strafe-client/src/physics.rs
2024-02-05 19:49:36 -08:00

1637 lines
60 KiB
Rust

use std::collections::HashMap;
use std::collections::HashSet;
use crate::model_physics::{self,PhysicsMesh,TransformedMesh,MeshQuery};
use strafesnet_common::bvh;
use strafesnet_common::map;
use strafesnet_common::aabb;
use strafesnet_common::gameplay_modes;
use strafesnet_common::gameplay_attributes;
use strafesnet_common::model::ModelId;
use strafesnet_common::gameplay_style::{self,StyleModifiers};
use strafesnet_common::instruction::{self,InstructionEmitter,InstructionConsumer,TimedInstruction};
use strafesnet_common::integer::{self,Time,Planar64,Planar64Vec3,Planar64Mat3,Angle32,Ratio64Vec2};
#[derive(Debug)]
pub enum PhysicsInstruction {
CollisionStart(Collision),
CollisionEnd(Collision),
StrafeTick,
ReachWalkTargetVelocity,
// Water,
// Spawn(
// Option<SpawnId>,
// bool,//true = Trigger; false = teleport
// bool,//true = Force
// )
//InputInstructions conditionally activate RefreshWalkTarget (by doing what SetWalkTargetVelocity used to do and then flagging it)
Input(PhysicsInputInstruction),
}
#[derive(Debug)]
pub enum PhysicsInputInstruction {
ReplaceMouse(MouseState,MouseState),
SetNextMouse(MouseState),
SetMoveRight(bool),
SetMoveUp(bool),
SetMoveBack(bool),
SetMoveLeft(bool),
SetMoveDown(bool),
SetMoveForward(bool),
SetJump(bool),
SetZoom(bool),
Reset,
Idle,
//Idle: there were no input events, but the simulation is safe to advance to this timestep
//for interpolation / networking / playback reasons, most playback heads will always want
//to be 1 instruction ahead to generate the next state for interpolation.
}
#[derive(Clone,Hash,Default)]
pub struct Body{
pub position:Planar64Vec3,//I64 where 2^32 = 1 u
pub velocity:Planar64Vec3,//I64 where 2^32 = 1 u/s
pub acceleration:Planar64Vec3,//I64 where 2^32 = 1 u/s/s
pub time:Time,//nanoseconds x xxxxD!
}
impl std::ops::Neg for Body{
type Output=Self;
fn neg(self)->Self::Output{
Self{
position:self.position,
velocity:-self.velocity,
acceleration:self.acceleration,
time:-self.time,
}
}
}
//hey dumbass just use a delta
#[derive(Clone,Debug)]
pub struct MouseState {
pub pos: glam::IVec2,
pub time:Time,
}
impl Default for MouseState{
fn default() -> Self {
Self {
time:Time::ZERO,
pos:glam::IVec2::ZERO,
}
}
}
impl MouseState {
pub fn lerp(&self,target:&MouseState,time:Time)->glam::IVec2 {
let m0=self.pos.as_i64vec2();
let m1=target.pos.as_i64vec2();
//these are deltas
let t1t=(target.time-time).nanos();
let tt0=(time-self.time).nanos();
let dt=(target.time-self.time).nanos();
((m0*t1t+m1*tt0)/dt).as_ivec2()
}
}
enum JumpDirection{
Exactly(Planar64Vec3),
FromContactNormal,
}
enum WalkEnum{
Reached,
Transient(WalkTarget),
}
struct WalkTarget{
velocity:Planar64Vec3,
time:Time,
}
struct WalkState{
jump_direction:JumpDirection,
contact:ContactCollision,
state:WalkEnum,
}
impl WalkEnum{
//args going crazy
//(walk_enum,body.acceleration)=with_target_velocity();
fn with_target_velocity(body:&Body,style:&StyleModifiers,velocity:Planar64Vec3,normal:&Planar64Vec3,speed:Planar64,normal_accel:Planar64)->(WalkEnum,Planar64Vec3){
let mut target_diff=velocity-body.velocity;
//remove normal component
target_diff-=normal.clone()*(normal.dot(target_diff)/normal.dot(normal.clone()));
if target_diff==Planar64Vec3::ZERO{
(WalkEnum::Reached,Planar64Vec3::ZERO)
}else{
//normal friction acceleration is clippedAcceleration.dot(normal)*friction
let diff_len=target_diff.length();
let friction=if diff_len<speed{
style.static_friction
}else{
style.kinetic_friction
};
let accel=style.walk_accel.min(normal_accel*friction);
let time_delta=diff_len/accel;
let a=target_diff.with_length(accel);
(WalkEnum::Transient(WalkTarget{velocity,time:body.time+Time::from(time_delta)}),a)
}
}
}
impl WalkState{
fn ground(body:&Body,style:&StyleModifiers,gravity:Planar64Vec3,velocity:Planar64Vec3,contact:ContactCollision,normal:&Planar64Vec3)->(Self,Planar64Vec3){
let (walk_enum,a)=WalkEnum::with_target_velocity(body,style,velocity,&Planar64Vec3::Y,style.walk_speed,-normal.dot(gravity));
(Self{
state:walk_enum,
contact,
jump_direction:JumpDirection::Exactly(Planar64Vec3::Y),
},a)
}
fn ladder(body:&Body,style:&StyleModifiers,gravity:Planar64Vec3,velocity:Planar64Vec3,contact:ContactCollision,normal:&Planar64Vec3)->(Self,Planar64Vec3){
let (walk_enum,a)=WalkEnum::with_target_velocity(body,style,velocity,normal,style.ladder_speed,style.ladder_accel);
(Self{
state:walk_enum,
contact,
jump_direction:JumpDirection::FromContactNormal,
},a)
}
}
#[derive(Default)]
struct PhysicsModels{
meshes:Vec<PhysicsMesh>,
models:Vec<PhysicsModel>,
//separate models into Contacting and Intersecting?
//wrap model id with ContactingModelId and IntersectingModelId
//attributes can be split into contacting and intersecting (this also saves a bit of memory)
//can go even further and deduplicate General attributes separately, reconstructing it when queried
attributes:Vec<PhysicsCollisionAttributes>,
}
impl PhysicsModels{
fn clear(&mut self){
self.meshes.clear();
self.models.clear();
self.attributes.clear();
}
//TODO: "statically" verify the maps don't refer to any nonexistant data, if they do delete the references.
//then I can make these getter functions unchecked.
fn mesh(&self,model_id:PhysicsModelId)->TransformedMesh{
let idx=model_id.get() as usize;
let convex_mesh_id=self.models[idx].convex_mesh_id;
TransformedMesh::new(
&self.meshes[convex_mesh_id.mesh_id.get() as usize].groups[convex_mesh_id.group_id.get() as usize],
&self.models[idx].transform,
&self.models[idx].normal_transform,
self.models[idx].transform_det,
)
}
fn model(&self,model_id:PhysicsModelId)->&PhysicsModel{
&self.models[model_id.get() as usize]
}
fn attr(&self,model_id:PhysicsModelId)->&PhysicsCollisionAttributes{
&self.attributes[self.models[model_id.get() as usize].attr_id.get() as usize]
}
fn push_mesh(&mut self,mesh:PhysicsMesh){
self.meshes.push(mesh);
}
fn push_model(&mut self,model:PhysicsModel)->PhysicsModelId{
let model_id=PhysicsModelId::id(self.models.len() as u32);
self.models.push(model);
model_id
}
fn push_attr(&mut self,attr:PhysicsCollisionAttributes)->PhysicsAttributesId{
let attr_id=PhysicsAttributesId::id(self.attributes.len() as u32);
self.attributes.push(attr);
attr_id
}
}
#[derive(Clone)]
pub struct PhysicsCamera{
//punch: Planar64Vec3,
//punch_velocity: Planar64Vec3,
sensitivity:Ratio64Vec2,//dots to Angle32 ratios
mouse:MouseState,//last seen absolute mouse pos
clamped_mouse_pos:glam::IVec2,//angles are calculated from this cumulative value
angle_pitch_lower_limit:Angle32,
angle_pitch_upper_limit:Angle32,
//angle limits could be an enum + struct that defines whether it's limited and selects clamp or wrap depending
// enum AngleLimit{
// Unlimited,
// Limited{lower:Angle32,upper:Angle32},
// }
//pitch_limit:AngleLimit,
//yaw_limit:AngleLimit,
}
impl PhysicsCamera {
pub fn move_mouse(&mut self,mouse_pos:glam::IVec2){
let mut unclamped_mouse_pos=self.clamped_mouse_pos+mouse_pos-self.mouse.pos;
unclamped_mouse_pos.y=unclamped_mouse_pos.y.clamp(
self.sensitivity.y.rhs_div_int(self.angle_pitch_lower_limit.get() as i64) as i32,
self.sensitivity.y.rhs_div_int(self.angle_pitch_upper_limit.get() as i64) as i32,
);
self.clamped_mouse_pos=unclamped_mouse_pos;
}
pub fn simulate_move_angles(&self,mouse_pos:glam::IVec2)->glam::Vec2 {
let a=-self.sensitivity.mul_int((mouse_pos-self.mouse.pos+self.clamped_mouse_pos).as_i64vec2());
let ax=Angle32::wrap_from_i64(a.x);
let ay=Angle32::clamp_from_i64(a.y)
//clamp to actual vertical cam limit
.clamp(self.angle_pitch_lower_limit,self.angle_pitch_upper_limit);
return glam::vec2(ax.into(),ay.into());
}
fn simulate_move_rotation(&self,mouse_pos:glam::IVec2)->Planar64Mat3{
let a=-self.sensitivity.mul_int((mouse_pos-self.mouse.pos+self.clamped_mouse_pos).as_i64vec2());
let ax=Angle32::wrap_from_i64(a.x);
let ay=Angle32::clamp_from_i64(a.y)
//clamp to actual vertical cam limit
.clamp(self.angle_pitch_lower_limit,self.angle_pitch_upper_limit);
Planar64Mat3::from_rotation_yx(ax,ay)
}
fn simulate_move_rotation_y(&self,mouse_pos_x:i32)->Planar64Mat3{
let ax=-self.sensitivity.x.mul_int((mouse_pos_x-self.mouse.pos.x+self.clamped_mouse_pos.x) as i64);
Planar64Mat3::from_rotation_y(Angle32::wrap_from_i64(ax))
}
}
impl std::default::Default for PhysicsCamera{
fn default()->Self{
Self{
sensitivity:Ratio64Vec2::ONE*200_000,
mouse:MouseState::default(),//t=0 does not cause divide by zero because it's immediately replaced
clamped_mouse_pos:glam::IVec2::ZERO,
angle_pitch_lower_limit:-Angle32::FRAC_PI_2,
angle_pitch_upper_limit:Angle32::FRAC_PI_2,
}
}
}
pub struct ModeState{
mode_id:gameplay_modes::ModeId,
stage_id:gameplay_modes::StageId,
jump_counts:HashMap<ModelId,u32>,//model_id -> jump count
next_ordered_checkpoint_id:gameplay_modes::CheckpointId,//which OrderedCheckpoint model_id you must pass next (if 0 you haven't passed OrderedCheckpoint0)
unordered_checkpoints:HashSet<ModelId>,
}
impl std::default::Default for ModeState{
fn default()->Self{
Self{
mode_id:gameplay_modes::ModeId::id(0),
stage_id:gameplay_modes::StageId::id(0),
next_ordered_checkpoint_id:gameplay_modes::CheckpointId::id(0),
unordered_checkpoints:HashSet::new(),
jump_counts:HashMap::new(),
}
}
}
struct WorldState{}
struct HitboxMesh{
halfsize:Planar64Vec3,
mesh:PhysicsMesh,
transform:integer::Planar64Affine3,
normal_transform:Planar64Mat3,
transform_det:Planar64,
}
impl HitboxMesh{
fn new(mesh:PhysicsMesh,transform:integer::Planar64Affine3)->Self{
//calculate extents
let mut aabb=aabb::Aabb::default();
for vert in mesh.verts(){
aabb.grow(transform.transform_point3(vert));
}
Self{
halfsize:aabb.size()/2,
mesh,
transform,
normal_transform:transform.matrix3.inverse_times_det().transpose(),
transform_det:transform.matrix3.determinant(),
}
}
#[inline]
fn transformed_mesh(&self)->TransformedMesh{
TransformedMesh::new(&self.mesh,&self.transform,&self.normal_transform,self.transform_det)
}
}
trait StyleHelper{
fn get_control(&self,control:u32,controls:u32)->bool;
fn allow_strafe(&self,controls:u32)->bool;
fn get_control_dir(&self,controls:u32)->Planar64Vec3;
//fn get_jump_time(&self)->Planar64;
//fn get_jump_height(&self)->Planar64;
//fn get_jump_energy(&self)->Planar64;
fn get_jump_deltav(&self)->Planar64;
fn get_walk_target_velocity(&self,camera:&PhysicsCamera,controls:u32,next_mouse:&MouseState,time:Time,normal:&Planar64Vec3)->Planar64Vec3;
fn get_ladder_target_velocity(&self,camera:&PhysicsCamera,controls:u32,next_mouse:&MouseState,time:Time,normal:&Planar64Vec3)->Planar64Vec3;
fn get_propulsion_control_dir(&self,camera:&PhysicsCamera,controls:u32,next_mouse:&MouseState,time:Time)->Planar64Vec3;
fn calculate_mesh(&self)->HitboxMesh;
}
impl StyleHelper for StyleModifiers{
fn get_control(&self,control:u32,controls:u32)->bool{
controls&self.controls_mask&control==control
}
fn allow_strafe(&self,controls:u32)->bool{
//disable strafing according to strafe settings
self.strafe.is_some_and(|s|s.mask(controls))
}
fn get_control_dir(&self,controls:u32)->Planar64Vec3{
//don't get fancy just do it
let mut control_dir:Planar64Vec3 = Planar64Vec3::ZERO;
//Apply mask after held check so you can require non-allowed keys to be held for some reason
let controls=controls&self.controls_mask;
if controls & Self::CONTROL_MOVEFORWARD == Self::CONTROL_MOVEFORWARD {
control_dir+=Self::FORWARD_DIR;
}
if controls & Self::CONTROL_MOVEBACK == Self::CONTROL_MOVEBACK {
control_dir-=Self::FORWARD_DIR;
}
if controls & Self::CONTROL_MOVELEFT == Self::CONTROL_MOVELEFT {
control_dir-=Self::RIGHT_DIR;
}
if controls & Self::CONTROL_MOVERIGHT == Self::CONTROL_MOVERIGHT {
control_dir+=Self::RIGHT_DIR;
}
if controls & Self::CONTROL_MOVEUP == Self::CONTROL_MOVEUP {
control_dir+=Self::UP_DIR;
}
if controls & Self::CONTROL_MOVEDOWN == Self::CONTROL_MOVEDOWN {
control_dir-=Self::UP_DIR;
}
return control_dir
}
//fn get_jump_time(&self)->Planar64
//fn get_jump_height(&self)->Planar64
//fn get_jump_energy(&self)->Planar64
fn get_jump_deltav(&self)->Planar64{
match &self.jump_impulse{
&gameplay_style::JumpImpulse::FromTime(time)=>self.gravity.length()*(time/2),
&gameplay_style::JumpImpulse::FromHeight(height)=>(self.gravity.length()*height*2).sqrt(),
&gameplay_style::JumpImpulse::FromDeltaV(deltav)=>deltav,
&gameplay_style::JumpImpulse::FromEnergy(energy)=>(energy*2/self.mass).sqrt(),
}
}
fn get_walk_target_velocity(&self,camera:&PhysicsCamera,controls:u32,next_mouse:&MouseState,time:Time,normal:&Planar64Vec3)->Planar64Vec3{
let mut control_dir=self.get_control_dir(controls);
if control_dir==Planar64Vec3::ZERO{
return control_dir;
}
let camera_mat=camera.simulate_move_rotation_y(camera.mouse.lerp(&next_mouse,time).x);
control_dir=camera_mat*control_dir;
let n=normal.length();
let m=control_dir.length();
let d=normal.dot(control_dir)/m;
if d<n{
let cr=normal.cross(control_dir);
if cr==Planar64Vec3::ZERO{
Planar64Vec3::ZERO
}else{
cr.cross(*normal)*(self.walk_speed/(n*(n*n-d*d).sqrt()*m))
}
}else{
Planar64Vec3::ZERO
}
}
fn get_ladder_target_velocity(&self,camera:&PhysicsCamera,controls:u32,next_mouse:&MouseState,time:Time,normal:&Planar64Vec3)->Planar64Vec3{
let mut control_dir=self.get_control_dir(controls);
if control_dir==Planar64Vec3::ZERO{
return control_dir;
}
let camera_mat=camera.simulate_move_rotation(camera.mouse.lerp(&next_mouse,time));
control_dir=camera_mat*control_dir;
let n=normal.length();
let m=control_dir.length();
let mut d=normal.dot(control_dir)/m;
if d< -self.ladder_dot*n{
control_dir=Planar64Vec3::Y*m;
d=normal.y();
}else if self.ladder_dot*n<d{
control_dir=Planar64Vec3::NEG_Y*m;
d=-normal.y();
}
//n=d if you are standing on top of a ladder and press E.
//two fixes:
//- ladder movement is not allowed on walkable surfaces
//- fix the underlying issue
if d.get().unsigned_abs()<n.get().unsigned_abs(){
let cr=normal.cross(control_dir);
if cr==Planar64Vec3::ZERO{
Planar64Vec3::ZERO
}else{
cr.cross(*normal)*(self.ladder_speed/(n*(n*n-d*d).sqrt()))
}
}else{
Planar64Vec3::ZERO
}
}
fn get_propulsion_control_dir(&self,camera:&PhysicsCamera,controls:u32,next_mouse:&MouseState,time:Time)->Planar64Vec3{
let camera_mat=camera.simulate_move_rotation(camera.mouse.lerp(&next_mouse,time));
camera_mat*self.get_control_dir(controls)
}
fn calculate_mesh(&self)->HitboxMesh{
let mesh=match self.hitbox.mesh{
gameplay_style::HitboxMesh::Box=>PhysicsMesh::unit_cube(),
gameplay_style::HitboxMesh::Cylinder=>PhysicsMesh::unit_cylinder(),
};
let transform=integer::Planar64Affine3::new(Planar64Mat3::from_diagonal(self.hitbox.halfsize),Planar64Vec3::ZERO);
HitboxMesh::new(mesh,transform)
}
}
enum MoveState{
Air,
Walk(WalkState),
Water,
Ladder(WalkState),
}
#[derive(Clone,Default)]
pub struct PhysicsOutputState{
body:Body,
camera:PhysicsCamera,
camera_offset:Planar64Vec3,
}
impl PhysicsOutputState{
pub fn extrapolate(&self,mouse_pos:glam::IVec2,time:Time)->(glam::Vec3,glam::Vec2){
((self.body.extrapolated_position(time)+self.camera_offset).into(),self.camera.simulate_move_angles(mouse_pos))
}
}
#[derive(Clone,Hash,Eq,PartialEq)]
enum PhysicsCollisionAttributes{
Contact{//track whether you are contacting the object
contacting:gameplay_attributes::ContactingAttributes,
general:gameplay_attributes::GeneralAttributes,
},
Intersect{//track whether you are intersecting the object
intersecting:gameplay_attributes::IntersectingAttributes,
general:gameplay_attributes::GeneralAttributes,
},
}
struct NonPhysicsError;
impl TryFrom<&gameplay_attributes::CollisionAttributes> for PhysicsCollisionAttributes{
type Error=NonPhysicsError;
fn try_from(value:&gameplay_attributes::CollisionAttributes)->Result<Self,Self::Error>{
match value{
gameplay_attributes::CollisionAttributes::Decoration=>Err(NonPhysicsError),
gameplay_attributes::CollisionAttributes::Contact{contacting,general}=>Ok(Self::Contact{contacting:contacting.clone(),general:general.clone()}),
gameplay_attributes::CollisionAttributes::Intersect{intersecting,general}=>Ok(Self::Intersect{intersecting:intersecting.clone(),general:general.clone()}),
}
}
}
struct PhysicsAttributesId(u32);
impl PhysicsAttributesId{
#[inline]
pub const fn id(id:u32)->Self{
Self(id)
}
#[inline]
pub const fn get(self)->u32{
self.0
}
}
//id assigned to deindexed IndexedPhysicsGroup
struct PhysicsMeshId(u32);
impl PhysicsMeshId{
#[inline]
pub const fn id(id:u32)->Self{
Self(id)
}
#[inline]
pub const fn get(self)->u32{
self.0
}
}
struct PhysicsGroupId(u32);
impl PhysicsGroupId{
#[inline]
pub const fn id(id:u32)->Self{
Self(id)
}
#[inline]
pub const fn get(self)->u32{
self.0
}
}
//unique physics meshes indexed by this
struct ConvexMeshId{
mesh_id:PhysicsMeshId,// 1:1 with IndexedModelId
group_id:PhysicsGroupId,// group in model
}
#[derive(Debug,Clone,Copy,Eq,Hash,PartialEq)]
struct PhysicsModelId(u32);
impl PhysicsModelId{
#[inline]
pub const fn id(id:u32)->Self{
Self(id)
}
#[inline]
pub const fn get(self)->u32{
self.0
}
}
impl From<ModelId> for PhysicsModelId{
fn from(value:ModelId)->Self{
Self::id(value.get())
}
}
pub struct PhysicsModel{
//A model is a thing that has a hitbox. can be represented by a list of TreyMesh-es
//in this iteration, all it needs is extents.
convex_mesh_id:ConvexMeshId,
//put these up on the Model (data normalization)
attr_id:PhysicsAttributesId,
transform:integer::Planar64Affine3,
normal_transform:integer::Planar64Mat3,
transform_det:Planar64,
}
impl PhysicsModel{
pub fn new(convex_mesh_id:ConvexMeshId,attr_id:PhysicsAttributesId,transform:integer::Planar64Affine3)->Self{
Self{
convex_mesh_id,
attr_id,
transform,
normal_transform:transform.matrix3.inverse_times_det().transpose(),
transform_det:transform.matrix3.determinant(),
}
}
}
#[derive(Debug,Clone,Eq,Hash,PartialEq)]
struct ContactCollision{
face_id:model_physics::MinkowskiFace,
model_id:PhysicsModelId,//using id to avoid lifetimes
}
#[derive(Debug,Clone,Eq,Hash,PartialEq)]
struct IntersectCollision{
model_id:PhysicsModelId,
}
#[derive(Debug,Clone,Eq,Hash,PartialEq)]
enum Collision{
Contact(ContactCollision),
Intersect(IntersectCollision),
}
impl Collision{
fn model_id(&self)->PhysicsModelId{
match self{
&Collision::Contact(ContactCollision{model_id,face_id:_})
|&Collision::Intersect(IntersectCollision{model_id})=>model_id,
}
}
fn face_id(&self)->Option<model_physics::MinkowskiFace>{
match self{
&Collision::Contact(ContactCollision{model_id:_,face_id})=>Some(face_id),
&Collision::Intersect(IntersectCollision{model_id:_})=>None,
}
}
}
#[derive(Default)]
struct TouchingState{
contacts:HashSet::<ContactCollision>,
intersects:HashSet::<IntersectCollision>,
}
impl TouchingState{
fn clear(&mut self){
self.contacts.clear();
self.intersects.clear();
}
fn insert(&mut self,collision:Collision)->bool{
match collision{
Collision::Contact(collision)=>self.contacts.insert(collision),
Collision::Intersect(collision)=>self.intersects.insert(collision),
}
}
fn remove(&mut self,collision:&Collision)->bool{
match collision{
Collision::Contact(collision)=>self.contacts.remove(collision),
Collision::Intersect(collision)=>self.intersects.remove(collision),
}
}
fn base_acceleration(&self,models:&PhysicsModels,style:&StyleModifiers,camera:&PhysicsCamera,controls:u32,next_mouse:&MouseState,time:Time)->Planar64Vec3{
let mut a=style.gravity;
if let Some(rocket_force)=style.rocket_force{
a+=style.get_propulsion_control_dir(camera,controls,next_mouse,time)*rocket_force;
}
//add accelerators
for contact in &self.contacts{
match models.attr(contact.model_id){
PhysicsCollisionAttributes::Contact{contacting,general}=>{
match &general.accelerator{
Some(accelerator)=>a+=accelerator.acceleration,
None=>(),
}
},
_=>panic!("impossible touching state"),
}
}
for intersect in &self.intersects{
match models.attr(intersect.model_id){
PhysicsCollisionAttributes::Intersect{intersecting,general}=>{
match &general.accelerator{
Some(accelerator)=>a+=accelerator.acceleration,
None=>(),
}
},
_=>panic!("impossible touching state"),
}
}
//add water../?
a
}
fn constrain_velocity(&self,models:&PhysicsModels,style_mesh:&TransformedMesh,velocity:&mut Planar64Vec3){
//TODO: trey push solve
for contact in &self.contacts{
let n=contact_normal(models,style_mesh,contact);
let d=n.dot128(*velocity);
if d<0{
*velocity-=n*Planar64::raw(((d<<32)/n.dot128(n)) as i64);
}
}
}
fn constrain_acceleration(&self,models:&PhysicsModels,style_mesh:&TransformedMesh,acceleration:&mut Planar64Vec3){
//TODO: trey push solve
for contact in &self.contacts{
let n=contact_normal(models,style_mesh,contact);
let d=n.dot128(*acceleration);
if d<0{
*acceleration-=n*Planar64::raw(((d<<32)/n.dot128(n)) as i64);
}
}
}
fn get_move_state(&self,body:&Body,models:&PhysicsModels,style:&StyleModifiers,hitbox_mesh:&TransformedMesh,camera:&PhysicsCamera,controls:u32,next_mouse:&MouseState,time:Time)->(MoveState,Planar64Vec3){
//check current move conditions and use heuristics to determine
//which ladder to climb on, which ground to walk on, etc
//collect move state affecting objects from contacts (accelerator,water,ladder,ground)
let gravity=self.base_acceleration(models,style,camera,controls,next_mouse,time);
let mut move_state=MoveState::Air;
let mut a=gravity;
for contact in &self.contacts{
match models.attr(contact.model_id){
PhysicsCollisionAttributes::Contact{contacting,general}=>{
let normal=contact_normal(models,hitbox_mesh,contact);
match &contacting.contact_behaviour{
Some(gameplay_attributes::ContactingBehaviour::Ladder(_))=>{
//ladder walkstate
let mut target_velocity=style.get_ladder_target_velocity(camera,controls,next_mouse,time,&normal);
self.constrain_velocity(models,hitbox_mesh,&mut target_velocity);
let (walk_state,mut acceleration)=WalkState::ladder(body,style,gravity,target_velocity,contact.clone(),&normal);
move_state=MoveState::Ladder(walk_state);
self.constrain_acceleration(models,hitbox_mesh,&mut acceleration);
a=acceleration;
},
None=>if style.surf_slope.map_or(true,|s|normal.walkable(s,Planar64Vec3::Y)){
//check ground
let mut target_velocity=style.get_walk_target_velocity(camera,controls,next_mouse,time,&normal);
self.constrain_velocity(models,hitbox_mesh,&mut target_velocity);
let (walk_state,mut acceleration)=WalkState::ground(body,style,gravity,target_velocity,contact.clone(),&normal);
move_state=MoveState::Walk(walk_state);
self.constrain_acceleration(models,hitbox_mesh,&mut acceleration);
a=acceleration;
},
_=>(),
}
},
_=>panic!("impossible touching state"),
}
}
for intersect in &self.intersects{
//water
}
self.constrain_acceleration(models,hitbox_mesh,&mut a);
(move_state,a)
}
fn predict_collision_end(&self,collector:&mut instruction::InstructionCollector<PhysicsInstruction>,models:&PhysicsModels,hitbox_mesh:&TransformedMesh,body:&Body,time:Time){
let relative_body=VirtualBody::relative(&Body::default(),body).body(time);
for contact in &self.contacts{
//detect face slide off
let model_mesh=models.mesh(contact.model_id);
let minkowski=model_physics::MinkowskiMesh::minkowski_sum(&model_mesh,hitbox_mesh);
collector.collect(minkowski.predict_collision_face_out(&relative_body,collector.time(),contact.face_id).map(|(face,time)|{
TimedInstruction{
time,
instruction:PhysicsInstruction::CollisionEnd(
Collision::Contact(ContactCollision{model_id:contact.model_id,face_id:contact.face_id})
),
}
}));
}
for intersect in &self.intersects{
//detect model collision in reverse
let model_mesh=models.mesh(intersect.model_id);
let minkowski=model_physics::MinkowskiMesh::minkowski_sum(&model_mesh,hitbox_mesh);
collector.collect(minkowski.predict_collision_out(&relative_body,collector.time()).map(|(face,time)|{
TimedInstruction{
time,
instruction:PhysicsInstruction::CollisionEnd(
Collision::Intersect(IntersectCollision{model_id:intersect.model_id})
),
}
}));
}
}
}
impl Body{
pub fn new(position:Planar64Vec3,velocity:Planar64Vec3,acceleration:Planar64Vec3,time:Time)->Self{
Self{
position,
velocity,
acceleration,
time,
}
}
pub fn extrapolated_position(&self,time:Time)->Planar64Vec3{
let dt=time-self.time;
self.position+self.velocity*dt+self.acceleration*(dt*dt/2)
}
pub fn extrapolated_velocity(&self,time:Time)->Planar64Vec3{
let dt=time-self.time;
self.velocity+self.acceleration*dt
}
pub fn advance_time(&mut self,time:Time){
self.position=self.extrapolated_position(time);
self.velocity=self.extrapolated_velocity(time);
self.time=time;
}
pub fn infinity_dir(&self)->Option<Planar64Vec3>{
if self.velocity==Planar64Vec3::ZERO{
if self.acceleration==Planar64Vec3::ZERO{
None
}else{
Some(self.acceleration)
}
}else{
Some(self.velocity)
}
}
pub fn grow_aabb(&self,aabb:&mut aabb::Aabb,t0:Time,t1:Time){
aabb.grow(self.extrapolated_position(t0));
aabb.grow(self.extrapolated_position(t1));
//v+a*t==0
//goober code
if self.acceleration.x()!=Planar64::ZERO{
let t=Time::from(-self.velocity.x()/self.acceleration.x());
if t0<t&&t<t1{
aabb.grow(self.extrapolated_position(t));
}
}
if self.acceleration.y()!=Planar64::ZERO{
let t=Time::from(-self.velocity.y()/self.acceleration.y());
if t0<t&&t<t1{
aabb.grow(self.extrapolated_position(t));
}
}
if self.acceleration.z()!=Planar64::ZERO{
let t=Time::from(-self.velocity.z()/self.acceleration.z());
if t0<t&&t<t1{
aabb.grow(self.extrapolated_position(t));
}
}
}
}
impl std::fmt::Display for Body{
fn fmt(&self,f:&mut std::fmt::Formatter<'_>)->std::fmt::Result{
write!(f,"p({}) v({}) a({}) t({})",self.position,self.velocity,self.acceleration,self.time)
}
}
struct VirtualBody<'a>{
body0:&'a Body,
body1:&'a Body,
}
impl VirtualBody<'_>{
fn relative<'a>(body0:&'a Body,body1:&'a Body)->VirtualBody<'a>{
//(p0,v0,a0,t0)
//(p1,v1,a1,t1)
VirtualBody{
body0,
body1,
}
}
fn extrapolated_position(&self,time:Time)->Planar64Vec3{
self.body1.extrapolated_position(time)-self.body0.extrapolated_position(time)
}
fn extrapolated_velocity(&self,time:Time)->Planar64Vec3{
self.body1.extrapolated_velocity(time)-self.body0.extrapolated_velocity(time)
}
fn acceleration(&self)->Planar64Vec3{
self.body1.acceleration-self.body0.acceleration
}
fn body(&self,time:Time)->Body{
Body::new(self.extrapolated_position(time),self.extrapolated_velocity(time),self.acceleration(),time)
}
}
pub struct PhysicsState{
time:Time,
body:Body,
world:WorldState,//currently there is only one state the world can be in
mode_state:ModeState,
style:StyleModifiers,//mode style with custom style updates applied
touching:TouchingState,
//camera must exist in state because wormholes modify the camera, also camera punch
camera:PhysicsCamera,
pub next_mouse:MouseState,//Where is the mouse headed next
controls:u32,//TODO this should be a struct
move_state:MoveState,
}
//random collection of contextual data that doesn't belong in PhysicsState
pub struct PhysicsData{
//permanent map data
bvh:bvh::BvhNode<PhysicsModelId>,
modes:gameplay_modes::Modes,
//transient map/environment data (open world may load/unload)
models:PhysicsModels,
//cached calculations
hitbox_mesh:HitboxMesh,
}
impl Default for PhysicsState{
fn default()->Self{
Self{
body:Body::new(Planar64Vec3::int(0,50,0),Planar64Vec3::int(0,0,0),Planar64Vec3::int(0,-100,0),Time::ZERO),
time:Time::ZERO,
style:StyleModifiers::default(),
touching:TouchingState::default(),
move_state: MoveState::Air,
camera:PhysicsCamera::default(),
next_mouse:MouseState::default(),
controls:0,
world:WorldState{},
mode_state:ModeState::default(),
}
}
}
impl PhysicsState {
pub fn clear(&mut self){
self.touching.clear();
}
pub fn output(&self)->PhysicsOutputState{
PhysicsOutputState{
body:self.body.clone(),
camera:self.camera.clone(),
camera_offset:self.style.camera_offset.clone(),
}
}
pub fn load_user_settings(&mut self,user_settings:&crate::settings::UserSettings){
self.camera.sensitivity=user_settings.calculate_sensitivity();
}
pub fn advance_time(&mut self, time: Time){
self.body.advance_time(time);
self.time=time;
}
fn set_control(&mut self,control:u32,state:bool){
self.controls=if state{self.controls|control}else{self.controls&!control};
}
fn next_strafe_instruction(&self)->Option<TimedInstruction<PhysicsInstruction>>{
self.style.strafe.as_ref().map(|strafe|{
TimedInstruction{
time:strafe.next_tick(self.time),
//only poll the physics if there is a before and after mouse event
instruction:PhysicsInstruction::StrafeTick
}
})
}
//state mutated on collision:
//Accelerator
//stair step-up
//state mutated on instruction
//change fly acceleration (fly_sustain)
//change fly velocity
//generic event emmiters
//PlatformStandTime
//walk/swim/air/ladder sounds
//VState?
//falling under the map
// fn next_respawn_instruction(&self) -> Option<TimedInstruction<PhysicsInstruction>> {
// if self.body.position<self.world.min_y {
// return Some(TimedInstruction{
// time:self.time,
// instruction:PhysicsInstruction::Trigger(None)
// });
// }
// }
// fn next_water_instruction(&self) -> Option<TimedInstruction<PhysicsInstruction>> {
// return Some(TimedInstruction{
// time:(self.time*self.strafe_tick_num/self.strafe_tick_den+1)*self.strafe_tick_den/self.strafe_tick_num,
// //only poll the physics if there is a before and after mouse event
// instruction:PhysicsInstruction::Water
// });
// }
fn next_move_instruction(&self)->Option<TimedInstruction<PhysicsInstruction>>{
//check if you have a valid walk state and create an instruction
match &self.move_state{
MoveState::Walk(walk_state)|MoveState::Ladder(walk_state)=>match &walk_state.state{
WalkEnum::Transient(walk_target)=>Some(TimedInstruction{
time:walk_target.time,
instruction:PhysicsInstruction::ReachWalkTargetVelocity
}),
WalkEnum::Reached=>None,
}
MoveState::Air=>self.next_strafe_instruction(),
MoveState::Water=>None,//TODO
}
}
}
pub struct PhysicsContext{
pub state:PhysicsState,//this captures the entire state of the physics.
data:PhysicsData,//data currently loaded into memory which is needded for physics to run, but is not part of the state.
}
impl instruction::InstructionConsumer<PhysicsInstruction> for PhysicsContext{
fn process_instruction(&mut self,ins:TimedInstruction<PhysicsInstruction>){
atomic_state_update(&mut self.state,&self.data,ins)
}
}
impl instruction::InstructionEmitter<PhysicsInstruction> for PhysicsContext{
//this little next instruction function can cache its return value and invalidate the cached value by watching the State.
fn next_instruction(&self,time_limit:Time)->Option<TimedInstruction<PhysicsInstruction>>{
literally_next_instruction_but_with_context(&self.state,&self.data,time_limit)
}
}
impl PhysicsContext{
pub fn spawn(&mut self){
self.state.mode_state.stage_id=gameplay_modes::StageId::id(0);
self.process_instruction(instruction::TimedInstruction{
time:self.state.time,
instruction: PhysicsInstruction::Input(PhysicsInputInstruction::Reset),
});
}
pub fn generate_models(&mut self,map:&map::Map){
let mut starts=Vec::new();
let mut spawns=Vec::new();
let mut attr_hash=HashMap::new();
for model in &map.models{
let mesh_id=self.models.meshes.len();
let mut make_mesh=false;
for model_instance in &model.instances{
if let Ok(physics_attributes)=PhysicsCollisionAttributes::try_from(&model_instance.attributes){
let attr_id=if let Some(&attr_id)=attr_hash.get(&physics_attributes){
attr_id
}else{
let attr_id=self.models.push_attr(physics_attributes.clone());
attr_hash.insert(physics_attributes,attr_id);
attr_id
};
let model_physics=PhysicsModel::new(mesh_id,attr_id,model_instance.transform);
make_mesh=true;
self.models.push_model(model_physics);
}
}
if make_mesh{
self.models.push_mesh(PhysicsMesh::from(model));
}
}
self.bvh=bvh::generate_bvh(self.models.aabb_list(),|i|PhysicsModelId::id(i as u32));
println!("Physics Objects: {}",self.models.models.len());
}
//tickless gaming
pub fn run(&mut self, time_limit:Time){
//prepare is ommitted - everything is done via instructions.
while let Some(instruction) = self.next_instruction(time_limit) {//collect
//process
self.process_instruction(instruction);
//write hash lol
}
}
//TODO get rid of this trash
fn refresh_walk_target(&mut self)->Planar64Vec3{
match &mut self.state.move_state{
MoveState::Air|MoveState::Water=>self.state.touching.base_acceleration(&self.data.models,&self.state.style,&self.state.camera,self.state.controls,&self.state.next_mouse,self.state.time),
MoveState::Walk(WalkState{state,contact,jump_direction:_})=>{
let style_mesh=self.data.hitbox_mesh.transformed_mesh();
let n=contact_normal(&self.data.models,&style_mesh,contact);
let gravity=self.state.touching.base_acceleration(&self.data.models,&self.state.style,&self.state.camera,self.state.controls,&self.state.next_mouse,self.state.time);
let mut a;
let mut v=self.state.style.get_walk_target_velocity(&self.state.camera,self.state.controls,&self.state.next_mouse,self.state.time,&n);
self.state.touching.constrain_velocity(&self.data.models,&style_mesh,&mut v);
let normal_accel=-n.dot(gravity)/n.length();
(*state,a)=WalkEnum::with_target_velocity(&self.state.body,&self.state.style,v,&n,self.state.style.walk_speed,normal_accel);
a
},
MoveState::Ladder(WalkState{state,contact,jump_direction:_})=>{
let style_mesh=self.data.hitbox_mesh.transformed_mesh();
let n=contact_normal(&self.data.models,&style_mesh,contact);
let gravity=self.state.touching.base_acceleration(&self.data.models,&self.state.style,&self.state.camera,self.state.controls,&self.state.next_mouse,self.state.time);
let mut a;
let mut v=self.state.style.get_ladder_target_velocity(&self.state.camera,self.state.controls,&self.state.next_mouse,self.state.time,&n);
self.state.touching.constrain_velocity(&self.data.models,&style_mesh,&mut v);
(*state,a)=WalkEnum::with_target_velocity(&self.state.body,&self.state.style,v,&n,self.state.style.ladder_speed,self.state.style.ladder_accel);
a
},
}
}
}
fn literally_next_instruction_but_with_context(state:&PhysicsState,data:&PhysicsData,time_limit:Time)->Option<TimedInstruction<PhysicsInstruction>>{
//JUST POLLING!!! NO MUTATION
let mut collector = instruction::InstructionCollector::new(time_limit);
collector.collect(state.next_move_instruction());
let style_mesh=data.hitbox_mesh.transformed_mesh();
//check for collision ends
state.touching.predict_collision_end(&mut collector,&data.models,&style_mesh,&state.body,state.time);
//check for collision starts
let mut aabb=aabb::Aabb::default();
state.body.grow_aabb(&mut aabb,state.time,collector.time());
aabb.inflate(state.style.hitbox.halfsize);
//common body
let relative_body=VirtualBody::relative(&Body::default(),&state.body).body(state.time);
data.bvh.the_tester(&aabb,&mut |id|{
//no checks are needed because of the time limits.
let model_mesh=data.models.mesh(id);
let minkowski=model_physics::MinkowskiMesh::minkowski_sum(&model_mesh,&style_mesh);
collector.collect(minkowski.predict_collision_in(&relative_body,collector.time())
//temp (?) code to avoid collision loops
.map_or(None,|(face,time)|if time==state.time{None}else{Some((face,time))})
.map(|(face,time)|{
TimedInstruction{time,instruction:PhysicsInstruction::CollisionStart(match data.models.attr(id){
PhysicsCollisionAttributes::Contact{contacting:_,general:_}=>Collision::Contact(ContactCollision{model_id:id,face_id:face}),
PhysicsCollisionAttributes::Intersect{intersecting:_,general:_}=>Collision::Intersect(IntersectCollision{model_id:id}),
})}
}));
});
collector.instruction()
}
fn get_walk_state(move_state:&MoveState)->Option<&WalkState>{
match move_state{
MoveState::Walk(walk_state)|MoveState::Ladder(walk_state)=>Some(walk_state),
MoveState::Air|MoveState::Water=>None,
}
}
fn jumped_velocity(models:&PhysicsModels,style:&StyleModifiers,style_mesh:&TransformedMesh,walk_state:&WalkState,v:&mut Planar64Vec3){
let jump_dir=match &walk_state.jump_direction{
JumpDirection::FromContactNormal=>contact_normal(models,style_mesh,&walk_state.contact),
&JumpDirection::Exactly(dir)=>dir,
};
*v=*v+jump_dir*(style.get_jump_deltav()/jump_dir.length());
}
fn contact_normal(models:&PhysicsModels,style_mesh:&TransformedMesh,contact:&ContactCollision)->Planar64Vec3{
let model_mesh=models.mesh(contact.model_id);
let minkowski=model_physics::MinkowskiMesh::minkowski_sum(&model_mesh,style_mesh);
minkowski.face_nd(contact.face_id).0
}
fn set_position(body:&mut Body,touching:&mut TouchingState,point:Planar64Vec3)->Planar64Vec3{
//test intersections at new position
//hovering above the surface 0 units is not intersecting. you will fall into it just fine
body.position=point;
//manual clear //for c in contacts{process_instruction(CollisionEnd(c))}
touching.clear();
//TODO: calculate contacts and determine the actual state
//touching.recalculate(body);
point
}
fn set_velocity_cull(body:&mut Body,touching:&mut TouchingState,models:&PhysicsModels,style_mesh:&TransformedMesh,v:Planar64Vec3)->bool{
//This is not correct but is better than what I have
let mut culled=false;
touching.contacts.retain(|contact|{
let n=contact_normal(models,style_mesh,contact);
let r=n.dot(v)<=Planar64::ZERO;
if !r{
culled=true;
println!("set_velocity_cull contact={:?}",contact);
}
r
});
set_velocity(body,touching,models,style_mesh,v);
culled
}
fn set_velocity(body:&mut Body,touching:&TouchingState,models:&PhysicsModels,style_mesh:&TransformedMesh,mut v:Planar64Vec3)->Planar64Vec3{
touching.constrain_velocity(models,style_mesh,&mut v);
body.velocity=v;
v
}
fn set_acceleration_cull(body:&mut Body,touching:&mut TouchingState,models:&PhysicsModels,style_mesh:&TransformedMesh,a:Planar64Vec3)->bool{
//This is not correct but is better than what I have
let mut culled=false;
touching.contacts.retain(|contact|{
let n=contact_normal(models,style_mesh,contact);
let r=n.dot(a)<=Planar64::ZERO;
if !r{
culled=true;
println!("set_acceleration_cull contact={:?}",contact);
}
r
});
set_acceleration(body,touching,models,style_mesh,a);
culled
}
fn set_acceleration(body:&mut Body,touching:&TouchingState,models:&PhysicsModels,style_mesh:&TransformedMesh,mut a:Planar64Vec3)->Planar64Vec3{
touching.constrain_acceleration(models,style_mesh,&mut a);
body.acceleration=a;
a
}
fn teleport(body:&mut Body,touching:&mut TouchingState,models:&PhysicsModels,style:&StyleModifiers,point:Planar64Vec3)->MoveState{
set_position(body,touching,point);
set_acceleration(body,touching,models,&style.mesh(),style.gravity);
MoveState::Air
}
fn teleport_to_spawn(body:&mut Body,touching:&mut TouchingState,style:&StyleModifiers,mode:&gameplay_modes::Mode,models:&PhysicsModels,stage_id:gameplay_modes::StageId)->Option<MoveState>{
let model=models.model(mode.get_spawn_model_id(stage_id)?.into());
let point=model.transform.transform_point3(Planar64Vec3::Y)+Planar64Vec3::Y*(style.hitbox.halfsize.y()+Planar64::ONE/16);
Some(teleport(body,touching,models,style,point))
}
fn run_teleport_behaviour(wormhole:&Option<gameplay_attributes::Wormhole>,game:&mut ModeState,models:&PhysicsModels,mode:&gameplay_modes::Mode,style:&StyleModifiers,touching:&mut TouchingState,body:&mut Body,model_id:ModelId)->Option<MoveState>{
//TODO: jump count and checkpoints are always reset on teleport.
//Map makers are expected to use tools to prevent
//multi-boosting on JumpLimit boosters such as spawning into a SetVelocity
if let Some(stage_element)=mode.get_element(model_id){
let stage=mode.get_stage(stage_element.stage_id)?;
if stage_element.force||game.stage_id<stage_element.stage_id{
//TODO: check if all checkpoints are complete up to destination stage id, otherwise set to checkpoint completion stage it
game.stage_id=stage_element.stage_id;
}
match &stage_element.behaviour{
gameplay_modes::StageElementBehaviour::SpawnAt=>(),
gameplay_modes::StageElementBehaviour::Trigger
|gameplay_modes::StageElementBehaviour::Teleport=>{
//I guess this is correct behaviour when trying to teleport to a non-existent spawn but it's still weird
return teleport_to_spawn(body,touching,style,mode,models,game.stage_id);
},
gameplay_modes::StageElementBehaviour::Platform=>(),
&gameplay_modes::StageElementBehaviour::Checkpoint=>{
//checkpoint check
//TODO: need to check all stages
if stage.ordered_checkpoint_id.map_or(true,|id|id<game.next_ordered_checkpoint_id)
&&stage.unordered_checkpoint_count<=game.unordered_checkpoints.len() as u32{
//pass
}else{
//fail
return teleport_to_spawn(body,touching,style,mode,models,game.stage_id);
}
},
}
if let Some(next_checkpoint)=stage.ordered_checkpoints.get(&game.next_ordered_checkpoint_id){
if model_id==next_checkpoint{
//if you hit the next number in a sequence of ordered checkpoints
//increment the current checkpoint id
game.next_ordered_checkpoint_id=gameplay_modes::CheckpointId::id(game.next_ordered_checkpoint_id.get()+1);
}
}
if stage.unordered_checkpoints.contains(&model_id){
//count model id in accumulated unordered checkpoints
game.unordered_checkpoints.insert(model_id);
}
}
match wormhole{
&Some(gameplay_attributes::Wormhole{destination_model})=>{
let origin_model=models.model(model_id);
let destination_model=models.model(destination_model);
//ignore the transform for now
Some(teleport(body,touching,models,style,body.position-origin_model.transform.translation+destination_model.transform.translation))
}
None=>None,
}
}
fn atomic_state_update(state:&mut PhysicsState,data:&PhysicsData,ins:TimedInstruction<PhysicsInstruction>){
match &ins.instruction{
PhysicsInstruction::Input(PhysicsInputInstruction::Idle)
|PhysicsInstruction::Input(PhysicsInputInstruction::SetNextMouse(_))
|PhysicsInstruction::Input(PhysicsInputInstruction::ReplaceMouse(_,_))
|PhysicsInstruction::StrafeTick=>(),
_=>println!("{}|{:?}",ins.time,ins.instruction),
}
//selectively update body
match &ins.instruction{
PhysicsInstruction::Input(PhysicsInputInstruction::Idle)=>state.time=ins.time,//idle simply updates time
PhysicsInstruction::Input(_)
|PhysicsInstruction::ReachWalkTargetVelocity
|PhysicsInstruction::CollisionStart(_)
|PhysicsInstruction::CollisionEnd(_)
|PhysicsInstruction::StrafeTick=>state.advance_time(ins.time),
}
match ins.instruction{
PhysicsInstruction::CollisionStart(c)=>{
let style_mesh=data.hitbox_mesh.transformed_mesh();
let model_id=c.model_id();
match (data.models.attr(model_id),&c){
(PhysicsCollisionAttributes::Contact{contacting,general},Collision::Contact(contact))=>{
let mut v=state.body.velocity;
let normal=contact_normal(&data.models,&style_mesh,contact);
match &contacting.contact_behaviour{
Some(gameplay_attributes::ContactingBehaviour::Surf)=>println!("I'm surfing!"),
Some(gameplay_attributes::ContactingBehaviour::Cling)=>println!("Unimplemented!"),
&Some(gameplay_attributes::ContactingBehaviour::Elastic(elasticity))=>{
//velocity and normal are facing opposite directions so this is inherently negative.
let d=normal.dot(v)*(Planar64::ONE+Planar64::raw(elasticity as i64+1));
v+=normal*(d/normal.dot(normal));
},
Some(gameplay_attributes::ContactingBehaviour::Ladder(contacting_ladder))=>{
if contacting_ladder.sticky{
//kill v
//actually you could do this with a booster attribute :thinking:
v=Planar64Vec3::ZERO;//model.velocity
}
//ladder walkstate
let gravity=state.touching.base_acceleration(&data.models,&state.style,&state.camera,state.controls,&state.next_mouse,state.time);
let mut target_velocity=state.style.get_ladder_target_velocity(&state.camera,state.controls,&state.next_mouse,state.time,&normal);
state.touching.constrain_velocity(&data.models,&style_mesh,&mut target_velocity);
let (walk_state,a)=WalkState::ladder(&state.body,&state.style,gravity,target_velocity,contact.clone(),&normal);
state.move_state=MoveState::Ladder(walk_state);
set_acceleration(&mut state.body,&state.touching,&data.models,&style_mesh,a);
}
None=>if state.style.surf_slope.map_or(true,|s|contact_normal(&data.models,&style_mesh,contact).walkable(s,Planar64Vec3::Y)){
//ground
let gravity=state.touching.base_acceleration(&data.models,&state.style,&state.camera,state.controls,&state.next_mouse,state.time);
let mut target_velocity=state.style.get_walk_target_velocity(&state.camera,state.controls,&state.next_mouse,state.time,&normal);
state.touching.constrain_velocity(&data.models,&style_mesh,&mut target_velocity);
let (walk_state,a)=WalkState::ground(&state.body,&state.style,gravity,target_velocity,contact.clone(),&normal);
state.move_state=MoveState::Walk(walk_state);
set_acceleration(&mut state.body,&state.touching,&data.models,&style_mesh,a);
},
}
//check ground
state.touching.insert(c);
//I love making functions with 10 arguments to dodge the borrow checker
run_teleport_behaviour(&general.wormhole,&mut state.mode_state,&data.models,&data.modes.get_mode(state.mode).unwrap(),&state.style,&mut state.touching,&mut state.body,model_id);
//flatten v
state.touching.constrain_velocity(&data.models,&style_mesh,&mut v);
match &general.booster{
Some(booster)=>{
//DELETE THIS when boosters get converted to height machines
match booster{
//&gameplay_attributes::Booster::Affine(transform)=>v=transform.transform_point3(v),
&gameplay_attributes::Booster::Velocity(velocity)=>v+=velocity,
&gameplay_attributes::Booster::Energy{direction: _,energy: _}=>todo!(),
}
},
None=>(),
}
let calc_move=if state.style.get_control(StyleModifiers::CONTROL_JUMP,state.controls){
if let Some(walk_state)=get_walk_state(&state.move_state){
jumped_velocity(&data.models,&state.style,&data.hitbox_mesh.transformed_mesh(),walk_state,&mut v);
set_velocity_cull(&mut state.body,&mut state.touching,&data.models,&style_mesh,v)
}else{false}
}else{false};
match &general.trajectory{
Some(trajectory)=>{
match trajectory{
gameplay_attributes::SetTrajectory::AirTime(_) => todo!(),
gameplay_attributes::SetTrajectory::Height(_) => todo!(),
gameplay_attributes::SetTrajectory::TargetPointTime { target_point: _, time: _ } => todo!(),
gameplay_attributes::SetTrajectory::TargetPointSpeed { target_point: _, speed: _, trajectory_choice: _ } => todo!(),
&gameplay_attributes::SetTrajectory::Velocity(velocity)=>v=velocity,
gameplay_attributes::SetTrajectory::DotVelocity { direction: _, dot: _ } => todo!(),
}
},
None=>(),
}
set_velocity(&mut state.body,&state.touching,&data.models,&style_mesh,v);
//not sure if or is correct here
if calc_move||Planar64::ZERO<normal.dot(v){
(state.move_state,state.body.acceleration)=state.touching.get_move_state(&state.body,&data.models,&state.style,&state.camera,state.controls,&state.next_mouse,state.time);
}
let a=state.refresh_walk_target();
set_acceleration(&mut state.body,&state.touching,&data.models,&data.hitbox_mesh.transformed_mesh(),a);
},
(PhysicsCollisionAttributes::Intersect{intersecting: _,general},Collision::Intersect(intersect))=>{
//I think that setting the velocity to 0 was preventing surface contacts from entering an infinite loop
state.touching.insert(c);
run_teleport_behaviour(&general.wormhole,&mut state.mode_state,&data.models,&state.modes.get_mode(state.mode).unwrap(),&state.style,&mut state.touching,&mut state.body,model_id);
},
_=>panic!("invalid pair"),
}
},
PhysicsInstruction::CollisionEnd(c) => {
match data.models.attr(c.model_id()){
PhysicsCollisionAttributes::Contact{contacting:_,general:_}=>{
state.touching.remove(&c);//remove contact before calling contact_constrain_acceleration
//check ground
(state.move_state,state.body.acceleration)=state.touching.get_move_state(&state.body,&data.models,&state.style,&state.camera,state.controls,&state.next_mouse,state.time);
},
PhysicsCollisionAttributes::Intersect{intersecting:_,general:_}=>{
state.touching.remove(&c);
},
}
},
PhysicsInstruction::StrafeTick => {
let control_dir=state.style.get_control_dir(state.controls);
if control_dir!=Planar64Vec3::ZERO{
let camera_mat=state.camera.simulate_move_rotation_y(state.camera.mouse.lerp(&state.next_mouse,state.time).x);
let control_dir=camera_mat*control_dir;
//normalize but careful for zero
let d=state.body.velocity.dot(control_dir);
if d<state.style.mv {
let v=state.body.velocity+control_dir*(state.style.mv-d);
//this is wrong but will work ig
//need to note which push planes activate in push solve and keep those
if set_velocity_cull(&mut state.body,&mut state.touching,&data.models,&data.hitbox_mesh.transformed_mesh(),v){
(state.move_state,state.body.acceleration)=state.touching.get_move_state(&state.body,&data.models,&state.style,&state.camera,state.controls,&state.next_mouse,state.time);
}
}
}
}
PhysicsInstruction::ReachWalkTargetVelocity => {
match &mut state.move_state{
MoveState::Air|MoveState::Water=>(),
MoveState::Walk(walk_state)|MoveState::Ladder(walk_state)=>{
match &mut walk_state.state{
WalkEnum::Reached=>(),
WalkEnum::Transient(walk_target)=>{
let style_mesh=data.hitbox_mesh.transformed_mesh();
//precisely set velocity
let a=Planar64Vec3::ZERO;//ignore gravity for now.
set_acceleration(&mut state.body,&state.touching,&data.models,&style_mesh,a);
let v=walk_target.velocity;
set_velocity(&mut state.body,&state.touching,&data.models,&style_mesh,v);
walk_state.state=WalkEnum::Reached;
},
}
}
}
},
PhysicsInstruction::Input(input_instruction) => {
let mut refresh_walk_target=true;
match input_instruction{
PhysicsInputInstruction::SetNextMouse(m) => {
state.camera.move_mouse(state.next_mouse.pos);
(state.camera.mouse,state.next_mouse)=(state.next_mouse.clone(),m);
},
PhysicsInputInstruction::ReplaceMouse(m0,m1) => {
state.camera.move_mouse(m0.pos);
(state.camera.mouse,state.next_mouse)=(m0,m1);
},
PhysicsInputInstruction::SetMoveForward(s) => state.set_control(StyleModifiers::CONTROL_MOVEFORWARD,s),
PhysicsInputInstruction::SetMoveLeft(s) => state.set_control(StyleModifiers::CONTROL_MOVELEFT,s),
PhysicsInputInstruction::SetMoveBack(s) => state.set_control(StyleModifiers::CONTROL_MOVEBACK,s),
PhysicsInputInstruction::SetMoveRight(s) => state.set_control(StyleModifiers::CONTROL_MOVERIGHT,s),
PhysicsInputInstruction::SetMoveUp(s) => state.set_control(StyleModifiers::CONTROL_MOVEUP,s),
PhysicsInputInstruction::SetMoveDown(s) => state.set_control(StyleModifiers::CONTROL_MOVEDOWN,s),
PhysicsInputInstruction::SetJump(s) => {
state.set_control(StyleModifiers::CONTROL_JUMP,s);
if let Some(walk_state)=get_walk_state(&state.move_state){
let mut v=state.body.velocity;
jumped_velocity(&data.models,&state.style,&data.hitbox_mesh.transformed_mesh(),walk_state,&mut v);
if set_velocity_cull(&mut state.body,&mut state.touching,&data.models,&data.hitbox_mesh.transformed_mesh(),v){
(state.move_state,state.body.acceleration)=state.touching.get_move_state(&state.body,&data.models,&state.style,&state.camera,state.controls,&state.next_mouse,state.time);
}
}
refresh_walk_target=false;
},
PhysicsInputInstruction::SetZoom(s) => {
state.set_control(StyleModifiers::CONTROL_ZOOM,s);
refresh_walk_target=false;
},
PhysicsInputInstruction::Reset => {
//it matters which of these runs first, but I have not thought it through yet as it doesn't matter yet
let spawn_point={
let mode=data.modes.get_mode(state.mode).unwrap();
let stage=mode.get_stage(gameplay_modes::StageId::FIRST).unwrap();
data.models.model(stage.spawn().into()).transform.translation
};
set_position(&mut state.body,&mut state.touching,spawn_point);
set_velocity(&mut state.body,&state.touching,&data.models,&data.hitbox_mesh.transformed_mesh(),Planar64Vec3::ZERO);
(state.move_state,state.body.acceleration)=state.touching.get_move_state(&state.body,&data.models,&state.style,&state.camera,state.controls,&state.next_mouse,state.time);
refresh_walk_target=false;
},
PhysicsInputInstruction::Idle => {refresh_walk_target=false;},//literally idle!
}
if refresh_walk_target{
let a=state.refresh_walk_target();
if set_acceleration_cull(&mut state.body,&mut state.touching,&data.models,&data.hitbox_mesh.transformed_mesh(),a){
(state.move_state,state.body.acceleration)=state.touching.get_move_state(&state.body,&data.models,&state.style,&state.camera,state.controls,&state.next_mouse,state.time);
}
}
},
}
}
#[allow(dead_code)]
fn test_collision_axis_aligned(relative_body:Body,expected_collision_time:Option<Time>){
let h0=HitboxMesh::from_mesh_scale(PhysicsMesh::unit_cube(),Planar64Vec3::int(5,1,5)/2);
let h1=HitboxMesh::roblox();
let hitbox_mesh=h1.transformed_mesh();
let platform_mesh=h0.transformed_mesh();
let minkowski=model_physics::MinkowskiMesh::minkowski_sum(&platform_mesh,&hitbox_mesh);
let collision=minkowski.predict_collision_in(&relative_body,Time::MAX);
assert_eq!(collision.map(|tup|tup.1),expected_collision_time,"Incorrect time of collision");
}
#[allow(dead_code)]
fn test_collision_rotated(relative_body:Body,expected_collision_time:Option<Time>){
let h0=HitboxMesh::new(PhysicsMesh::unit_cube(),
integer::Planar64Affine3::new(
integer::Planar64Mat3::from_cols(
Planar64Vec3::int(5,0,1)/2,
Planar64Vec3::int(0,1,0)/2,
Planar64Vec3::int(-1,0,5)/2,
),
Planar64Vec3::ZERO,
)
);
let h1=HitboxMesh::roblox();
let hitbox_mesh=h1.transformed_mesh();
let platform_mesh=h0.transformed_mesh();
let minkowski=model_physics::MinkowskiMesh::minkowski_sum(&platform_mesh,&hitbox_mesh);
let collision=minkowski.predict_collision_in(&relative_body,Time::MAX);
assert_eq!(collision.map(|tup|tup.1),expected_collision_time,"Incorrect time of collision");
}
#[allow(dead_code)]
fn test_collision(relative_body:Body,expected_collision_time:Option<Time>){
test_collision_axis_aligned(relative_body.clone(),expected_collision_time);
test_collision_rotated(relative_body,expected_collision_time);
}
#[test]
fn test_collision_degenerate(){
test_collision(Body::new(
Planar64Vec3::int(0,5,0),
Planar64Vec3::int(0,-1,0),
Planar64Vec3::ZERO,
Time::ZERO
),Some(Time::from_secs(2)));
}
#[test]
fn test_collision_degenerate_east(){
test_collision(Body::new(
Planar64Vec3::int(3,5,0),
Planar64Vec3::int(0,-1,0),
Planar64Vec3::ZERO,
Time::ZERO
),Some(Time::from_secs(2)));
}
#[test]
fn test_collision_degenerate_south(){
test_collision(Body::new(
Planar64Vec3::int(0,5,3),
Planar64Vec3::int(0,-1,0),
Planar64Vec3::ZERO,
Time::ZERO
),Some(Time::from_secs(2)));
}
#[test]
fn test_collision_degenerate_west(){
test_collision(Body::new(
Planar64Vec3::int(-3,5,0),
Planar64Vec3::int(0,-1,0),
Planar64Vec3::ZERO,
Time::ZERO
),Some(Time::from_secs(2)));
}
#[test]
fn test_collision_degenerate_north(){
test_collision(Body::new(
Planar64Vec3::int(0,5,-3),
Planar64Vec3::int(0,-1,0),
Planar64Vec3::ZERO,
Time::ZERO
),Some(Time::from_secs(2)));
}
#[test]
fn test_collision_parabola_edge_east_from_west(){
test_collision(VirtualBody::relative(&Body::default(),&Body::new(
Planar64Vec3::int(3,3,0),
Planar64Vec3::int(100,-1,0),
Planar64Vec3::int(0,-1,0),
Time::ZERO
)).body(Time::from_secs(-1)),Some(Time::from_secs(0)));
}
#[test]
fn test_collision_parabola_edge_south_from_north(){
test_collision(VirtualBody::relative(&Body::default(),&Body::new(
Planar64Vec3::int(0,3,3),
Planar64Vec3::int(0,-1,100),
Planar64Vec3::int(0,-1,0),
Time::ZERO
)).body(Time::from_secs(-1)),Some(Time::from_secs(0)));
}
#[test]
fn test_collision_parabola_edge_west_from_east(){
test_collision(VirtualBody::relative(&Body::default(),&Body::new(
Planar64Vec3::int(-3,3,0),
Planar64Vec3::int(-100,-1,0),
Planar64Vec3::int(0,-1,0),
Time::ZERO
)).body(Time::from_secs(-1)),Some(Time::from_secs(0)));
}
#[test]
fn test_collision_parabola_edge_north_from_south(){
test_collision(VirtualBody::relative(&Body::default(),&Body::new(
Planar64Vec3::int(0,3,-3),
Planar64Vec3::int(0,-1,-100),
Planar64Vec3::int(0,-1,0),
Time::ZERO
)).body(Time::from_secs(-1)),Some(Time::from_secs(0)));
}
#[test]
fn test_collision_parabola_edge_north_from_ne(){
test_collision(VirtualBody::relative(&Body::default(),&Body::new(
Planar64Vec3::int(0,6,-7)/2,
Planar64Vec3::int(-10,-1,1),
Planar64Vec3::int(0,-1,0),
Time::ZERO
)).body(Time::from_secs(-1)),Some(Time::from_secs(0)));
}
#[test]
fn test_collision_parabola_edge_north_from_nw(){
test_collision(VirtualBody::relative(&Body::default(),&Body::new(
Planar64Vec3::int(0,6,-7)/2,
Planar64Vec3::int(10,-1,1),
Planar64Vec3::int(0,-1,0),
Time::ZERO
)).body(Time::from_secs(-1)),Some(Time::from_secs(0)));
}
#[test]
fn test_collision_parabola_edge_east_from_se(){
test_collision(VirtualBody::relative(&Body::default(),&Body::new(
Planar64Vec3::int(7,6,0)/2,
Planar64Vec3::int(-1,-1,-10),
Planar64Vec3::int(0,-1,0),
Time::ZERO
)).body(Time::from_secs(-1)),Some(Time::from_secs(0)));
}
#[test]
fn test_collision_parabola_edge_east_from_ne(){
test_collision(VirtualBody::relative(&Body::default(),&Body::new(
Planar64Vec3::int(7,6,0)/2,
Planar64Vec3::int(-1,-1,10),
Planar64Vec3::int(0,-1,0),
Time::ZERO
)).body(Time::from_secs(-1)),Some(Time::from_secs(0)));
}
#[test]
fn test_collision_parabola_edge_south_from_se(){
test_collision(VirtualBody::relative(&Body::default(),&Body::new(
Planar64Vec3::int(0,6,7)/2,
Planar64Vec3::int(-10,-1,-1),
Planar64Vec3::int(0,-1,0),
Time::ZERO
)).body(Time::from_secs(-1)),Some(Time::from_secs(0)));
}
#[test]
fn test_collision_parabola_edge_south_from_sw(){
test_collision(VirtualBody::relative(&Body::default(),&Body::new(
Planar64Vec3::int(0,6,7)/2,
Planar64Vec3::int(10,-1,-1),
Planar64Vec3::int(0,-1,0),
Time::ZERO
)).body(Time::from_secs(-1)),Some(Time::from_secs(0)));
}
#[test]
fn test_collision_parabola_edge_west_from_se(){
test_collision(VirtualBody::relative(&Body::default(),&Body::new(
Planar64Vec3::int(-7,6,0)/2,
Planar64Vec3::int(1,-1,-10),
Planar64Vec3::int(0,-1,0),
Time::ZERO
)).body(Time::from_secs(-1)),Some(Time::from_secs(0)));
}
#[test]
fn test_collision_parabola_edge_west_from_ne(){
test_collision(VirtualBody::relative(&Body::default(),&Body::new(
Planar64Vec3::int(-7,6,0)/2,
Planar64Vec3::int(1,-1,10),
Planar64Vec3::int(0,-1,0),
Time::ZERO
)).body(Time::from_secs(-1)),Some(Time::from_secs(0)));
}
#[test]
fn test_collision_oblique(){
test_collision(Body::new(
Planar64Vec3::int(0,5,0),
Planar64Vec3::int(1,-64,2)/64,
Planar64Vec3::ZERO,
Time::ZERO
),Some(Time::from_secs(2)));
}
#[test]
fn zoom_hit_nothing(){
test_collision(Body::new(
Planar64Vec3::int(0,10,0),
Planar64Vec3::int(1,0,0),
Planar64Vec3::int(0,1,0),
Time::ZERO
),None);
}
#[test]
fn already_inside_hit_nothing(){
test_collision(Body::new(
Planar64Vec3::ZERO,
Planar64Vec3::int(1,0,0),
Planar64Vec3::int(0,1,0),
Time::ZERO
),None);
}