use std::collections::{HashMap,HashSet}; use crate::model_physics::{self,PhysicsMesh,PhysicsMeshTransform,TransformedMesh,MeshQuery,PhysicsMeshId,PhysicsSubmeshId}; use strafesnet_common::bvh; use strafesnet_common::map; use strafesnet_common::run; use strafesnet_common::aabb; use strafesnet_common::model::{MeshId,ModelId}; use strafesnet_common::gameplay_attributes::{self,CollisionAttributesId}; use strafesnet_common::gameplay_modes::{self,StageId}; use strafesnet_common::gameplay_style::{self,StyleModifiers}; use strafesnet_common::controls_bitflag::Controls; use strafesnet_common::instruction::{self,InstructionEmitter,InstructionConsumer,TimedInstruction}; use strafesnet_common::integer::{self,Time,Planar64,Planar64Vec3,Planar64Mat3,Angle32,Ratio64Vec2}; use gameplay::ModeState; //internal influence //when the physics asks itself what happens next, this is how it's represented #[derive(Debug)] enum PhysicsInternalInstruction{ CollisionStart(Collision), CollisionEnd(Collision), StrafeTick, ReachWalkTargetVelocity, // Water, // Spawn( // Option, // bool,//true = Trigger; false = teleport // bool,//true = Force // ) } //external influence //this is how you influence the physics from outside #[derive(Debug)] pub enum PhysicsInputInstruction{ ReplaceMouse(MouseState,MouseState), SetNextMouse(MouseState), SetMoveRight(bool), SetMoveUp(bool), SetMoveBack(bool), SetMoveLeft(bool), SetMoveDown(bool), SetMoveForward(bool), SetJump(bool), SetZoom(bool), Restart, Spawn(gameplay_modes::ModeId,StageId), Idle, //Idle: there were no input events, but the simulation is safe to advance to this timestep //for interpolation / networking / playback reasons, most playback heads will always want //to be 1 instruction ahead to generate the next state for interpolation. PracticeFly, SetSensitivity(Ratio64Vec2), } #[derive(Debug)] enum PhysicsInstruction{ Internal(PhysicsInternalInstruction), //InputInstructions conditionally activate RefreshWalkTarget //(by doing what SetWalkTargetVelocity used to do and then flagging it) Input(PhysicsInputInstruction), } #[derive(Clone,Copy,Debug,Default,Hash)] pub struct Body{ pub position:Planar64Vec3,//I64 where 2^32 = 1 u pub velocity:Planar64Vec3,//I64 where 2^32 = 1 u/s pub acceleration:Planar64Vec3,//I64 where 2^32 = 1 u/s/s pub time:Time,//nanoseconds x xxxxD! } impl std::ops::Neg for Body{ type Output=Self; fn neg(self)->Self::Output{ Self{ position:self.position, velocity:-self.velocity, acceleration:self.acceleration, time:-self.time, } } } //hey dumbass just use a delta #[derive(Clone,Debug)] pub struct MouseState { pub pos: glam::IVec2, pub time:Time, } impl Default for MouseState{ fn default() -> Self { Self { time:Time::ZERO, pos:glam::IVec2::ZERO, } } } impl MouseState { pub fn lerp(&self,target:&MouseState,time:Time)->glam::IVec2 { let m0=self.pos.as_i64vec2(); let m1=target.pos.as_i64vec2(); //these are deltas let t1t=(target.time-time).nanos(); let tt0=(time-self.time).nanos(); let dt=(target.time-self.time).nanos(); ((m0*t1t+m1*tt0)/dt).as_ivec2() } } #[derive(Clone,Debug,Default)] pub struct InputState{ mouse:MouseState, next_mouse:MouseState, controls:strafesnet_common::controls_bitflag::Controls, } impl InputState{ pub const fn get_next_mouse(&self)->&MouseState{ &self.next_mouse } fn set_next_mouse(&mut self,next_mouse:MouseState){ //I like your functions magic language self.mouse=std::mem::replace(&mut self.next_mouse,next_mouse); //equivalently: //(self.next_mouse,self.mouse)=(next_mouse,self.next_mouse.clone()); } fn replace_mouse(&mut self,mouse:MouseState,next_mouse:MouseState){ (self.next_mouse,self.mouse)=(next_mouse,mouse); } fn set_control(&mut self,control:Controls,state:bool){ self.controls.set(control,state) } fn time_delta(&self)->Time{ self.next_mouse.time-self.mouse.time } fn mouse_delta(&self)->glam::IVec2{ self.next_mouse.pos-self.mouse.pos } fn lerp_delta(&self,time:Time)->glam::IVec2{ //these are deltas let dm=self.mouse_delta().as_i64vec2(); let t=(time-self.mouse.time).nanos(); let dt=self.time_delta().nanos(); ((dm*t)/dt).as_ivec2() } } #[derive(Clone,Debug)] enum JumpDirection{ Exactly(Planar64Vec3), FromContactNormal, } impl JumpDirection{ fn direction(&self,models:&PhysicsModels,hitbox_mesh:&HitboxMesh,contact:&ContactCollision)->Planar64Vec3{ match self{ JumpDirection::FromContactNormal=>contact_normal(models,hitbox_mesh,contact), &JumpDirection::Exactly(dir)=>dir, } } } #[derive(Clone,Debug)] enum TransientAcceleration{ Reached, Reachable{ acceleration:Planar64Vec3, time:Time, }, //walk target will never be reached Unreachable{ acceleration:Planar64Vec3, } } #[derive(Clone,Debug)] struct ContactMoveState{ jump_direction:JumpDirection, contact:ContactCollision, target:TransientAcceleration, } impl TransientAcceleration{ fn with_target_diff(target_diff:Planar64Vec3,accel:Planar64,time:Time)->Self{ if target_diff==Planar64Vec3::ZERO{ TransientAcceleration::Reached }else{ //normal friction acceleration is clippedAcceleration.dot(normal)*friction TransientAcceleration::Reachable{ acceleration:target_diff.with_length(accel), time:time+Time::from(target_diff.length()/accel) } } } fn ground(walk_settings:&gameplay_style::WalkSettings,body:&Body,gravity:Planar64Vec3,target_velocity:Planar64Vec3)->Self{ let target_diff=target_velocity-body.velocity; //precalculate accel let accel=walk_settings.accel(target_diff,gravity); Self::with_target_diff(target_diff,accel,body.time) } fn ladder(ladder_settings:&gameplay_style::LadderSettings,body:&Body,gravity:Planar64Vec3,target_velocity:Planar64Vec3)->Self{ let target_diff=target_velocity-body.velocity; let accel=ladder_settings.accel(target_diff,gravity); Self::with_target_diff(target_diff,accel,body.time) } fn acceleration(&self)->Planar64Vec3{ match self{ TransientAcceleration::Reached=>Planar64Vec3::ZERO, &TransientAcceleration::Reachable{acceleration,time:_}=>acceleration, &TransientAcceleration::Unreachable{acceleration}=>acceleration, } } } impl ContactMoveState{ fn ground(walk_settings:&gameplay_style::WalkSettings,body:&Body,gravity:Planar64Vec3,target_velocity:Planar64Vec3,contact:ContactCollision)->Self{ Self{ target:TransientAcceleration::ground(walk_settings,body,gravity,target_velocity), contact, jump_direction:JumpDirection::Exactly(Planar64Vec3::Y), } } fn ladder(ladder_settings:&gameplay_style::LadderSettings,body:&Body,gravity:Planar64Vec3,target_velocity:Planar64Vec3,contact:ContactCollision)->Self{ Self{//,style,velocity,normal,style.ladder_speed,style.ladder_accel target:TransientAcceleration::ladder(ladder_settings,body,gravity,target_velocity), contact, jump_direction:JumpDirection::FromContactNormal, } } } fn ground_things(walk_settings:&gameplay_style::WalkSettings,contact:&ContactCollision,touching:&TouchingState,models:&PhysicsModels,hitbox_mesh:&HitboxMesh,style:&StyleModifiers,camera:&PhysicsCamera,input_state:&InputState)->(Planar64Vec3,Planar64Vec3){ let normal=contact_normal(models,hitbox_mesh,contact); let gravity=touching.base_acceleration(models,style,camera,input_state); let control_dir=style.get_y_control_dir(camera,input_state.controls); let mut target_velocity=walk_settings.get_walk_target_velocity(control_dir,normal); touching.constrain_velocity(models,hitbox_mesh,&mut target_velocity); (gravity,target_velocity) } fn ladder_things(ladder_settings:&gameplay_style::LadderSettings,contact:&ContactCollision,touching:&TouchingState,models:&PhysicsModels,hitbox_mesh:&HitboxMesh,style:&StyleModifiers,camera:&PhysicsCamera,input_state:&InputState)->(Planar64Vec3,Planar64Vec3){ let normal=contact_normal(models,hitbox_mesh,contact); let gravity=touching.base_acceleration(models,style,camera,input_state); let control_dir=style.get_y_control_dir(camera,input_state.controls); let mut target_velocity=ladder_settings.get_ladder_target_velocity(control_dir,normal); touching.constrain_velocity(models,hitbox_mesh,&mut target_velocity); (gravity,target_velocity) } #[derive(Default)] struct PhysicsModels{ meshes:HashMap, models:HashMap, //separate models into Contacting and Intersecting? //wrap model id with ContactingModelId and IntersectingModelId //attributes can be split into contacting and intersecting (this also saves a bit of memory) //can go even further and deduplicate General attributes separately, reconstructing it when queried attributes:HashMap, } impl PhysicsModels{ fn clear(&mut self){ self.meshes.clear(); self.models.clear(); self.attributes.clear(); } //TODO: "statically" verify the maps don't refer to any nonexistant data, if they do delete the references. //then I can make these getter functions unchecked. fn mesh(&self,convex_mesh_id:ConvexMeshId)->TransformedMesh{ let model=&self.models[&convex_mesh_id.model_id]; TransformedMesh::new( self.meshes[&model.mesh_id].submesh_view(convex_mesh_id.submesh_id), &model.transform ) } fn model(&self,model_id:PhysicsModelId)->&PhysicsModel{ &self.models[&model_id] } fn attr(&self,model_id:PhysicsModelId)->&PhysicsCollisionAttributes{ &self.attributes[&self.models[&model_id].attr_id] } } #[derive(Clone,Copy,Debug)] pub struct PhysicsCamera{ //punch: Planar64Vec3, //punch_velocity: Planar64Vec3, sensitivity:Ratio64Vec2,//dots to Angle32 ratios clamped_mouse_pos:glam::IVec2,//angles are calculated from this cumulative value //angle limits could be an enum + struct that defines whether it's limited and selects clamp or wrap depending // enum AngleLimit{ // Unlimited, // Limited{lower:Angle32,upper:Angle32}, // } //pitch_limit:AngleLimit, //yaw_limit:AngleLimit, } impl PhysicsCamera{ const ANGLE_PITCH_LOWER_LIMIT:Angle32=Angle32::NEG_FRAC_PI_2; const ANGLE_PITCH_UPPER_LIMIT:Angle32=Angle32::FRAC_PI_2; pub fn move_mouse(&mut self,mouse_delta:glam::IVec2){ let mut unclamped_mouse_pos=self.clamped_mouse_pos+mouse_delta; unclamped_mouse_pos.y=unclamped_mouse_pos.y.clamp( self.sensitivity.y.rhs_div_int(Self::ANGLE_PITCH_LOWER_LIMIT.get() as i64) as i32, self.sensitivity.y.rhs_div_int(Self::ANGLE_PITCH_UPPER_LIMIT.get() as i64) as i32, ); self.clamped_mouse_pos=unclamped_mouse_pos; } pub fn simulate_move_angles(&self,mouse_delta:glam::IVec2)->glam::Vec2 { let a=-self.sensitivity.mul_int((self.clamped_mouse_pos+mouse_delta).as_i64vec2()); let ax=Angle32::wrap_from_i64(a.x); let ay=Angle32::clamp_from_i64(a.y) //clamp to actual vertical cam limit .clamp(Self::ANGLE_PITCH_LOWER_LIMIT,Self::ANGLE_PITCH_UPPER_LIMIT); return glam::vec2(ax.into(),ay.into()); } #[inline] fn get_rotation(&self,mouse_pos:glam::IVec2)->Planar64Mat3{ let a=-self.sensitivity.mul_int(mouse_pos.as_i64vec2()); let ax=Angle32::wrap_from_i64(a.x); let ay=Angle32::clamp_from_i64(a.y) //clamp to actual vertical cam limit .clamp(Self::ANGLE_PITCH_LOWER_LIMIT,Self::ANGLE_PITCH_UPPER_LIMIT); Planar64Mat3::from_rotation_yx(ax,ay) } fn rotation(&self)->Planar64Mat3{ self.get_rotation(self.clamped_mouse_pos) } fn simulate_move_rotation(&self,mouse_delta:glam::IVec2)->Planar64Mat3{ self.get_rotation(self.clamped_mouse_pos+mouse_delta) } fn get_rotation_y(&self,mouse_pos_x:i32)->Planar64Mat3{ let ax=-self.sensitivity.x.mul_int(mouse_pos_x as i64); Planar64Mat3::from_rotation_y(Angle32::wrap_from_i64(ax)) } fn rotation_y(&self)->Planar64Mat3{ self.get_rotation_y(self.clamped_mouse_pos.x) } fn simulate_move_rotation_y(&self,mouse_delta_x:i32)->Planar64Mat3{ self.get_rotation_y(self.clamped_mouse_pos.x+mouse_delta_x) } } impl std::default::Default for PhysicsCamera{ fn default()->Self{ Self{ sensitivity:Ratio64Vec2::ONE*200_000, clamped_mouse_pos:glam::IVec2::ZERO, } } } mod gameplay{ use super::{gameplay_modes,HashSet,HashMap,ModelId}; #[derive(Clone,Debug)] pub struct ModeState{ mode_id:gameplay_modes::ModeId, stage_id:gameplay_modes::StageId, next_ordered_checkpoint_id:gameplay_modes::CheckpointId,//which OrderedCheckpoint model_id you must pass next (if 0 you haven't passed OrderedCheckpoint0) unordered_checkpoints:HashSet, jump_counts:HashMap,//model_id -> jump count } impl ModeState{ pub const fn get_mode_id(&self)->gameplay_modes::ModeId{ self.mode_id } pub const fn get_stage_id(&self)->gameplay_modes::StageId{ self.stage_id } pub const fn get_next_ordered_checkpoint_id(&self)->gameplay_modes::CheckpointId{ self.next_ordered_checkpoint_id } pub fn get_jump_count(&self,model_id:ModelId)->Option{ self.jump_counts.get(&model_id).copied() } pub const fn ordered_checkpoint_count(&self)->u32{ self.next_ordered_checkpoint_id.get() } pub fn unordered_checkpoint_count(&self)->u32{ self.unordered_checkpoints.len() as u32 } pub fn set_mode_id(&mut self,mode_id:gameplay_modes::ModeId){ self.clear(); self.mode_id=mode_id; } pub fn set_stage_id(&mut self,stage_id:gameplay_modes::StageId){ self.clear_checkpoints(); self.stage_id=stage_id; } pub fn accumulate_ordered_checkpoint(&mut self,stage:&gameplay_modes::Stage,model_id:ModelId){ if stage.is_next_ordered_checkpoint(self.get_next_ordered_checkpoint_id(),model_id){ self.next_ordered_checkpoint_id=gameplay_modes::CheckpointId::new(self.next_ordered_checkpoint_id.get()+1); } } pub fn accumulate_unordered_checkpoint(&mut self,stage:&gameplay_modes::Stage,model_id:ModelId){ if stage.is_unordered_checkpoint(model_id){ self.unordered_checkpoints.insert(model_id); } } pub fn clear(&mut self){ self.clear_jump_counts(); self.clear_checkpoints(); } pub fn clear_jump_counts(&mut self){ self.jump_counts.clear(); } pub fn clear_checkpoints(&mut self){ self.next_ordered_checkpoint_id=gameplay_modes::CheckpointId::FIRST; self.unordered_checkpoints.clear(); } } impl std::default::Default for ModeState{ fn default()->Self{ Self{ mode_id:gameplay_modes::ModeId::MAIN, stage_id:gameplay_modes::StageId::FIRST, next_ordered_checkpoint_id:gameplay_modes::CheckpointId::FIRST, unordered_checkpoints:HashSet::new(), jump_counts:HashMap::new(), } } } } #[derive(Clone,Debug)] struct WorldState{} struct HitboxMesh{ halfsize:Planar64Vec3, mesh:PhysicsMesh, transform:PhysicsMeshTransform, } impl HitboxMesh{ fn new(mesh:PhysicsMesh,transform:integer::Planar64Affine3)->Self{ //calculate extents let mut aabb=aabb::Aabb::default(); let transform=PhysicsMeshTransform::new(transform); let transformed_mesh=TransformedMesh::new(mesh.complete_mesh_view(),&transform); for vert in transformed_mesh.verts(){ aabb.grow(vert); } Self{ halfsize:aabb.size()/2, mesh, transform, } } #[inline] fn transformed_mesh(&self)->TransformedMesh{ TransformedMesh::new(self.mesh.complete_mesh_view(),&self.transform) } } trait StyleHelper{ fn get_control(&self,control:Controls,controls:Controls)->bool; fn get_control_dir(&self,controls:Controls)->Planar64Vec3; fn get_y_control_dir(&self,camera:&PhysicsCamera,controls:Controls)->Planar64Vec3; fn get_propulsion_control_dir(&self,camera:&PhysicsCamera,controls:Controls)->Planar64Vec3; fn calculate_mesh(&self)->HitboxMesh; } impl StyleHelper for StyleModifiers{ fn get_control(&self,control:Controls,controls:Controls)->bool{ controls.intersection(self.controls_mask).contains(control) } fn get_control_dir(&self,controls:Controls)->Planar64Vec3{ //don't get fancy just do it let mut control_dir:Planar64Vec3 = Planar64Vec3::ZERO; //Apply mask after held check so you can require non-allowed keys to be held for some reason let controls=controls.intersection(self.controls_mask); if controls.contains(Controls::MoveForward){ control_dir+=Self::FORWARD_DIR; } if controls.contains(Controls::MoveBackward){ control_dir-=Self::FORWARD_DIR; } if controls.contains(Controls::MoveLeft){ control_dir-=Self::RIGHT_DIR; } if controls.contains(Controls::MoveRight){ control_dir+=Self::RIGHT_DIR; } if controls.contains(Controls::MoveUp){ control_dir+=Self::UP_DIR; } if controls.contains(Controls::MoveDown){ control_dir-=Self::UP_DIR; } return control_dir } fn get_y_control_dir(&self,camera:&PhysicsCamera,controls:Controls)->Planar64Vec3{ camera.rotation_y()*self.get_control_dir(controls) } fn get_propulsion_control_dir(&self,camera:&PhysicsCamera,controls:Controls)->Planar64Vec3{ //don't interpolate this! discrete mouse movement, constant acceleration camera.rotation()*self.get_control_dir(controls) } fn calculate_mesh(&self)->HitboxMesh{ let mesh=match self.hitbox.mesh{ gameplay_style::HitboxMesh::Box=>PhysicsMesh::unit_cube(), gameplay_style::HitboxMesh::Cylinder=>PhysicsMesh::unit_cylinder(), }; let transform=integer::Planar64Affine3::new(Planar64Mat3::from_diagonal(self.hitbox.halfsize),Planar64Vec3::ZERO); HitboxMesh::new(mesh,transform) } } #[derive(Clone,Debug)] enum MoveState{ Air, Walk(ContactMoveState), Ladder(ContactMoveState), Water, Fly, } impl MoveState{ //call this after state.move_state is changed fn apply_enum(&self,body:&mut Body,touching:&TouchingState,models:&PhysicsModels,hitbox_mesh:&HitboxMesh,style:&StyleModifiers,camera:&PhysicsCamera,input_state:&InputState){ match self{ MoveState::Fly=>body.acceleration=Planar64Vec3::ZERO, MoveState::Air=>{ //calculate base acceleration let a=touching.base_acceleration(models,style,camera,input_state); //set_acceleration clips according to contacts set_acceleration(body,touching,models,hitbox_mesh,a); }, _=>(), } } //function to coerce &mut self into &self fn apply_to_body(&self,body:&mut Body,touching:&TouchingState,models:&PhysicsModels,hitbox_mesh:&HitboxMesh,style:&StyleModifiers,camera:&PhysicsCamera,input_state:&InputState){ match self{ MoveState::Air=>(), MoveState::Water=>(), MoveState::Fly=>{ //set velocity according to current control state let v=style.get_propulsion_control_dir(camera,input_state.controls)*80; //set_velocity clips velocity according to current touching state set_velocity(body,touching,models,hitbox_mesh,v); }, MoveState::Walk(walk_state) |MoveState::Ladder(walk_state) =>{ //accelerate towards walk target or do nothing let a=walk_state.target.acceleration(); set_acceleration(body,touching,models,hitbox_mesh,a); }, } } /// changes the move state fn apply_input(&mut self,body:&Body,touching:&TouchingState,models:&PhysicsModels,hitbox_mesh:&HitboxMesh,style:&StyleModifiers,camera:&PhysicsCamera,input_state:&InputState){ match self{ MoveState::Fly |MoveState::Air |MoveState::Water=>(), MoveState::Walk(ContactMoveState{target,contact,jump_direction:_})=>{ if let Some(walk_settings)=&style.walk{ let (gravity,target_velocity)=ground_things(walk_settings,contact,touching,models,hitbox_mesh,style,camera,input_state); *target=TransientAcceleration::ground(walk_settings,body,gravity,target_velocity); }else{ panic!("ContactMoveState exists in style which does not allow walking!"); } }, MoveState::Ladder(ContactMoveState{target,contact,jump_direction:_})=>{ if let Some(ladder_settings)=&style.ladder{ let (gravity,target_velocity)=ladder_things(ladder_settings,contact,touching,models,hitbox_mesh,style,camera,input_state); *target=TransientAcceleration::ladder(ladder_settings,body,gravity,target_velocity); }else{ panic!("ContactMoveState exists in style which does not allow walking!"); } }, } } fn get_walk_state(&self)->Option<&ContactMoveState>{ match self{ MoveState::Walk(walk_state) |MoveState::Ladder(walk_state) =>Some(walk_state), MoveState::Air |MoveState::Water |MoveState::Fly =>None, } } fn next_move_instruction(&self,strafe:&Option,time:Time)->Option>{ //check if you have a valid walk state and create an instruction match self{ MoveState::Walk(walk_state)|MoveState::Ladder(walk_state)=>match &walk_state.target{ &TransientAcceleration::Reachable{acceleration:_,time}=>Some(TimedInstruction{ time, instruction:PhysicsInternalInstruction::ReachWalkTargetVelocity }), TransientAcceleration::Unreachable{acceleration:_} |TransientAcceleration::Reached =>None, } MoveState::Air=>strafe.as_ref().map(|strafe|{ TimedInstruction{ time:strafe.next_tick(time), //only poll the physics if there is a before and after mouse event instruction:PhysicsInternalInstruction::StrafeTick } }), MoveState::Water=>None,//TODO MoveState::Fly=>None, } } } #[derive(Clone,Default)] pub struct PhysicsOutputState{ body:Body, camera:PhysicsCamera, camera_offset:Planar64Vec3, mouse_pos:glam::IVec2, } impl PhysicsOutputState{ pub fn extrapolate(&self,mouse:MouseState)->(glam::Vec3,glam::Vec2){ ((self.body.extrapolated_position(mouse.time)+self.camera_offset).into(),self.camera.simulate_move_angles(mouse.pos-self.mouse_pos)) } } #[derive(Clone,Hash,Eq,PartialEq)] enum PhysicsCollisionAttributes{ Contact{//track whether you are contacting the object contacting:gameplay_attributes::ContactingAttributes, general:gameplay_attributes::GeneralAttributes, }, Intersect{//track whether you are intersecting the object intersecting:gameplay_attributes::IntersectingAttributes, general:gameplay_attributes::GeneralAttributes, }, } struct NonPhysicsError; impl TryFrom<&gameplay_attributes::CollisionAttributes> for PhysicsCollisionAttributes{ type Error=NonPhysicsError; fn try_from(value:&gameplay_attributes::CollisionAttributes)->Result{ match value{ gameplay_attributes::CollisionAttributes::Decoration=>Err(NonPhysicsError), gameplay_attributes::CollisionAttributes::Contact{contacting,general}=>Ok(Self::Contact{contacting:contacting.clone(),general:general.clone()}), gameplay_attributes::CollisionAttributes::Intersect{intersecting,general}=>Ok(Self::Intersect{intersecting:intersecting.clone(),general:general.clone()}), } } } #[derive(Clone,Copy,Hash,id::Id,Eq,PartialEq)] struct PhysicsAttributesId(u32); impl Into for PhysicsAttributesId{ fn into(self)->CollisionAttributesId{ CollisionAttributesId::new(self.0) } } impl From for PhysicsAttributesId{ fn from(value:CollisionAttributesId)->Self{ Self::new(value.get()) } } //unique physics meshes indexed by this #[derive(Debug,Default,Clone,Copy,Eq,Hash,PartialEq)] struct ConvexMeshId{ model_id:PhysicsModelId, submesh_id:PhysicsSubmeshId, } #[derive(Debug,Default,Clone,Copy,Hash,id::Id,Eq,PartialEq)] struct PhysicsModelId(u32); impl Into for PhysicsModelId{ fn into(self)->ModelId{ ModelId::new(self.0) } } impl From for PhysicsModelId{ fn from(value:ModelId)->Self{ Self::new(value.get()) } } pub struct PhysicsModel{ //A model is a thing that has a hitbox. can be represented by a list of TreyMesh-es //in this iteration, all it needs is extents. mesh_id:PhysicsMeshId, //put these up on the Model (data normalization) attr_id:PhysicsAttributesId, transform:PhysicsMeshTransform, } impl PhysicsModel{ const fn new(mesh_id:PhysicsMeshId,attr_id:PhysicsAttributesId,transform:PhysicsMeshTransform)->Self{ Self{ mesh_id, attr_id, transform, } } } #[derive(Debug,Clone,Copy,Eq,Hash,PartialEq)] pub struct ContactCollision{ face_id:model_physics::MinkowskiFace, convex_mesh_id:ConvexMeshId, } #[derive(Debug,Clone,Eq,Hash,PartialEq)] pub struct IntersectCollision{ convex_mesh_id:ConvexMeshId, } #[derive(Debug,Clone,Eq,Hash,PartialEq)] pub enum Collision{ Contact(ContactCollision), Intersect(IntersectCollision), } impl Collision{ const fn convex_mesh_id(&self)->ConvexMeshId{ match self{ &Collision::Contact(ContactCollision{convex_mesh_id,face_id:_}) |&Collision::Intersect(IntersectCollision{convex_mesh_id})=>convex_mesh_id, } } const fn face_id(&self)->Option{ match self{ &Collision::Contact(ContactCollision{convex_mesh_id:_,face_id})=>Some(face_id), &Collision::Intersect(IntersectCollision{convex_mesh_id:_})=>None, } } } #[derive(Clone,Debug,Default)] struct TouchingState{ contacts:HashSet::, intersects:HashSet::, } impl TouchingState{ fn clear(&mut self){ self.contacts.clear(); self.intersects.clear(); } fn insert(&mut self,collision:Collision)->bool{ match collision{ Collision::Contact(collision)=>self.contacts.insert(collision), Collision::Intersect(collision)=>self.intersects.insert(collision), } } fn remove(&mut self,collision:&Collision)->bool{ match collision{ Collision::Contact(collision)=>self.contacts.remove(collision), Collision::Intersect(collision)=>self.intersects.remove(collision), } } fn base_acceleration(&self,models:&PhysicsModels,style:&StyleModifiers,camera:&PhysicsCamera,input_state:&InputState)->Planar64Vec3{ let mut a=style.gravity; if let Some(rocket_settings)=&style.rocket{ a+=rocket_settings.acceleration(style.get_propulsion_control_dir(camera,input_state.controls)); } //add accelerators for contact in &self.contacts{ match models.attr(contact.convex_mesh_id.model_id){ PhysicsCollisionAttributes::Contact{contacting:_,general}=>{ match &general.accelerator{ Some(accelerator)=>a+=accelerator.acceleration, None=>(), } }, _=>panic!("impossible touching state"), } } for intersect in &self.intersects{ match models.attr(intersect.convex_mesh_id.model_id){ PhysicsCollisionAttributes::Intersect{intersecting:_,general}=>{ match &general.accelerator{ Some(accelerator)=>a+=accelerator.acceleration, None=>(), } }, _=>panic!("impossible touching state"), } } //TODO: add water a } fn constrain_velocity(&self,models:&PhysicsModels,hitbox_mesh:&HitboxMesh,velocity:&mut Planar64Vec3){ //TODO: trey push solve for contact in &self.contacts{ let n=contact_normal(models,hitbox_mesh,contact); let d=n.dot128(*velocity); if d<0{ *velocity-=n*Planar64::raw(((d<<32)/n.dot128(n)) as i64); } } } fn constrain_acceleration(&self,models:&PhysicsModels,hitbox_mesh:&HitboxMesh,acceleration:&mut Planar64Vec3){ //TODO: trey push solve for contact in &self.contacts{ let n=contact_normal(models,hitbox_mesh,contact); let d=n.dot128(*acceleration); if d<0{ *acceleration-=n*Planar64::raw(((d<<32)/n.dot128(n)) as i64); } } } fn predict_collision_end(&self,collector:&mut instruction::InstructionCollector,models:&PhysicsModels,hitbox_mesh:&HitboxMesh,body:&Body,time:Time){ let relative_body=VirtualBody::relative(&Body::default(),body).body(time); for contact in &self.contacts{ //detect face slide off let model_mesh=models.mesh(contact.convex_mesh_id); let minkowski=model_physics::MinkowskiMesh::minkowski_sum(model_mesh,hitbox_mesh.transformed_mesh()); collector.collect(minkowski.predict_collision_face_out(&relative_body,collector.time(),contact.face_id).map(|(_face,time)|{ TimedInstruction{ time, instruction:PhysicsInternalInstruction::CollisionEnd( Collision::Contact(ContactCollision{convex_mesh_id:contact.convex_mesh_id,face_id:contact.face_id}) ), } })); } for intersect in &self.intersects{ //detect model collision in reverse let model_mesh=models.mesh(intersect.convex_mesh_id); let minkowski=model_physics::MinkowskiMesh::minkowski_sum(model_mesh,hitbox_mesh.transformed_mesh()); collector.collect(minkowski.predict_collision_out(&relative_body,collector.time()).map(|(_face,time)|{ TimedInstruction{ time, instruction:PhysicsInternalInstruction::CollisionEnd( Collision::Intersect(IntersectCollision{convex_mesh_id:intersect.convex_mesh_id}) ), } })); } } } impl Body{ pub const fn new(position:Planar64Vec3,velocity:Planar64Vec3,acceleration:Planar64Vec3,time:Time)->Self{ Self{ position, velocity, acceleration, time, } } pub fn extrapolated_position(&self,time:Time)->Planar64Vec3{ let dt=time-self.time; self.position+self.velocity*dt+self.acceleration*(dt*dt/2) } pub fn extrapolated_velocity(&self,time:Time)->Planar64Vec3{ let dt=time-self.time; self.velocity+self.acceleration*dt } pub fn advance_time(&mut self,time:Time){ self.position=self.extrapolated_position(time); self.velocity=self.extrapolated_velocity(time); self.time=time; } pub fn infinity_dir(&self)->Option{ if self.velocity==Planar64Vec3::ZERO{ if self.acceleration==Planar64Vec3::ZERO{ None }else{ Some(self.acceleration) } }else{ Some(self.velocity) } } pub fn grow_aabb(&self,aabb:&mut aabb::Aabb,t0:Time,t1:Time){ aabb.grow(self.extrapolated_position(t0)); aabb.grow(self.extrapolated_position(t1)); //v+a*t==0 //goober code if self.acceleration.x()!=Planar64::ZERO{ let t=Time::from(-self.velocity.x()/self.acceleration.x()); if t0)->std::fmt::Result{ write!(f,"p({}) v({}) a({}) t({})",self.position,self.velocity,self.acceleration,self.time) } } struct VirtualBody<'a>{ body0:&'a Body, body1:&'a Body, } impl VirtualBody<'_>{ const fn relative<'a>(body0:&'a Body,body1:&'a Body)->VirtualBody<'a>{ //(p0,v0,a0,t0) //(p1,v1,a1,t1) VirtualBody{ body0, body1, } } fn extrapolated_position(&self,time:Time)->Planar64Vec3{ self.body1.extrapolated_position(time)-self.body0.extrapolated_position(time) } fn extrapolated_velocity(&self,time:Time)->Planar64Vec3{ self.body1.extrapolated_velocity(time)-self.body0.extrapolated_velocity(time) } fn acceleration(&self)->Planar64Vec3{ self.body1.acceleration-self.body0.acceleration } fn body(&self,time:Time)->Body{ Body::new(self.extrapolated_position(time),self.extrapolated_velocity(time),self.acceleration(),time) } } #[derive(Clone,Debug)] pub struct PhysicsState{ time:Time, body:Body, world:WorldState,//currently there is only one state the world can be in touching:TouchingState, //camera must exist in state because wormholes modify the camera, also camera punch camera:PhysicsCamera, //input_state input_state:InputState, //style style:StyleModifiers,//mode style with custom style updates applied //gameplay_state mode_state:ModeState, move_state:MoveState, //run is non optional: when you spawn in a run is created //the run cannot be finished unless you start it by visiting //a start zone. If you change mode, a new run is created. run:run::Run, } //random collection of contextual data that doesn't belong in PhysicsState pub struct PhysicsData{ //permanent map data bvh:bvh::BvhNode, //transient map/environment data (open world loads/unloads parts of this data) models:PhysicsModels, //semi-transient data modes:gameplay_modes::Modes, //cached calculations hitbox_mesh:HitboxMesh, } impl Default for PhysicsState{ fn default()->Self{ Self{ body:Body::new(Planar64Vec3::int(0,50,0),Planar64Vec3::int(0,0,0),Planar64Vec3::int(0,-100,0),Time::ZERO), time:Time::ZERO, style:StyleModifiers::default(), touching:TouchingState::default(), move_state:MoveState::Air, camera:PhysicsCamera::default(), input_state:InputState::default(), world:WorldState{}, mode_state:ModeState::default(), run:run::Run::new(), } } } impl Default for PhysicsData{ fn default()->Self{ Self{ bvh:bvh::BvhNode::default(), models:Default::default(), modes:Default::default(), hitbox_mesh:StyleModifiers::default().calculate_mesh(), } } } impl PhysicsState{ fn clear(&mut self){ self.touching.clear(); } fn reset_to_default(&mut self){ let mut new_state=Self::default(); new_state.camera.sensitivity=self.camera.sensitivity; *self=new_state; } fn next_move_instruction(&self)->Option>{ self.move_state.next_move_instruction(&self.style.strafe,self.time) } //lmao idk this is convenient fn apply_enum_and_input_and_body(&mut self,data:&PhysicsData){ self.move_state.apply_enum(&mut self.body,&self.touching,&data.models,&data.hitbox_mesh,&self.style,&self.camera,&self.input_state); self.move_state.apply_input(&self.body,&self.touching,&data.models,&data.hitbox_mesh,&self.style,&self.camera,&self.input_state); self.move_state.apply_to_body(&mut self.body,&self.touching,&data.models,&data.hitbox_mesh,&self.style,&self.camera,&self.input_state); } fn apply_enum_and_body(&mut self,data:&PhysicsData){ self.move_state.apply_enum(&mut self.body,&self.touching,&data.models,&data.hitbox_mesh,&self.style,&self.camera,&self.input_state); self.move_state.apply_to_body(&mut self.body,&self.touching,&data.models,&data.hitbox_mesh,&self.style,&self.camera,&self.input_state); } fn apply_input_and_body(&mut self,data:&PhysicsData){ self.move_state.apply_input(&self.body,&self.touching,&data.models,&data.hitbox_mesh,&self.style,&self.camera,&self.input_state); self.move_state.apply_to_body(&mut self.body,&self.touching,&data.models,&data.hitbox_mesh,&self.style,&self.camera,&self.input_state); } fn set_move_state(&mut self,data:&PhysicsData,move_state:MoveState){ self.move_state=move_state; //this function call reads the above state that was just set self.apply_enum_and_body(data); } fn cull_velocity(&mut self,data:&PhysicsData,velocity:Planar64Vec3){ //TODO: be more precise about contacts if set_velocity_cull(&mut self.body,&mut self.touching,&data.models,&data.hitbox_mesh,velocity){ //TODO do better match self.move_state.get_walk_state(){ //did you stop touching the thing you were walking on? Some(walk_state)=>if !self.touching.contacts.contains(&walk_state.contact){ self.set_move_state(data,MoveState::Air); }, None=>self.apply_enum_and_body(data), } } } //state mutated on collision: //Accelerator //stair step-up //state mutated on instruction //change fly acceleration (fly_sustain) //change fly velocity //generic event emmiters //PlatformStandTime //walk/swim/air/ladder sounds //VState? //falling under the map // fn next_respawn_instruction(&self) -> Option> { // if self.body.position Option> { // return Some(TimedInstruction{ // time:(self.time*self.strafe_tick_num/self.strafe_tick_den+1)*self.strafe_tick_den/self.strafe_tick_num, // //only poll the physics if there is a before and after mouse event // instruction:PhysicsInstruction::Water // }); // } } #[derive(Default)] pub struct PhysicsContext{ state:PhysicsState,//this captures the entire state of the physics. data:PhysicsData,//data currently loaded into memory which is needded for physics to run, but is not part of the state. } //the physics consumes the generic PhysicsInstruction, but can only emit the more narrow PhysicsInternalInstruction impl instruction::InstructionConsumer for PhysicsContext{ fn process_instruction(&mut self,ins:TimedInstruction){ atomic_state_update(&mut self.state,&self.data,ins) } } impl instruction::InstructionEmitter for PhysicsContext{ //this little next instruction function can cache its return value and invalidate the cached value by watching the State. fn next_instruction(&self,time_limit:Time)->Option>{ next_instruction_internal(&self.state,&self.data,time_limit) } } impl PhysicsContext{ pub fn clear(&mut self){ self.state.clear(); } //TODO: remove non-standard interfaces to process_instruction pub fn load_user_settings(&mut self,user_settings:&crate::settings::UserSettings){ self.run_input_instruction(TimedInstruction{ time:self.state.time, instruction:PhysicsInputInstruction::SetSensitivity(user_settings.calculate_sensitivity()), }); } pub fn restart(&mut self){ self.run_input_instruction(TimedInstruction{ time:self.state.time, instruction:PhysicsInputInstruction::Restart, }); } pub fn spawn(&mut self){ self.run_input_instruction(TimedInstruction{ time:self.state.time, instruction:PhysicsInputInstruction::Spawn(gameplay_modes::ModeId::MAIN,StageId::FIRST), }); } pub const fn output(&self)->PhysicsOutputState{ PhysicsOutputState{ body:self.state.body, camera:self.state.camera, camera_offset:self.state.style.camera_offset, mouse_pos:self.state.input_state.mouse.pos, } } pub const fn get_next_mouse(&self)->&MouseState{ self.state.input_state.get_next_mouse() } pub fn generate_models(&mut self,map:&map::CompleteMap){ self.data.modes=map.modes.clone(); for mode in &mut self.data.modes.modes{ mode.denormalize_data(); } let mut used_attributes=Vec::new(); let mut physics_attr_id_from_model_attr_id=HashMap::::new(); let mut used_meshes=Vec::new(); let mut physics_mesh_id_from_model_mesh_id=HashMap::::new(); self.data.models.models=map.models.iter().enumerate().filter_map(|(model_id,model)|{ //TODO: use .entry().or_insert_with(||{ let attr_id=if let Some(&attr_id)=physics_attr_id_from_model_attr_id.get(&model.attributes){ attr_id }else{ //check if it's real match map.attributes.get(model.attributes.get() as usize).and_then(|m_attr|{ PhysicsCollisionAttributes::try_from(m_attr).map_or(None,|p_attr|{ let attr_id=PhysicsAttributesId::new(used_attributes.len() as u32); used_attributes.push(p_attr); physics_attr_id_from_model_attr_id.insert(model.attributes,attr_id); Some(attr_id) }) }){ Some(attr_id)=>attr_id, None=>return None, } }; let mesh_id=if let Some(&mesh_id)=physics_mesh_id_from_model_mesh_id.get(&model.mesh){ mesh_id }else{ match map.meshes.get(model.mesh.get() as usize).and_then(|mesh|{ match PhysicsMesh::try_from(mesh){ Ok(physics_mesh)=>{ let mesh_id=PhysicsMeshId::new(used_meshes.len() as u32); used_meshes.push(physics_mesh); physics_mesh_id_from_model_mesh_id.insert(model.mesh,mesh_id); Some(mesh_id) }, Err(e)=>{ println!("Failed to build PhysicsMesh: {e}"); None } } }){ Some(mesh_id)=>mesh_id, None=>return None, } }; Some((PhysicsModelId::new(model_id as u32),PhysicsModel::new(mesh_id,attr_id,PhysicsMeshTransform::new(model.transform)))) }).collect(); self.data.models.attributes=used_attributes.into_iter().enumerate().map(|(attr_id,attr)|(PhysicsAttributesId::new(attr_id as u32),attr)).collect(); self.data.models.meshes=used_meshes.into_iter().enumerate().map(|(mesh_id,mesh)|(PhysicsMeshId::new(mesh_id as u32),mesh)).collect(); let convex_mesh_aabb_list=self.data.models.models.iter() .flat_map(|(&model_id,model)|{ self.data.models.meshes[&model.mesh_id].submesh_views() .enumerate().map(move|(submesh_id,view)|{ let mut aabb=aabb::Aabb::default(); let transformed_mesh=TransformedMesh::new(view,&model.transform); for v in transformed_mesh.verts(){ aabb.grow(v); } (ConvexMeshId{ model_id, submesh_id:PhysicsSubmeshId::new(submesh_id as u32), },aabb) }) }).collect(); self.data.bvh=bvh::generate_bvh(convex_mesh_aabb_list); println!("Physics Objects: {}",self.data.models.models.len()); } //tickless gaming fn run_internal_exhaustive(&mut self,time_limit:Time){ //prepare is ommitted - everything is done via instructions. while let Some(instruction)=self.next_instruction(time_limit){//collect //process self.process_instruction(TimedInstruction{ time:instruction.time, instruction:PhysicsInstruction::Internal(instruction.instruction), }); //write hash lol } } pub fn run_input_instruction(&mut self,instruction:TimedInstruction){ self.run_internal_exhaustive(instruction.time); self.process_instruction(TimedInstruction{ time:instruction.time, instruction:PhysicsInstruction::Input(instruction.instruction), }); } } //this is the one who asks fn next_instruction_internal(state:&PhysicsState,data:&PhysicsData,time_limit:Time)->Option>{ //JUST POLLING!!! NO MUTATION let mut collector = instruction::InstructionCollector::new(time_limit); collector.collect(state.next_move_instruction()); //check for collision ends state.touching.predict_collision_end(&mut collector,&data.models,&data.hitbox_mesh,&state.body,state.time); //check for collision starts let mut aabb=aabb::Aabb::default(); state.body.grow_aabb(&mut aabb,state.time,collector.time()); aabb.inflate(data.hitbox_mesh.halfsize); //common body let relative_body=VirtualBody::relative(&Body::default(),&state.body).body(state.time); data.bvh.the_tester(&aabb,&mut |&convex_mesh_id|{ //no checks are needed because of the time limits. let model_mesh=data.models.mesh(convex_mesh_id); let minkowski=model_physics::MinkowskiMesh::minkowski_sum(model_mesh,data.hitbox_mesh.transformed_mesh()); collector.collect(minkowski.predict_collision_in(&relative_body,collector.time()) //temp (?) code to avoid collision loops .map_or(None,|(face,time)|if time==state.time{None}else{Some((face,time))}) .map(|(face,time)|{ TimedInstruction{time,instruction:PhysicsInternalInstruction::CollisionStart(match data.models.attr(convex_mesh_id.model_id){ PhysicsCollisionAttributes::Contact{contacting:_,general:_}=>Collision::Contact(ContactCollision{convex_mesh_id,face_id:face}), PhysicsCollisionAttributes::Intersect{intersecting:_,general:_}=>Collision::Intersect(IntersectCollision{convex_mesh_id}), })} })); }); collector.instruction() } fn contact_normal(models:&PhysicsModels,hitbox_mesh:&HitboxMesh,contact:&ContactCollision)->Planar64Vec3{ let model_mesh=models.mesh(contact.convex_mesh_id); let minkowski=model_physics::MinkowskiMesh::minkowski_sum(model_mesh,hitbox_mesh.transformed_mesh()); minkowski.face_nd(contact.face_id).0 } fn set_position(body:&mut Body,touching:&mut TouchingState,point:Planar64Vec3)->Planar64Vec3{ //test intersections at new position //hovering above the surface 0 units is not intersecting. you will fall into it just fine body.position=point; //manual clear //for c in contacts{process_instruction(CollisionEnd(c))} touching.clear(); //TODO: calculate contacts and determine the actual state //touching.recalculate(body); point } fn set_velocity_cull(body:&mut Body,touching:&mut TouchingState,models:&PhysicsModels,hitbox_mesh:&HitboxMesh,v:Planar64Vec3)->bool{ //This is not correct but is better than what I have let mut culled=false; touching.contacts.retain(|contact|{ let n=contact_normal(models,hitbox_mesh,contact); let r=n.dot(v)<=Planar64::ZERO; if !r{ culled=true; println!("set_velocity_cull contact={:?}",contact); } r }); set_velocity(body,touching,models,hitbox_mesh,v); culled } fn set_velocity(body:&mut Body,touching:&TouchingState,models:&PhysicsModels,hitbox_mesh:&HitboxMesh,mut v:Planar64Vec3){ touching.constrain_velocity(models,hitbox_mesh,&mut v); body.velocity=v; } fn set_acceleration_cull(body:&mut Body,touching:&mut TouchingState,models:&PhysicsModels,hitbox_mesh:&HitboxMesh,a:Planar64Vec3)->bool{ //This is not correct but is better than what I have let mut culled=false; touching.contacts.retain(|contact|{ let n=contact_normal(models,hitbox_mesh,contact); let r=n.dot(a)<=Planar64::ZERO; if !r{ culled=true; println!("set_acceleration_cull contact={:?}",contact); } r }); set_acceleration(body,touching,models,hitbox_mesh,a); culled } fn set_acceleration(body:&mut Body,touching:&TouchingState,models:&PhysicsModels,hitbox_mesh:&HitboxMesh,mut a:Planar64Vec3){ touching.constrain_acceleration(models,hitbox_mesh,&mut a); body.acceleration=a; } fn teleport(body:&mut Body,touching:&mut TouchingState,models:&PhysicsModels,style:&StyleModifiers,hitbox_mesh:&HitboxMesh,point:Planar64Vec3)->MoveState{ set_position(body,touching,point); set_acceleration(body,touching,models,hitbox_mesh,style.gravity); MoveState::Air } fn teleport_to_spawn(body:&mut Body,touching:&mut TouchingState,style:&StyleModifiers,hitbox_mesh:&HitboxMesh,mode:&gameplay_modes::Mode,models:&PhysicsModels,stage_id:gameplay_modes::StageId)->Option{ let model=models.model(mode.get_spawn_model_id(stage_id)?.into()); let point=model.transform.vertex.transform_point3(Planar64Vec3::Y)+Planar64Vec3::Y*(style.hitbox.halfsize.y()+Planar64::ONE/16); Some(teleport(body,touching,models,style,hitbox_mesh,point)) } fn run_teleport_behaviour(wormhole:&Option,models:&PhysicsModels,mode:&gameplay_modes::Mode,style:&StyleModifiers,hitbox_mesh:&HitboxMesh,mode_state:&mut ModeState,touching:&mut TouchingState,body:&mut Body,convex_mesh_id:ConvexMeshId)->Option{ //TODO: jump count and checkpoints are always reset on teleport. //Map makers are expected to use tools to prevent //multi-boosting on JumpLimit boosters such as spawning into a SetVelocity if let Some(stage_element)=mode.get_element(convex_mesh_id.model_id.into()){ if let Some(stage)=mode.get_stage(stage_element.stage_id()){ if mode_state.get_stage_id()(), gameplay_modes::StageElementBehaviour::Trigger |gameplay_modes::StageElementBehaviour::Teleport=>{ //I guess this is correct behaviour when trying to teleport to a non-existent spawn but it's still weird return teleport_to_spawn(body,touching,style,hitbox_mesh,mode,models,mode_state.get_stage_id()); }, gameplay_modes::StageElementBehaviour::Platform=>(), gameplay_modes::StageElementBehaviour::Check=>(),//this is to run the checkpoint check behaviour without any other side effects gameplay_modes::StageElementBehaviour::Checkpoint=>{ //each of these checks if the model is actually a valid respective checkpoint object //accumulate sequential ordered checkpoints mode_state.accumulate_ordered_checkpoint(&stage,convex_mesh_id.model_id.into()); //insert model id in accumulated unordered checkpoints mode_state.accumulate_unordered_checkpoint(&stage,convex_mesh_id.model_id.into()); }, } } } match wormhole{ &Some(gameplay_attributes::Wormhole{destination_model})=>{ let origin_model=models.model(convex_mesh_id.model_id); let destination_model=models.model(destination_model.into()); //ignore the transform for now Some(teleport(body,touching,models,style,hitbox_mesh,body.position-origin_model.transform.vertex.translation+destination_model.transform.vertex.translation)) } None=>None, } } fn atomic_internal_instruction(state:&mut PhysicsState,data:&PhysicsData,ins:TimedInstruction){ let should_advance_body=match ins.instruction{ PhysicsInternalInstruction::CollisionStart(_) |PhysicsInternalInstruction::CollisionEnd(_) |PhysicsInternalInstruction::StrafeTick |PhysicsInternalInstruction::ReachWalkTargetVelocity=>true, }; if should_advance_body{ state.body.advance_time(state.time); } match ins.instruction{ PhysicsInternalInstruction::CollisionStart(collision)=>{ let convex_mesh_id=collision.convex_mesh_id(); match (data.models.attr(convex_mesh_id.model_id),&collision){ (PhysicsCollisionAttributes::Contact{contacting,general},&Collision::Contact(contact))=>{ let incident_velocity=state.body.velocity; //add to touching state.touching.insert(collision); //clip v set_velocity(&mut state.body,&state.touching,&data.models,&data.hitbox_mesh,incident_velocity); match &contacting.contact_behaviour{ Some(gameplay_attributes::ContactingBehaviour::Surf)=>println!("I'm surfing!"), Some(gameplay_attributes::ContactingBehaviour::Cling)=>println!("Unimplemented!"), &Some(gameplay_attributes::ContactingBehaviour::Elastic(elasticity))=>{ let reflected_velocity=state.body.velocity+(state.body.velocity-incident_velocity)*Planar64::raw(elasticity as i64+1); set_velocity(&mut state.body,&state.touching,&data.models,&data.hitbox_mesh,reflected_velocity); }, Some(gameplay_attributes::ContactingBehaviour::Ladder(contacting_ladder))=> if let Some(ladder_settings)=&state.style.ladder{ if contacting_ladder.sticky{ //kill v //actually you could do this with a booster attribute :thinking: //it's a little bit different because maybe you want to chain ladders together set_velocity(&mut state.body,&state.touching,&data.models,&data.hitbox_mesh,Planar64Vec3::ZERO);//model.velocity } //ladder walkstate let (gravity,target_velocity)=ladder_things(ladder_settings,&contact,&state.touching,&data.models,&data.hitbox_mesh,&state.style,&state.camera,&state.input_state); let walk_state=ContactMoveState::ladder(ladder_settings,&state.body,gravity,target_velocity,contact); state.set_move_state(data,MoveState::Ladder(walk_state)); }, Some(gameplay_attributes::ContactingBehaviour::NoJump)=>todo!("nyi"), None=>if let Some(walk_settings)=&state.style.walk{ if walk_settings.is_slope_walkable(contact_normal(&data.models,&data.hitbox_mesh,&contact),Planar64Vec3::Y){ //ground let (gravity,target_velocity)=ground_things(walk_settings,&contact,&state.touching,&data.models,&data.hitbox_mesh,&state.style,&state.camera,&state.input_state); let walk_state=ContactMoveState::ground(walk_settings,&state.body,gravity,target_velocity,contact); state.set_move_state(data,MoveState::Walk(walk_state)); } }, } //I love making functions with 10 arguments to dodge the borrow checker if let Some(mode)=data.modes.get_mode(state.mode_state.get_mode_id()){ run_teleport_behaviour(&general.wormhole,&data.models,mode,&state.style,&data.hitbox_mesh,&mut state.mode_state,&mut state.touching,&mut state.body,convex_mesh_id); } match &general.booster{ Some(booster)=>{ //DELETE THIS when boosters get converted to height machines match booster{ //&gameplay_attributes::Booster::Affine(transform)=>v=transform.transform_point3(v), &gameplay_attributes::Booster::Velocity(velocity)=>{ let boosted_velocity=state.body.velocity+velocity; //fall through boosters state.cull_velocity(data,boosted_velocity); }, &gameplay_attributes::Booster::Energy{direction: _,energy: _}=>todo!(), } }, None=>(), } if state.style.get_control(Controls::Jump,state.input_state.controls){ if let (Some(jump_settings),Some(walk_state))=(&state.style.jump,state.move_state.get_walk_state()){ let jump_dir=walk_state.jump_direction.direction(&data.models,&data.hitbox_mesh,&walk_state.contact); let jumped_velocity=jump_settings.jumped_velocity(&state.style,jump_dir,state.body.velocity); state.cull_velocity(data,jumped_velocity); } } match &general.trajectory{ Some(trajectory)=>{ match trajectory{ gameplay_attributes::SetTrajectory::AirTime(_)=>todo!(), gameplay_attributes::SetTrajectory::Height(_)=>todo!(), gameplay_attributes::SetTrajectory::TargetPointTime { target_point: _, time: _ }=>todo!(), gameplay_attributes::SetTrajectory::TargetPointSpeed { target_point: _, speed: _, trajectory_choice: _ }=>todo!(), &gameplay_attributes::SetTrajectory::Velocity(velocity)=>{ state.cull_velocity(data,velocity); }, gameplay_attributes::SetTrajectory::DotVelocity { direction: _, dot: _ }=>todo!(), } }, None=>(), } //doing enum to set the acceleration when surfing //doing input_and_body to refresh the walk state if you hit a wall while accelerating state.apply_enum_and_input_and_body(data); }, (PhysicsCollisionAttributes::Intersect{intersecting:_,general},Collision::Intersect(_intersect))=>{ //I think that setting the velocity to 0 was preventing surface contacts from entering an infinite loop state.touching.insert(collision); if let Some(mode)=data.modes.get_mode(state.mode_state.get_mode_id()){ let zone=mode.get_zone(convex_mesh_id.model_id.into()); match zone{ Some(gameplay_modes::Zone::Start)=>{ println!("@@@@ Starting new run!"); state.run=run::Run::new(); }, Some(gameplay_modes::Zone::Finish)=>{ match state.run.finish(state.time){ Ok(())=>println!("@@@@ Finished run time={}",state.run.time(state.time)), Err(e)=>println!("@@@@ Run Finish error:{e:?}"), } }, Some(gameplay_modes::Zone::Anticheat)=>state.run.flag(run::FlagReason::Anticheat), None=>(), } run_teleport_behaviour(&general.wormhole,&data.models,mode,&state.style,&data.hitbox_mesh,&mut state.mode_state,&mut state.touching,&mut state.body,convex_mesh_id); } }, _=>panic!("invalid pair"), } }, PhysicsInternalInstruction::CollisionEnd(collision)=>{ match (data.models.attr(collision.convex_mesh_id().model_id),&collision){ (PhysicsCollisionAttributes::Contact{contacting:_,general:_},&Collision::Contact(contact))=>{ state.touching.remove(&collision);//remove contact before calling contact_constrain_acceleration //check ground //TODO do better //this is inner code from state.cull_velocity match state.move_state.get_walk_state(){ //did you stop touching the thing you were walking on? Some(walk_state)=>if walk_state.contact==contact{ state.set_move_state(data,MoveState::Air); }, None=>state.apply_enum_and_body(data), } }, (PhysicsCollisionAttributes::Intersect{intersecting: _,general:_},Collision::Intersect(_))=>{ state.touching.remove(&collision); if let Some(mode)=data.modes.get_mode(state.mode_state.get_mode_id()){ let zone=mode.get_zone(collision.convex_mesh_id().model_id.into()); match zone{ Some(gameplay_modes::Zone::Start)=>{ match state.run.start(state.time){ Ok(())=>println!("@@@@ Started run"), Err(e)=>println!("@@@@ Run Start error:{e:?}"), } }, _=>(), } } }, _=>panic!("invalid pair"), } }, PhysicsInternalInstruction::StrafeTick=>{ //TODO make this less huge if let Some(strafe_settings)=&state.style.strafe{ let controls=state.input_state.controls; if strafe_settings.activates(controls){ let masked_controls=strafe_settings.mask(controls); let control_dir=state.style.get_control_dir(masked_controls); if control_dir!=Planar64Vec3::ZERO{ let camera_mat=state.camera.simulate_move_rotation_y(state.input_state.lerp_delta(state.time).x); if let Some(ticked_velocity)=strafe_settings.tick_velocity(state.body.velocity,(camera_mat*control_dir).with_length(Planar64::ONE)){ //this is wrong but will work ig //need to note which push planes activate in push solve and keep those state.cull_velocity(data,ticked_velocity); } } } } } PhysicsInternalInstruction::ReachWalkTargetVelocity=>{ match &mut state.move_state{ MoveState::Air |MoveState::Water |MoveState::Fly =>println!("ReachWalkTargetVelocity fired for non-walking MoveState"), MoveState::Walk(walk_state)|MoveState::Ladder(walk_state)=>{ match &walk_state.target{ //you are not supposed to reach a walk target which is already reached! TransientAcceleration::Reached=>unreachable!(), TransientAcceleration::Reachable{acceleration:_,time:_}=>{ //velocity is already handled by advance_time //we know that the acceleration is precisely zero because the walk target is known to be reachable //which means that gravity can be fully cancelled //ignore moving platforms for now set_acceleration(&mut state.body,&state.touching,&data.models,&data.hitbox_mesh,Planar64Vec3::ZERO); walk_state.target=TransientAcceleration::Reached; }, //you are not supposed to reach an unreachable walk target! TransientAcceleration::Unreachable{acceleration:_}=>unreachable!(), } } } }, } } fn atomic_input_instruction(state:&mut PhysicsState,data:&PhysicsData,ins:TimedInstruction){ let should_advance_body=match ins.instruction{ //the body may as well be a quantum wave function //as far as these instruction are concerned (they don't care where it is) PhysicsInputInstruction::SetSensitivity(..) |PhysicsInputInstruction::Restart |PhysicsInputInstruction::Spawn(..) |PhysicsInputInstruction::SetZoom(..) |PhysicsInputInstruction::Idle=>false, //these controls only update the body if you are on the ground PhysicsInputInstruction::SetNextMouse(..) |PhysicsInputInstruction::ReplaceMouse(..) |PhysicsInputInstruction::SetMoveForward(..) |PhysicsInputInstruction::SetMoveLeft(..) |PhysicsInputInstruction::SetMoveBack(..) |PhysicsInputInstruction::SetMoveRight(..) |PhysicsInputInstruction::SetMoveUp(..) |PhysicsInputInstruction::SetMoveDown(..) |PhysicsInputInstruction::SetJump(..)=>{ //technically this could be refined further //and only advance if you are moving relative to the contact //but this is good enough for now match &state.move_state{ MoveState::Fly |MoveState::Water |MoveState::Walk(_) |MoveState::Ladder(_)=>true, MoveState::Air=>false, } }, //the body must be updated unconditionally PhysicsInputInstruction::PracticeFly=>true, }; if should_advance_body{ state.body.advance_time(state.time); } //TODO: UNTAB let mut b_refresh_walk_target=true; match ins.instruction{ PhysicsInputInstruction::SetSensitivity(sensitivity)=>state.camera.sensitivity=sensitivity, PhysicsInputInstruction::SetNextMouse(m)=>{ state.camera.move_mouse(state.input_state.mouse_delta()); state.input_state.set_next_mouse(m); }, PhysicsInputInstruction::ReplaceMouse(m0,m1)=>{ state.camera.move_mouse(m0.pos-state.input_state.mouse.pos); state.input_state.replace_mouse(m0,m1); }, PhysicsInputInstruction::SetMoveForward(s)=>state.input_state.set_control(Controls::MoveForward,s), PhysicsInputInstruction::SetMoveLeft(s)=>state.input_state.set_control(Controls::MoveLeft,s), PhysicsInputInstruction::SetMoveBack(s)=>state.input_state.set_control(Controls::MoveBackward,s), PhysicsInputInstruction::SetMoveRight(s)=>state.input_state.set_control(Controls::MoveRight,s), PhysicsInputInstruction::SetMoveUp(s)=>state.input_state.set_control(Controls::MoveUp,s), PhysicsInputInstruction::SetMoveDown(s)=>state.input_state.set_control(Controls::MoveDown,s), PhysicsInputInstruction::SetJump(s)=>{ state.input_state.set_control(Controls::Jump,s); if let Some(walk_state)=state.move_state.get_walk_state(){ if let Some(jump_settings)=&state.style.jump{ let jump_dir=walk_state.jump_direction.direction(&data.models,&data.hitbox_mesh,&walk_state.contact); let jumped_velocity=jump_settings.jumped_velocity(&state.style,jump_dir,state.body.velocity); state.cull_velocity(&data,jumped_velocity); } } b_refresh_walk_target=false; }, PhysicsInputInstruction::SetZoom(s)=>{ state.input_state.set_control(Controls::Zoom,s); b_refresh_walk_target=false; }, PhysicsInputInstruction::Restart=>{ //totally reset physics state state.reset_to_default(); //spawn at start zone let spawn_point=data.modes.get_mode(state.mode_state.get_mode_id()).map(|mode| //TODO: spawn at the bottom of the start zone plus the hitbox size //TODO: set camera andles to face the same way as the start zone data.models.model(mode.get_start().into()).transform.vertex.translation ).unwrap_or(Planar64Vec3::ZERO); set_position(&mut state.body,&mut state.touching,spawn_point); set_velocity(&mut state.body,&state.touching,&data.models,&data.hitbox_mesh,Planar64Vec3::ZERO); state.set_move_state(data,MoveState::Air); b_refresh_walk_target=false; } PhysicsInputInstruction::Spawn(mode_id,stage_id)=>{ //spawn at a particular stage if let Some(mode)=data.modes.get_mode(mode_id){ teleport_to_spawn(&mut state.body,&mut state.touching,&state.style,&data.hitbox_mesh,mode,&data.models,stage_id); } b_refresh_walk_target=false; }, PhysicsInputInstruction::PracticeFly=>{ match &state.move_state{ MoveState::Fly=>{ state.set_move_state(data,MoveState::Air); }, _=>{ state.set_move_state(data,MoveState::Fly); }, } b_refresh_walk_target=false; }, PhysicsInputInstruction::Idle=>{ //literally idle! b_refresh_walk_target=false; }, } if b_refresh_walk_target{ state.apply_input_and_body(data); state.cull_velocity(data,state.body.velocity); } } fn atomic_state_update(state:&mut PhysicsState,data:&PhysicsData,ins:TimedInstruction){ match &ins.instruction{ PhysicsInstruction::Input(PhysicsInputInstruction::Idle) |PhysicsInstruction::Input(PhysicsInputInstruction::SetNextMouse(_)) |PhysicsInstruction::Input(PhysicsInputInstruction::ReplaceMouse(_,_)) |PhysicsInstruction::Internal(PhysicsInternalInstruction::StrafeTick)=>(), _=>println!("{}|{:?}",ins.time,ins.instruction), } state.time=ins.time; match ins.instruction{ PhysicsInstruction::Internal(instruction)=>atomic_internal_instruction(state,data,TimedInstruction{time:ins.time,instruction}), PhysicsInstruction::Input(instruction)=>atomic_input_instruction(state,data,TimedInstruction{time:ins.time,instruction}), } } #[cfg(test)] mod test{ use super::*; fn test_collision_axis_aligned(relative_body:Body,expected_collision_time:Option