strafe-client/src/model_physics.rs
2023-11-10 19:13:41 -08:00

638 lines
20 KiB
Rust

use crate::integer::{Planar64,Planar64Vec3};
use std::borrow::Cow;
#[derive(Debug,Clone,Copy,Hash,Eq,PartialEq)]
pub struct VertId(usize);
#[derive(Debug,Clone,Copy,Hash,Eq,PartialEq)]
pub struct EdgeId(usize);
impl EdgeId{
fn as_directed_edge_id(&self,parity:bool)->DirectedEdgeId{
DirectedEdgeId(self.0|((parity as usize)<<(usize::BITS-1)))
}
}
/// DirectedEdgeId refers to an EdgeId when undirected.
#[derive(Debug,Clone,Copy,Hash,Eq,PartialEq)]
pub struct DirectedEdgeId(usize);
impl DirectedEdgeId{
fn as_edge_id(&self)->EdgeId{
EdgeId(self.0&!(1<<(usize::BITS-1)))
}
fn signum(&self)->isize{
((self.0&(1<<(usize::BITS-1))!=0) as isize)*2-1
}
}
#[derive(Debug,Clone,Copy,Hash,Eq,PartialEq)]
pub struct FaceId(usize);
//Vertex <-> Edge <-> Face -> Collide
pub enum FEV<F,E,V>{
Face(F),
Edge(E),
Vert(V),
}
//use Unit32 #[repr(C)] for map files
struct Face{
normal:Planar64Vec3,
dot:Planar64,
}
impl Face{
fn nd(&self)->(Planar64Vec3,Planar64){
(self.normal,self.dot)
}
}
struct Vert(Planar64Vec3);
struct FaceRefs{
edges:Vec<(EdgeId,FaceId)>,
//verts:Vec<VertId>,
}
struct EdgeRefs{
faces:[FaceId;2],//left, right
verts:[VertId;2],//bottom, top
}
struct VertRefs{
faces:Vec<FaceId>,
edges:Vec<DirectedEdgeId>,
}
pub struct PhysicsMesh{
faces:Vec<Face>,
verts:Vec<Vert>,
face_topology:Vec<FaceRefs>,
edge_topology:Vec<EdgeRefs>,
vert_topology:Vec<VertRefs>,
}
#[derive(Default,Clone)]
struct VertRefGuy{
edges:std::collections::HashSet<DirectedEdgeId>,
faces:std::collections::HashSet<FaceId>,
}
#[derive(Clone,Hash,Eq,PartialEq)]
struct EdgeIdGuy([VertId;2]);
impl EdgeIdGuy{
fn new(v0:VertId,v1:VertId)->(Self,bool){
(if v0.0<v1.0{
Self([v0,v1])
}else{
Self([v1,v0])
},v0.0<v1.0)
}
}
struct EdgeRefGuy([FaceId;2]);
impl EdgeRefGuy{
fn new()->Self{
Self([FaceId(0);2])
}
fn push(&mut self,i:usize,face_id:FaceId){
self.0[i]=face_id;
}
}
struct FaceRefGuy(Vec<EdgeId>);
#[derive(Default)]
struct EdgePool{
edge_guys:Vec<(EdgeIdGuy,EdgeRefGuy)>,
edge_id_from_guy:std::collections::HashMap<EdgeIdGuy,usize>,
}
impl EdgePool{
fn push(&mut self,edge_id_guy:EdgeIdGuy)->(&mut EdgeRefGuy,EdgeId,bool){
if let Some(&edge_id)=self.edge_id_from_guy.get(&edge_id_guy){
(&mut unsafe{self.edge_guys.get_unchecked_mut(edge_id)}.1,EdgeId(edge_id),true)
}else{
let edge_id=self.edge_guys.len();
self.edge_guys.push((edge_id_guy.clone(),EdgeRefGuy::new()));
self.edge_id_from_guy.insert(edge_id_guy,edge_id);
(&mut unsafe{self.edge_guys.get_unchecked_mut(edge_id)}.1,EdgeId(edge_id),false)
}
}
}
impl From<&crate::model::IndexedModel> for PhysicsMesh{
fn from(indexed_model:&crate::model::IndexedModel)->Self{
let verts=indexed_model.unique_pos.iter().map(|v|Vert(v.clone())).collect();
let mut vert_ref_guys=vec![VertRefGuy::default();indexed_model.unique_pos.len()];
let mut edge_pool=EdgePool::default();
let mut face_i=0;
let mut faces=Vec::new();
let mut face_ref_guys=Vec::new();
for group in indexed_model.groups.iter(){for poly in group.polys.iter(){
let face_id=FaceId(face_i);
//one face per poly
let mut normal=Planar64Vec3::ZERO;
let len=poly.vertices.len();
let face_edges=poly.vertices.iter().enumerate().map(|(i,&vert_id)|{
let vert0_id=indexed_model.unique_vertices[vert_id as usize].pos as usize;
let vert1_id=indexed_model.unique_vertices[poly.vertices[(i+1)%len] as usize].pos as usize;
//https://www.khronos.org/opengl/wiki/Calculating_a_Surface_Normal (Newell's Method)
let v0=indexed_model.unique_pos[vert0_id];
let v1=indexed_model.unique_pos[vert1_id];
normal+=Planar64Vec3::new(
(v0.y()-v1.y())*(v0.z()+v1.z()),
(v0.z()-v1.z())*(v0.x()+v1.x()),
(v0.x()-v1.x())*(v0.y()+v1.y()),
);
//get/create edge and push face into it
let (edge_id_guy,is_sorted)=EdgeIdGuy::new(VertId(vert0_id),VertId(vert1_id));
let (edge_ref_guy,edge_id,exists)=edge_pool.push(edge_id_guy);
if exists{
edge_ref_guy.push(1,face_id);
}else{
edge_ref_guy.push(0,face_id);
}
//index edges & face into vertices
{
let vert_ref_guy=unsafe{vert_ref_guys.get_unchecked_mut(vert0_id)};
vert_ref_guy.edges.insert(edge_id.as_directed_edge_id(!is_sorted));
vert_ref_guy.faces.insert(face_id);
unsafe{vert_ref_guys.get_unchecked_mut(vert1_id)}.edges.insert(edge_id.as_directed_edge_id(is_sorted));
}
//return edge_id
edge_id
}).collect();
//choose precision loss randomly idk
normal=normal/len as i64;
let mut dot=Planar64::ZERO;
for &v in poly.vertices.iter(){
dot+=normal.dot(indexed_model.unique_pos[indexed_model.unique_vertices[v as usize].pos as usize]);
}
faces.push(Face{normal,dot:dot/len as i64});
face_ref_guys.push(FaceRefGuy(face_edges));
face_i+=1;
}}
//conceivably faces, edges, and vertices exist now
Self{
faces,
verts,
face_topology:face_ref_guys.into_iter().enumerate().map(|(i,face_ref_guy)|{
let face_id=FaceId(i);
FaceRefs{edges:face_ref_guy.0.into_iter().map(|edge_id|{
//get the edge face that's not this face
let edge_faces=&edge_pool.edge_guys[edge_id.0].1.0;
if edge_faces[0]==face_id{
(edge_id,edge_faces[1])
}else if edge_faces[1]==face_id{
(edge_id,edge_faces[0])
}else{
panic!("edge does not contain face edge_faces={:?} face={:?}",edge_faces,face_id)
}
}).collect()}
}).collect(),
edge_topology:edge_pool.edge_guys.into_iter().map(|(edge_id_guy,edge_ref_guy)|
EdgeRefs{faces:edge_ref_guy.0,verts:edge_id_guy.0}
).collect(),
vert_topology:vert_ref_guys.into_iter().map(|vert_ref_guy|
VertRefs{
edges:vert_ref_guy.edges.into_iter().collect(),
faces:vert_ref_guy.faces.into_iter().collect(),
}
).collect(),
}
}
}
pub trait MeshQuery<FACE:Clone,EDGE:Clone,VERT:Clone>{
fn closest_fev(&self,point:Planar64Vec3)->FEV<FACE,EDGE,VERT>;
fn edge_n(&self,edge_id:EDGE)->Planar64Vec3{
let verts=self.edge_verts(edge_id);
self.vert(verts[1].clone())-self.vert(verts[0].clone())
}
fn vert(&self,vert_id:VERT)->Planar64Vec3;
fn face_nd(&self,face_id:FACE)->(Planar64Vec3,Planar64);
fn face_edges(&self,face_id:FACE)->Cow<Vec<(EDGE,FACE)>>;
fn edge_faces(&self,edge_id:EDGE)->Cow<[FACE;2]>;
fn edge_verts(&self,edge_id:EDGE)->Cow<[VERT;2]>;
fn vert_edges(&self,vert_id:VERT)->Cow<Vec<EDGE>>;
fn vert_faces(&self,vert_id:VERT)->Cow<Vec<FACE>>;
}
impl PhysicsMesh{
pub fn verts<'a>(&'a self)->impl Iterator<Item=Planar64Vec3>+'a{
self.verts.iter().map(|Vert(pos)|*pos)
}
pub fn brute(&self,body:&crate::physics::Body,time_limit:crate::integer::Time)->Option<(FaceId,crate::integer::Time)>{
//check each face
let mut best_time=time_limit;
let mut best_face=None;
for (i,face) in self.faces.iter().enumerate(){
let face_id=FaceId(i);
let (n,d)=face.nd();
for t in crate::zeroes::zeroes2((n.dot(body.position)-d)*2,n.dot(body.velocity)*2,n.dot(body.acceleration)){
let t=body.time+crate::integer::Time::from(t);
if body.time<t&&t<best_time&&n.dot(body.extrapolated_velocity(t))<Planar64::ZERO{
let p=body.extrapolated_position(t);
if self.face_edges(face_id).iter().all(|&(_,face_id)|{
let (n,d)=self.face_nd(face_id);
n.dot(p)<=d
}){
best_time=t;
best_face=Some(face_id);
}
}
}
}
best_face.map(|f|(f,best_time))
}
fn vert_directed_edges(&self,vert_id:VertId)->Cow<Vec<DirectedEdgeId>>{
Cow::Borrowed(&self.vert_topology[vert_id.0].edges)
}
fn directed_edge_n(&self,directed_edge_id:DirectedEdgeId)->Planar64Vec3{
let verts=self.edge_verts(directed_edge_id.as_edge_id());
(self.vert(verts[1].clone())-self.vert(verts[0].clone()))*(directed_edge_id.signum() as i64)
}
}
impl MeshQuery<FaceId,EdgeId,VertId> for PhysicsMesh{
fn closest_fev(&self,point:Planar64Vec3)->FEV<FaceId,EdgeId,VertId>{
//TODO: put some genius code right here
//brute force for now
let mut best_distance_squared=Planar64::MAX;
//make something up as default ret
//hopefully empty meshes don't make their way through here
let mut best_fev=FEV::<FaceId,EdgeId,VertId>::Vert(VertId(0));
//check each vert
for (i,v) in self.verts.iter().enumerate(){
let d=(v.0-point).dot(v.0-point);
if d<best_distance_squared{
best_distance_squared=d;
best_fev=FEV::<FaceId,EdgeId,VertId>::Vert(VertId(i));
}
}
//check each edge
for (i,e) in self.edge_topology.iter().enumerate(){
let v0=self.vert(e.verts[0]);
let v1=self.vert(e.verts[1]);
let n=v1-v0;
//n.cross(point-v0)=sin(t)*n*dis
let d=n.dot(point-v0);
if d<n.dot(v1)&&n.dot(v0)<d{
let c=n.cross(point-v0);
let edge_distance_squared=c.dot(c)/n.dot(n);
if edge_distance_squared<best_distance_squared{
best_distance_squared=edge_distance_squared;
best_fev=FEV::<FaceId,EdgeId,VertId>::Edge(EdgeId(i));
}
}
}
let face_dots:Vec<Planar64>=self.faces.iter().map(|f|f.normal.dot(point)).collect();
//check each face
for (i,f) in self.face_topology.iter().enumerate(){
if face_dots[i]<best_distance_squared&&f.edges.iter().all(|&(_,face_id)|face_dots[face_id.0]<=Planar64::ZERO){
best_distance_squared=face_dots[i];
best_fev=FEV::<FaceId,EdgeId,VertId>::Face(FaceId(i));
}
}
best_fev
}
fn face_nd(&self,face_id:FaceId)->(Planar64Vec3,Planar64){
(self.faces[face_id.0].normal,self.faces[face_id.0].dot)
}
//ideally I never calculate the vertex position, but I have to for the graphical meshes...
fn vert(&self,vert_id:VertId)->Planar64Vec3{
self.verts[vert_id.0].0
}
fn face_edges(&self,face_id:FaceId)->Cow<Vec<(EdgeId,FaceId)>>{
Cow::Borrowed(&self.face_topology[face_id.0].edges)
}
fn edge_faces(&self,edge_id:EdgeId)->Cow<[FaceId;2]>{
Cow::Borrowed(&self.edge_topology[edge_id.0].faces)
}
fn edge_verts(&self,edge_id:EdgeId)->Cow<[VertId;2]>{
Cow::Borrowed(&self.edge_topology[edge_id.0].verts)
}
fn vert_edges(&self,vert_id:VertId)->Cow<Vec<EdgeId>>{
//not poggers
Cow::Owned(self.vert_topology[vert_id.0].edges.iter().map(|directed_edge_id|directed_edge_id.as_edge_id()).collect())
}
fn vert_faces(&self,vert_id:VertId)->Cow<Vec<FaceId>>{
Cow::Borrowed(&self.vert_topology[vert_id.0].faces)
}
}
pub struct TransformedMesh<'a>{
mesh:&'a PhysicsMesh,
transform:&'a crate::integer::Planar64Affine3,
normal_transform:&'a crate::integer::Planar64Mat3,
}
impl TransformedMesh<'_>{
pub fn new<'a>(
mesh:&'a PhysicsMesh,
transform:&'a crate::integer::Planar64Affine3,
normal_transform:&'a crate::integer::Planar64Mat3,
)->TransformedMesh<'a>{
TransformedMesh{
mesh,
transform,
normal_transform,
}
}
pub fn brute_in(&self,body:&crate::physics::Body,time_limit:crate::integer::Time)->Option<(FaceId,crate::integer::Time)>{
//check each face
let mut best_time=time_limit;
let mut best_face=None;
for i in 0..self.mesh.faces.len(){
let face_id=FaceId(i);
let (n,d)=self.face_nd(face_id);
for t in crate::zeroes::zeroes2((n.dot(body.position)-d)*2,n.dot(body.velocity)*2,n.dot(body.acceleration)){
let t=body.time+crate::integer::Time::from(t);
if body.time<t&&t<best_time&&n.dot(body.extrapolated_velocity(t))<Planar64::ZERO{
let p=body.extrapolated_position(t);
if self.face_edges(face_id).iter().all(|&(_,face_id)|{
let (n,d)=self.face_nd(face_id);
n.dot(p)<=d
}){
best_time=t;
best_face=Some(face_id);
}
}
}
}
best_face.map(|f|(f,best_time))
}
pub fn brute_out(&self,body:&crate::physics::Body,time_limit:crate::integer::Time)->Option<(FaceId,crate::integer::Time)>{
//check each face
let mut best_time=time_limit;
let mut best_face=None;
for i in 0..self.mesh.faces.len(){
let face_id=FaceId(i);
let (n,d)=self.face_nd(face_id);
for t in crate::zeroes::zeroes2((n.dot(body.position)-d)*2,n.dot(body.velocity)*2,n.dot(body.acceleration)){
let t=body.time+crate::integer::Time::from(t);
if body.time<t&&t<best_time&&n.dot(body.extrapolated_velocity(t))>Planar64::ZERO{
let p=body.extrapolated_position(t);
if self.face_edges(face_id).iter().all(|&(_,test_face_id)|{
let (n,d)=self.face_nd(test_face_id);
n.dot(p)<=d
}){
best_time=t;
best_face=Some(face_id);
}
}
}
}
best_face.map(|f|(f,best_time))
}
pub fn brute_out_face(&self,body:&crate::physics::Body,time_limit:crate::integer::Time,face_id:FaceId)->Option<(FaceId,crate::integer::Time)>{
//check each face
let mut best_time=time_limit;
let mut best_face=None;
for &(_,test_face_id) in self.mesh.face_edges(face_id).iter(){
let (n,d)=self.face_nd(test_face_id);
for t in crate::zeroes::zeroes2((n.dot(body.position)-d)*2,n.dot(body.velocity)*2,n.dot(body.acceleration)){
let t=body.time+crate::integer::Time::from(t);
if body.time<t&&t<best_time&&n.dot(body.extrapolated_velocity(t))>Planar64::ZERO{
best_time=t;
best_face=Some(test_face_id);
}
}
}
best_face.map(|f|(f,best_time))
}
#[inline]
fn vert_directed_edges(&self,vert_id:VertId)->Cow<Vec<DirectedEdgeId>>{
self.mesh.vert_directed_edges(vert_id)
}
#[inline]
fn directed_edge_n(&self,directed_edge_id:DirectedEdgeId)->Planar64Vec3{
self.mesh.directed_edge_n(directed_edge_id)
}
}
impl MeshQuery<FaceId,EdgeId,VertId> for TransformedMesh<'_>{
fn closest_fev(&self,point:Planar64Vec3)->FEV<FaceId,EdgeId,VertId>{
//TODO: put some genius code right here
//brute force for now
let mut best_distance_squared=Planar64::MAX;
//make something up as default ret
//hopefully empty meshes don't make their way through here
let mut best_fev=FEV::<FaceId,EdgeId,VertId>::Vert(VertId(0));
//check each vert
for i in 0..self.mesh.verts.len(){
let v=self.vert(VertId(i));
let d=(v-point).dot(v-point);
if d<best_distance_squared{
best_distance_squared=d;
best_fev=FEV::<FaceId,EdgeId,VertId>::Vert(VertId(i));
}
}
//check each edge
for (i,e) in self.mesh.edge_topology.iter().enumerate(){
let v0=self.vert(e.verts[0]);
let v1=self.vert(e.verts[1]);
let n=v1-v0;
//n.cross(point-v0)=sin(t)*n*dis
let d=n.dot(point-v0);
if d<n.dot(v1)&&n.dot(v0)<d{
let c=n.cross(point-v0);
let edge_distance_squared=c.dot(c)/n.dot(n);
if edge_distance_squared<best_distance_squared{
best_distance_squared=edge_distance_squared;
best_fev=FEV::<FaceId,EdgeId,VertId>::Edge(EdgeId(i));
}
}
}
let face_dots:Vec<Planar64>=self.mesh.faces.iter().map(|f|(*self.normal_transform*f.normal).dot(point)).collect();
//check each face
for (i,f) in self.mesh.face_topology.iter().enumerate(){
if face_dots[i]<best_distance_squared&&f.edges.iter().all(|&(_,face_id)|face_dots[face_id.0]<=Planar64::ZERO){
best_distance_squared=face_dots[i];
best_fev=FEV::<FaceId,EdgeId,VertId>::Face(FaceId(i));
}
}
best_fev
}
fn face_nd(&self,face_id:FaceId)->(Planar64Vec3,Planar64){
let (n,d)=self.mesh.face_nd(face_id);
let transformed_n=*self.normal_transform*n;
let transformed_d=Planar64::raw(((transformed_n.dot128(self.transform.matrix3*(n*d))<<32)/n.dot128(n)) as i64)+transformed_n.dot(self.transform.translation);
(transformed_n,transformed_d)
}
fn vert(&self,vert_id:VertId)->Planar64Vec3{
self.transform.transform_point3(self.mesh.vert(vert_id))
}
#[inline]
fn face_edges(&self,face_id:FaceId)->Cow<Vec<(EdgeId,FaceId)>>{
self.mesh.face_edges(face_id)
}
#[inline]
fn edge_faces(&self,edge_id:EdgeId)->Cow<[FaceId;2]>{
self.mesh.edge_faces(edge_id)
}
#[inline]
fn edge_verts(&self,edge_id:EdgeId)->Cow<[VertId;2]>{
self.mesh.edge_verts(edge_id)
}
#[inline]
fn vert_edges(&self,vert_id:VertId)->Cow<Vec<EdgeId>>{
self.mesh.vert_edges(vert_id)
}
#[inline]
fn vert_faces(&self,vert_id:VertId)->Cow<Vec<FaceId>>{
self.mesh.vert_faces(vert_id)
}
}
//Note that a face on a minkowski mesh refers to a pair of fevs on the meshes it's summed from
//(face,vertex)
//(edge,edge)
//(vertex,face)
#[derive(Clone,Copy)]
enum MinkowskiVert{
VertVert(VertId,VertId),
}
#[derive(Clone,Copy)]
enum MinkowskiEdge{
VertEdge(VertId,EdgeId),
EdgeVert(EdgeId,VertId),
}
#[derive(Debug,Clone,Copy,Hash,Eq,PartialEq)]
pub enum MinkowskiFace{
FaceVert(FaceId,VertId),
EdgeEdge(EdgeId,EdgeId),
VertFace(VertId,FaceId),
}
pub struct MinkowskiMesh<'a>{
mesh0:&'a TransformedMesh<'a>,
mesh1:&'a TransformedMesh<'a>,
}
impl MinkowskiMesh<'_>{
pub fn minkowski_sum<'a>(mesh0:&'a TransformedMesh,mesh1:&'a TransformedMesh)->MinkowskiMesh<'a>{
MinkowskiMesh{
mesh0,
mesh1,
}
}
}
impl MeshQuery<MinkowskiFace,MinkowskiEdge,MinkowskiVert> for MinkowskiMesh<'_>{
fn closest_fev(&self,point:Planar64Vec3)->FEV<MinkowskiFace,MinkowskiEdge,MinkowskiVert>{
//put some genius code right here
todo!()
}
fn face_nd(&self,face_id:MinkowskiFace)->(Planar64Vec3,Planar64){
match face_id{
MinkowskiFace::FaceVert(f0,v1)=>{
let (n,d)=self.mesh0.face_nd(f0);
(n,d+n.dot(self.mesh1.vert(v1)))
},
MinkowskiFace::EdgeEdge(e0,e1)=>{
let [e0f0,e0f1]=self.mesh0.edge_faces(e0).into_owned();
let [e1f0,e1f1]=self.mesh1.edge_faces(e1).into_owned();
//cross edge faces
//cross crosses
todo!()
},
MinkowskiFace::VertFace(v0,f1)=>{
let (n,d)=self.mesh1.face_nd(f1);
(-n,d-n.dot(self.mesh0.vert(v0)))
},
}
}
fn vert(&self,vert_id:MinkowskiVert)->Planar64Vec3{
match vert_id{
MinkowskiVert::VertVert(v0,v1)=>{
self.mesh0.vert(v0)-self.mesh1.vert(v1)
},
}
}
fn face_edges(&self,face_id:MinkowskiFace)->Cow<Vec<(MinkowskiEdge,MinkowskiFace)>>{
match face_id{
MinkowskiFace::FaceVert(f0,v1)=>{
Cow::Owned(self.mesh0.face_edges(f0).iter().map(|&(edge_id0,face_id0)|{
(MinkowskiEdge::EdgeVert(edge_id0,v1),MinkowskiFace::FaceVert(face_id0,v1))
}).collect())
},
MinkowskiFace::EdgeEdge(e0,e1)=>{
/*
let e0v=self.mesh0.edge_verts(e0);
let e1v=self.mesh1.edge_verts(e1);
let [r0,r1]=e0v.map(|vert_id0|{
//sort e1 ends by e0 edge dir to get v1
//find face normal formulation without cross products
let v1=if 0<(e0.v1-e0.v0).dot(e1.v1-e1.v0){
e1.v0
}else{
e1.v1
};
(MinkowskiEdge::VertEdge(vert_id0,e1),MinkowskiFace::FaceVert(face_id0,v1))
});
let [r2,r3]=e1v.map(|vert_id1|{
//sort e0 ends by e1 edge dir to get v0
let v0=if 0<(e0.v1-e0.v0).dot(e1.v1-e1.v0){
e0.v0
}else{
e0.v1
};
(MinkowskiEdge::EdgeVert(e0,vert_id1),MinkowskiFace::VertFace(v0,face_id1))
});
Cow::Owned(vec![r0,r1,r2,r3])
*/
todo!()
},
MinkowskiFace::VertFace(v0,f1)=>{
Cow::Owned(self.mesh1.face_edges(f1).iter().map(|&(edge_id1,face_id1)|{
(MinkowskiEdge::VertEdge(v0,edge_id1),MinkowskiFace::VertFace(v0,face_id1))
}).collect())
},
}
}
fn edge_faces(&self,edge_id:MinkowskiEdge)->Cow<[MinkowskiFace;2]>{
match edge_id{
MinkowskiEdge::VertEdge(v0,e1)=>{
Cow::Owned(self.mesh1.edge_faces(e1).map(|face_id1|{
MinkowskiFace::VertFace(v0,face_id1)
}))
},
MinkowskiEdge::EdgeVert(e0,v1)=>{
Cow::Owned(self.mesh0.edge_faces(e0).map(|face_id0|{
MinkowskiFace::FaceVert(face_id0,v1)
}))
},
}
}
fn edge_verts(&self,edge_id:MinkowskiEdge)->Cow<[MinkowskiVert;2]>{
match edge_id{
MinkowskiEdge::VertEdge(v0,e1)=>{
Cow::Owned(self.mesh1.edge_verts(e1).map(|vert_id1|{
MinkowskiVert::VertVert(v0,vert_id1)
}))
},
MinkowskiEdge::EdgeVert(e0,v1)=>{
Cow::Owned(self.mesh0.edge_verts(e0).map(|vert_id0|{
MinkowskiVert::VertVert(vert_id0,v1)
}))
},
}
}
fn vert_edges(&self,vert_id:MinkowskiVert)->Cow<Vec<MinkowskiEdge>>{
match vert_id{
MinkowskiVert::VertVert(v0,v1)=>{
let mut edges=Vec::new();
let v0e=self.mesh0.vert_directed_edges(v0);
let v1f=self.mesh1.vert_faces(v1);
for &directed_edge_id in v0e.iter(){
let n=self.mesh0.directed_edge_n(directed_edge_id);
if v1f.iter().all(|&face_id|n.dot(self.mesh1.face_nd(face_id).0)<Planar64::ZERO){
edges.push(MinkowskiEdge::EdgeVert(directed_edge_id.as_edge_id(),v1));
}
}
let v1e=self.mesh1.vert_directed_edges(v1);
let v0f=self.mesh0.vert_faces(v0);
for &directed_edge_id in v1e.iter(){
let n=self.mesh1.directed_edge_n(directed_edge_id);
if v0f.iter().all(|&face_id|n.dot(self.mesh0.face_nd(face_id).0)<Planar64::ZERO){
edges.push(MinkowskiEdge::VertEdge(v0,directed_edge_id.as_edge_id()));
}
}
Cow::Owned(edges)
},
}
}
fn vert_faces(&self,vert_id:MinkowskiVert)->Cow<Vec<MinkowskiFace>>{
todo!()
}
}
#[test]
fn build_me_a_cube(){
let unit_cube=crate::primitives::unit_cube();
let mesh=PhysicsMesh::from(&unit_cube);
println!("mesh={:?}",mesh);
}