
edge_topology:Vec<EdgeRefs>,
vert_topology:Vec<VertRefs>,
}
#[derive(Default,Clone)]
struct VertRefGuy{
edges:std::collections::HashSet<EdgeId>,
}
#[derive(Hash,Eq,PartialEq)]
struct EdgeIdGuy([VertId;2]);
impl EdgeIdGuy{
fn new(v0:VertId,v1:VertId)->Self{
if v0.0<v1.0{
Self([v0,v1])
}else{
Self([v1,v0])
}
}
}
struct EdgeRefGuy([FaceId;2]);
impl EdgeRefGuy{
fn new()->Self{
Self([FaceId(0);2])
}
fn push(&mut self,i:usize,face_id:FaceId){
self.0[i]=face_id;
}
}
struct FaceRefGuy(Vec<EdgeId>);
#[derive(Default)]
struct EdgePool{
edge_guys:Vec<(EdgeIdGuy,EdgeRefGuy)>,
edge_id_from_guy:std::collections::HashMap<EdgeIdGuy,usize>,
}
impl EdgePool{
fn push(&mut self,edge_id_guy:EdgeIdGuy)->(&mut EdgeRefGuy,EdgeId,bool){
if let Some(&edge_id)=self.edge_id_from_guy.get(&edge_id_guy){
(&mut unsafe{self.edge_guys.get_unchecked_mut(edge_id)}.1,EdgeId(edge_id),true)
}else{
let edge_id=self.edge_guys.len();
self.edge_guys.push((edge_id_guy,EdgeRefGuy::new()));
self.edge_id_from_guy.insert(edge_id_guy,edge_id);
(&mut unsafe{self.edge_guys.get_unchecked_mut(edge_id)}.1,EdgeId(edge_id),false)
}
}
}
impl From<&crate::model::IndexedModel> for PhysicsMesh{
fn from(indexed_model:&crate::model::IndexedModel)->Self{
let verts=indexed_model.unique_pos.iter().map(|v|Vert(v.clone())).collect();
let mut vert_edges=vec![VertRefGuy::default();indexed_model.unique_pos.len()];
let mut edge_pool=EdgePool::default();
let (faces,face_ref_guys):(Vec<Face>,Vec<FaceRefGuy>)=indexed_model.groups[0].polys.iter().enumerate().map(|(i,poly)|{
let face_id=FaceId(i);
//one face per poly
let mut normal=Planar64Vec3::ZERO;
let len=poly.vertices.len();
let face_edges=poly.vertices.iter().enumerate().map(|(i,&vert_id)|{
let vert0_id=vert_id as usize;
let vert1_id=poly.vertices[(i+1)%len] as usize;
//https://www.khronos.org/opengl/wiki/Calculating_a_Surface_Normal (Newell's Method)
let v0=indexed_model.unique_pos[vert0_id];
let v1=indexed_model.unique_pos[vert1_id];
normal+=Planar64Vec3::new(
(v0.y()-v1.y())*(v0.z()+v1.z()),
(v0.z()-v1.z())*(v0.x()+v1.x()),
(v0.x()-v1.x())*(v0.y()+v1.y()),
);
//get/create edge and push face into it
let edge_id_guy=EdgeIdGuy::new(VertId(vert0_id),VertId(vert1_id));
let (edge_ref_guy,edge_id,exists)=edge_pool.push(edge_id_guy);
if exists{
edge_ref_guy.push(1,face_id);
}else{
edge_ref_guy.push(0,face_id);
}
//index edge into vertices
unsafe{vert_edges.get_unchecked_mut(vert0_id)}.edges.insert(edge_id);
unsafe{vert_edges.get_unchecked_mut(vert1_id)}.edges.insert(edge_id);
//return edge_id
edge_id
}).collect();
//choose precision loss randomly idk
normal=normal/len as i64;
let mut dot=Planar64::ZERO;
for &v in poly.vertices.iter(){
dot+=normal.dot(indexed_model.unique_pos[v as usize]);
}
(Face{normal,dot:dot/len as i64},FaceRefGuy(face_edges))
}).unzip();
//conceivably faces, edges, and vertices exist now
Self{
faces,
verts,
face_topology:face_ref_guys.into_iter().enumerate().map(|(i,face_ref_guy)|{
let face_id=FaceId(i);
FaceRefs{edges:face_ref_guy.0.into_iter().map(|edge_id|{
//get the edge face that's not this face
let edge_faces=edge_pool.edge_guys[edge_id.0].1.0;
if edge_faces[0]==face_id{
(edge_id,edge_faces[1])
}else if edge_faces[1]==face_id{
(edge_id,edge_faces[0])
}else{
panic!("edge does not contain face")
}
}).collect()}
}).collect(),
edge_topology:edge_pool.edge_guys.into_iter().map(|(edge_id_guy,edge_ref_guy)|
EdgeRefs{faces:edge_ref_guy.0,verts:edge_id_guy.0}
).collect(),
vert_topology:vert_edges.into_iter().map(|vert_ref_guy|
VertRefs{edges:vert_ref_guy.edges.into_iter().collect()}
).collect(),
}
}
}
pub trait MeshQuery<FACE:Clone,EDGE:Clone,VERT:Clone>{
fn closest_fev(&self,point:Planar64Vec3)->FEV<FACE,EDGE,VERT>;
fn face_nd(&self,face_id:FACE)->(Planar64Vec3,Planar64);
fn vert(&self,vert_id:VERT)->Planar64Vec3;
fn face_edges(&self,face_id:FACE)->Cow<Vec<(EDGE,FACE)>>;
fn edge_faces(&self,edge_id:EDGE)->Cow<[FACE;2]>;
fn edge_verts(&self,edge_id:EDGE)->Cow<[VERT;2]>;
fn vert_edges(&self,vert_id:VERT)->Cow<Vec<EDGE>>;
}
impl MeshQuery<FaceId,EdgeId,VertId> for PhysicsMesh{
fn closest_fev(&self,point:Planar64Vec3)->FEV<FaceId,EdgeId,VertId>{
//put some genius code right here
//TODO write genius code
//brute force
let mut best_distance_squared=Planar64::MAX;
let mut best_fev:FEV<FaceId,EdgeId,VertId>;
//check each vert
for (i,v) in self.verts.iter().enumerate(){
let d=(v.0-point).dot(v.0-point);
if d<best_distance_squared{
best_distance_squared=d;
best_fev=FEV::<FaceId,EdgeId,VertId>::Vert(VertId(i));
}
}
let face_dots=self.faces.iter().map(|f|f.normal.dot(point));
//check each edge
for (i,v) in self.edge_topology.iter().enumerate(){
let verts=self.edge_verts(EdgeId(i));
if verts.iter().all(|&(vert_id,face_id)|{
let (n,d)=self.face_nd(face_id);
n.dot(point)<d
}){
//this is also wrong
}
let faces=self.edge_faces(EdgeId(i));
//try not to do this
//let edge_dir=self.faces[faces[0].0].normal.cross(self.faces[faces[1].0].normal);
let face_dot=self.faces[faces[0].0].normal.dot(self.faces[faces[1].0].normal);
let edge_face_dots=faces.map(|face_id|{
let (n,d)=self.face_nd(face_id);
n.dot(point)-d
});
//wrong! face normals are not normalized! 1+d will not work!
let edge_distance=(edge_face_dots[0]+edge_face_dots[1])/(Planar64::ONE+face_dot);
//use the face d values and 1+d
if edge_distance*edge_distance<best_distance_squared{
best_distance_squared=edge_distance*edge_distance;
best_fev=FEV::<FaceId,EdgeId,VertId>::Edge(EdgeId(i));
}
}
//check each face
todo!()
}
fn face_nd(&self,face_id:FaceId)->(Planar64Vec3,Planar64){
(self.faces[face_id.0].normal,self.faces[face_id.0].dot)
}
//ideally I never calculate the vertex position, but I have to for the graphical meshes...
fn vert(&self,vert_id:VertId)->Planar64Vec3{
self.verts[vert_id.0].0
}
fn face_edges(&self,face_id:FaceId)->Cow<Vec<(EdgeId,FaceId)>>{
Cow::Borrowed(&self.face_topology[face_id.0].edges)
}
fn edge_faces(&self,edge_id:EdgeId)->Cow<[FaceId;2]>{
Cow::Borrowed(&self.edge_topology[edge_id.0].faces)
}
fn edge_verts(&self,edge_id:EdgeId)->Cow<[VertId;2]>{
Cow::Borrowed(&self.edge_topology[edge_id.0].verts)
}
fn vert_edges(&self,vert_id:VertId)->Cow<Vec<EdgeId>>{
Cow::Borrowed(&self.vert_topology[vert_id.0].edges)
}
}
pub struct TransformedMesh<'a>{
mesh:&'a PhysicsMesh,
transform:&'a crate::integer::Planar64Affine3,
normal_transform:&'a crate::integer::Planar64Mat3,
normal_determinant:Planar64,
}
impl MeshQuery<FaceId,EdgeId,VertId> for TransformedMesh<'_>{
fn closest_fev(&self,point:Planar64Vec3)->FEV<FaceId,EdgeId,VertId>{
//put some genius code right here
todo!()
}
fn face_nd(&self,face_id:FaceId)->(Planar64Vec3,Planar64){
let (n,d)=self.mesh.face_nd(face_id);
(self.normal_transform*n,self.normal_determinant*d)
}
fn vert(&self,vert_id:VertId)->Planar64Vec3{
self.transform.transform_point3(self.mesh.vert(vert_id))
}
#[inline]
fn face_edges(&self,face_id:FaceId)->Cow<Vec<(EdgeId,FaceId)>>{
self.mesh.face_edges(face_id)
}
#[inline]
fn edge_faces(&self,edge_id:EdgeId)->Cow<[FaceId;2]>{
self.mesh.edge_faces(edge_id)
}
#[inline]
fn edge_verts(&self,edge_id:EdgeId)->Cow<[VertId;2]>{
self.mesh.edge_verts(edge_id)
}
#[inline]
fn vert_edges(&self,vert_id:VertId)->Cow<Vec<EdgeId>>{
self.mesh.vert_edges(vert_id)
}
}
//Note that a face on a minkowski mesh refers to a pair of fevs on the meshes it's summed from
//(face,vertex)
//(edge,edge)
//(vertex,face)
#[derive(Clone,Copy)]
enum MinkowskiVert{
VertVert(VertId,VertId),
}
#[derive(Clone,Copy)]
enum MinkowskiEdge{
VertEdge(VertId,EdgeId),
EdgeVert(EdgeId,VertId),
}
#[derive(Debug,Clone,Copy,Hash,Eq,PartialEq)]
pub enum MinkowskiFace{
FaceVert(FaceId,VertId),
EdgeEdge(EdgeId,EdgeId),
VertFace(VertId,FaceId),
}
pub struct MinkowskiMesh<'a>{
mesh0:&'a TransformedMesh<'a>,
mesh1:&'a TransformedMesh<'a>,
}
impl MinkowskiMesh<'_>{
pub fn minkowski_sum<'a>(mesh0:&'a TransformedMesh,mesh1:&'a TransformedMesh)->MinkowskiMesh<'a>{
MinkowskiMesh{
mesh0,
mesh1,
}
}
}
impl MeshQuery<MinkowskiFace,MinkowskiEdge,MinkowskiVert> for MinkowskiMesh<'_>{
fn closest_fev(&self,point:Planar64Vec3)->FEV<MinkowskiFace,MinkowskiEdge,MinkowskiVert>{
//put some genius code right here
todo!()
}
fn face_nd(&self,face_id:MinkowskiFace)->(Planar64Vec3,Planar64){
match face_id{
MinkowskiFace::FaceVert(f0,v1)=>{
let (n,d)=self.mesh0.face_nd(f0);
(n,d+n.dot(self.mesh1.vert(v1)))
},
MinkowskiFace::EdgeEdge(e0,e1)=>{
let [e0f0,e0f1]=self.mesh0.edge_faces(e0).into_owned();
let [e1f0,e1f1]=self.mesh1.edge_faces(e1).into_owned();
//cross edge faces
//cross crosses
todo!()
},
MinkowskiFace::VertFace(v0,f1)=>{
let (n,d)=self.mesh1.face_nd(f1);
(-n,d-n.dot(self.mesh0.vert(v0)))
},
}
}
fn vert(&self,vert_id:MinkowskiVert)->Planar64Vec3{
match vert_id{
MinkowskiVert::VertVert(v0,v1)=>{
self.mesh0.vert(v0)-self.mesh1.vert(v1)
},
}
}
fn face_edges(&self,face_id:MinkowskiFace)->Cow<Vec<(MinkowskiEdge,MinkowskiFace)>>{
match face_id{
MinkowskiFace::FaceVert(f0,v1)=>{
Cow::Owned(self.mesh0.face_edges(f0).iter().map(|&(edge_id0,face_id0)|{
(MinkowskiEdge::EdgeVert(edge_id0,v1),MinkowskiFace::FaceVert(face_id0,v1))
}).collect())
},
MinkowskiFace::EdgeEdge(e0,e1)=>{
let e0v=self.mesh0.edge_verts(e0);
let e1v=self.mesh1.edge_verts(e1);
let [r0,r1]=e0v.map(|(vert_id0,face_id0)|{
//sort e1 ends by e0 edge dir to get v1
//find face normal formulation without cross products
let v1=if 0<(e0.v1-e0.v0).dot(e1.v1-e1.v0){
e1.v0
}else{
e1.v1
};
(MinkowskiEdge::VertEdge(vert_id0,e1),MinkowskiFace::FaceVert(face_id0,v1))
});
let [r2,r3]=e1v.map(|(vert_id1,face_id1)|{
//sort e0 ends by e1 edge dir to get v0
let v0=if 0<(e0.v1-e0.v0).dot(e1.v1-e1.v0){
e0.v0
}else{
e0.v1
};
(MinkowskiEdge::EdgeVert(e0,vert_id1),MinkowskiFace::VertFace(v0,face_id1))
});
Cow::Owned(vec![r0,r1,r2,r3])
},
MinkowskiFace::VertFace(v0,f1)=>{
Cow::Owned(self.mesh1.face_edges(f1).iter().map(|&(edge_id1,face_id1)|{
(MinkowskiEdge::VertEdge(v0,edge_id1),MinkowskiFace::VertFace(v0,face_id1))
}).collect())
},
}
}
fn edge_faces(&self,edge_id:MinkowskiEdge)->Cow<[MinkowskiFace;2]>{
match edge_id{
MinkowskiEdge::VertEdge(v0,e1)=>{
Cow::Owned(self.mesh1.edge_faces(e1).map(|face_id1|{
MinkowskiFace::VertFace(v0,face_id1)
}))
},
MinkowskiEdge::EdgeVert(e0,v1)=>{
Cow::Owned(self.mesh0.edge_faces(e0).map(|face_id0|{
MinkowskiFace::FaceVert(face_id0,v1)
}))
},
}
}
fn edge_verts(&self,edge_id:MinkowskiEdge)->Cow<[MinkowskiVert;2]>{
match edge_id{
MinkowskiEdge::VertEdge(v0,e1)=>{
Cow::Owned(self.mesh1.edge_verts(e1).map(|(vert_id1,face_id1)|{
(MinkowskiVert::VertVert(v0,vert_id1),MinkowskiFace::VertFace(v0,face_id1))
}))
},
MinkowskiEdge::EdgeVert(e0,v1)=>{
Cow::Owned(self.mesh0.edge_verts(e0).map(|(vert_id0,face_id0)|{
(MinkowskiVert::VertVert(vert_id0,v1),MinkowskiFace::FaceVert(face_id0,v1))
}))
},
}
}
fn vert_edges(&self,vert_id:MinkowskiVert)->Cow<Vec<MinkowskiEdge>>{
match vert_id{
MinkowskiVert::VertVert(v0,v1)=>{
let v0e=self.mesh0.vert_edges(v0);
let v1e=self.mesh1.vert_edges(v1);
//uh oh dot product
//pass all dots?
//it's a convex hull of {v0e,-v1e}
//each edge needs to know which vert to use from the other mesh
todo!()
},
}
}
}