// Copyright (c) 2016 The vulkano developers // Licensed under the Apache License, Version 2.0 // or the MIT // license , // at your option. All files in the project carrying such // notice may not be copied, modified, or distributed except // according to those terms. use cgmath::{Matrix3, Matrix4, Rad, Vector2, Vector3, Rotation, Quaternion, Euler, SquareMatrix}; use strafe_client::{Normal, Position, INDICES, NORMALS, POSITIONS}; use std::{sync::Arc, time::Instant}; use vulkano::{ buffer::{ allocator::{SubbufferAllocator, SubbufferAllocatorCreateInfo}, Buffer, BufferCreateInfo, BufferUsage, }, command_buffer::{ allocator::StandardCommandBufferAllocator, AutoCommandBufferBuilder, CommandBufferUsage, RenderPassBeginInfo, SubpassContents, }, descriptor_set::{ allocator::StandardDescriptorSetAllocator, PersistentDescriptorSet, WriteDescriptorSet, }, device::{ physical::PhysicalDeviceType, Device, DeviceCreateInfo, DeviceExtensions, DeviceOwned, QueueCreateInfo, QueueFlags, }, format::Format, image::{view::ImageView, AttachmentImage, ImageAccess, ImageUsage, SwapchainImage}, instance::{Instance, InstanceCreateInfo}, memory::allocator::{AllocationCreateInfo, MemoryUsage, StandardMemoryAllocator}, pipeline::{ graphics::{ depth_stencil::DepthStencilState, input_assembly::InputAssemblyState, vertex_input::Vertex, viewport::{Viewport, ViewportState}, }, GraphicsPipeline, Pipeline, PipelineBindPoint, }, render_pass::{Framebuffer, FramebufferCreateInfo, RenderPass, Subpass}, shader::ShaderModule, swapchain::{ acquire_next_image, AcquireError, Swapchain, SwapchainCreateInfo, SwapchainCreationError, SwapchainPresentInfo, }, sync::{self, FlushError, GpuFuture}, VulkanLibrary, }; use vulkano_win::VkSurfaceBuild; use winit::{ event::{ElementState,KeyboardInput,VirtualKeyCode,Event, WindowEvent, DeviceEvent}, event_loop::{ControlFlow, EventLoop}, window::{Window, WindowBuilder}, }; const CONTROL_MOVEFORWARD:u32 = 0b00000001; const CONTROL_MOVEBACK:u32 = 0b00000010; const CONTROL_MOVERIGHT:u32 = 0b00000100; const CONTROL_MOVELEFT:u32 = 0b00001000; const CONTROL_MOVEUP:u32 = 0b00010000; const CONTROL_MOVEDOWN:u32 = 0b00100000; //const CONTROL_JUMP:u32 = 0b01000000; //const CONTROL_ZOOM:u32 = 0b10000000; const FORWARD_DIR:Vector3 = Vector3::new(0,0,-1); const RIGHT_DIR:Vector3 = Vector3::new(1,0,0); const UP_DIR:Vector3 = Vector3::new(0,-1,0); fn get_control_dir(controls: u32) -> Vector3{ //don't get fancy just do it let mut control_dir:Vector3 = Vector3::new(0,0,0); if controls & CONTROL_MOVEFORWARD == CONTROL_MOVEFORWARD { control_dir+=FORWARD_DIR; } if controls & CONTROL_MOVEBACK == CONTROL_MOVEBACK { control_dir+=-FORWARD_DIR; } if controls & CONTROL_MOVELEFT == CONTROL_MOVELEFT { control_dir+=-RIGHT_DIR; } if controls & CONTROL_MOVERIGHT == CONTROL_MOVERIGHT { control_dir+=RIGHT_DIR; } if controls & CONTROL_MOVEUP == CONTROL_MOVEUP { control_dir+=UP_DIR; } if controls & CONTROL_MOVEDOWN == CONTROL_MOVEDOWN { control_dir+=-UP_DIR; } return control_dir.cast().unwrap() } fn main() { // The start of this example is exactly the same as `triangle`. You should read the `triangle` // example if you haven't done so yet. let library = VulkanLibrary::new().unwrap(); let required_extensions = vulkano_win::required_extensions(&library); let instance = Instance::new( library, InstanceCreateInfo { enabled_extensions: required_extensions, enumerate_portability: true, ..Default::default() }, ) .unwrap(); let event_loop = EventLoop::new(); let surface = WindowBuilder::new() .build_vk_surface(&event_loop, instance.clone()) .unwrap(); let device_extensions = DeviceExtensions { khr_swapchain: true, ..DeviceExtensions::empty() }; let (physical_device, queue_family_index) = instance .enumerate_physical_devices() .unwrap() .filter(|p| p.supported_extensions().contains(&device_extensions)) .filter_map(|p| { p.queue_family_properties() .iter() .enumerate() .position(|(i, q)| { q.queue_flags.intersects(QueueFlags::GRAPHICS) && p.surface_support(i as u32, &surface).unwrap_or(false) }) .map(|i| (p, i as u32)) }) .min_by_key(|(p, _)| match p.properties().device_type { PhysicalDeviceType::DiscreteGpu => 0, PhysicalDeviceType::IntegratedGpu => 1, PhysicalDeviceType::VirtualGpu => 2, PhysicalDeviceType::Cpu => 3, PhysicalDeviceType::Other => 4, _ => 5, }) .unwrap(); println!( "Using device: {} (type: {:?})", physical_device.properties().device_name, physical_device.properties().device_type, ); let (device, mut queues) = Device::new( physical_device, DeviceCreateInfo { enabled_extensions: device_extensions, queue_create_infos: vec![QueueCreateInfo { queue_family_index, ..Default::default() }], ..Default::default() }, ) .unwrap(); let queue = queues.next().unwrap(); let (mut swapchain, images) = { let surface_capabilities = device .physical_device() .surface_capabilities(&surface, Default::default()) .unwrap(); let image_format = Some( device .physical_device() .surface_formats(&surface, Default::default()) .unwrap()[0] .0, ); let window = surface.object().unwrap().downcast_ref::().unwrap(); Swapchain::new( device.clone(), surface.clone(), SwapchainCreateInfo { min_image_count: surface_capabilities.min_image_count, image_format, image_extent: window.inner_size().into(), image_usage: ImageUsage::COLOR_ATTACHMENT, composite_alpha: surface_capabilities .supported_composite_alpha .into_iter() .next() .unwrap(), ..Default::default() }, ) .unwrap() }; let memory_allocator = Arc::new(StandardMemoryAllocator::new_default(device.clone())); let vertex_buffer = Buffer::from_iter( &memory_allocator, BufferCreateInfo { usage: BufferUsage::VERTEX_BUFFER, ..Default::default() }, AllocationCreateInfo { usage: MemoryUsage::Upload, ..Default::default() }, POSITIONS, ) .unwrap(); let normals_buffer = Buffer::from_iter( &memory_allocator, BufferCreateInfo { usage: BufferUsage::VERTEX_BUFFER, ..Default::default() }, AllocationCreateInfo { usage: MemoryUsage::Upload, ..Default::default() }, NORMALS, ) .unwrap(); let index_buffer = Buffer::from_iter( &memory_allocator, BufferCreateInfo { usage: BufferUsage::INDEX_BUFFER, ..Default::default() }, AllocationCreateInfo { usage: MemoryUsage::Upload, ..Default::default() }, INDICES, ) .unwrap(); let uniform_buffer = SubbufferAllocator::new( memory_allocator.clone(), SubbufferAllocatorCreateInfo { buffer_usage: BufferUsage::UNIFORM_BUFFER, ..Default::default() }, ); let vs = vs::load(device.clone()).unwrap(); let fs = fs::load(device.clone()).unwrap(); let render_pass = vulkano::single_pass_renderpass!( device.clone(), attachments: { color: { load: Clear, store: Store, format: swapchain.image_format(), samples: 1, }, depth: { load: Clear, store: DontCare, format: Format::D16_UNORM, samples: 1, }, }, pass: { color: [color], depth_stencil: {depth}, }, ) .unwrap(); let (mut pipeline, mut framebuffers) = window_size_dependent_setup(&memory_allocator, &vs, &fs, &images, render_pass.clone()); let mut recreate_swapchain = false; let mut previous_frame_end = Some(sync::now(device.clone()).boxed()); let rotation_start = Instant::now(); let descriptor_set_allocator = StandardDescriptorSetAllocator::new(device.clone()); let command_buffer_allocator = StandardCommandBufferAllocator::new(device.clone(), Default::default()); let mut time = Instant::now(); //polution let mut mouse = Vector2::new(0.0,0.0); let mut pos = Vector3::new(0.0,0.0,0.0); let mut controls:u32 = 0; let fly_speed = 0.05; event_loop.run(move |event, _, control_flow| { match event { Event::WindowEvent { event: WindowEvent::CloseRequested, .. } => { *control_flow = ControlFlow::Exit; } Event::WindowEvent { event: WindowEvent::Resized(_), .. } => { recreate_swapchain = true; } Event::DeviceEvent { event: DeviceEvent::MouseMotion { delta, }, .. } => { mouse+=Vector2::from(delta); } Event::WindowEvent { event: WindowEvent::KeyboardInput { input: KeyboardInput { state, virtual_keycode: Some(keycode), .. }, .. }, .. } => { match (state,keycode) { (k,VirtualKeyCode::W) => match k { ElementState::Pressed => controls|=CONTROL_MOVEFORWARD, ElementState::Released => controls&=!CONTROL_MOVEFORWARD, } (k,VirtualKeyCode::A) => match k { ElementState::Pressed => controls|=CONTROL_MOVELEFT, ElementState::Released => controls&=!CONTROL_MOVELEFT, } (k,VirtualKeyCode::S) => match k { ElementState::Pressed => controls|=CONTROL_MOVEBACK, ElementState::Released => controls&=!CONTROL_MOVEBACK, } (k,VirtualKeyCode::D) => match k { ElementState::Pressed => controls|=CONTROL_MOVERIGHT, ElementState::Released => controls&=!CONTROL_MOVERIGHT, } (k,VirtualKeyCode::E) => match k { ElementState::Pressed => controls|=CONTROL_MOVEUP, ElementState::Released => controls&=!CONTROL_MOVEUP, } (k,VirtualKeyCode::Q) => match k { ElementState::Pressed => controls|=CONTROL_MOVEDOWN, ElementState::Released => controls&=!CONTROL_MOVEDOWN, } _ => (), } } _ => (), } let time_now = Instant::now(); let dt = (time_now-time).as_secs_f64(); if dt > 1.0 / 120.0 { time = time_now; let angles = Euler{x:Rad(mouse.y/256.),y:Rad(mouse.x/-256.),z:Rad(0.0)}; let orientation=Quaternion::from(angles); pos += orientation.rotate_vector(get_control_dir(controls))*fly_speed; let window = surface.object().unwrap().downcast_ref::().unwrap(); let dimensions = window.inner_size(); if dimensions.width == 0 || dimensions.height == 0 { return; } previous_frame_end.as_mut().unwrap().cleanup_finished(); if recreate_swapchain { let (new_swapchain, new_images) = match swapchain.recreate(SwapchainCreateInfo { image_extent: dimensions.into(), ..swapchain.create_info() }) { Ok(r) => r, Err(SwapchainCreationError::ImageExtentNotSupported { .. }) => return, Err(e) => panic!("failed to recreate swapchain: {e}"), }; swapchain = new_swapchain; let (new_pipeline, new_framebuffers) = window_size_dependent_setup( &memory_allocator, &vs, &fs, &new_images, render_pass.clone(), ); pipeline = new_pipeline; framebuffers = new_framebuffers; recreate_swapchain = false; } let uniform_buffer_subbuffer = { let elapsed = rotation_start.elapsed(); let rotation = elapsed.as_secs() as f64 + elapsed.subsec_nanos() as f64 / 1_000_000_000.0; let rotation = Matrix3::from_angle_y(Rad(rotation as f32)); // note: this teapot was meant for OpenGL where the origin is at the lower left // instead the origin is at the upper left in Vulkan, so we reverse the Y axis let aspect_ratio = swapchain.image_extent()[0] as f32 / swapchain.image_extent()[1] as f32; let proj = cgmath::perspective( Rad(std::f32::consts::FRAC_PI_2), aspect_ratio, 0.01, 100.0, ); let view = Matrix4::from_translation(pos)*Matrix4::from(angles); let scale = Matrix4::from_scale(-0.01); // Matrix4::from_translation(Vector3 { x: 0.0, y: 0.0, z: 0.0 }) * let uniform_data = vs::Data { world: (Matrix4::from(rotation) * scale).into(), view: view.invert().unwrap().cast::().unwrap().into(), proj: proj.into(), }; let subbuffer = uniform_buffer.allocate_sized().unwrap(); *subbuffer.write().unwrap() = uniform_data; subbuffer }; let layout = pipeline.layout().set_layouts().get(0).unwrap(); let set = PersistentDescriptorSet::new( &descriptor_set_allocator, layout.clone(), [WriteDescriptorSet::buffer(0, uniform_buffer_subbuffer)], ) .unwrap(); let (image_index, suboptimal, acquire_future) = match acquire_next_image(swapchain.clone(), None) { Ok(r) => r, Err(AcquireError::OutOfDate) => { recreate_swapchain = true; return; } Err(e) => panic!("failed to acquire next image: {e}"), }; if suboptimal { recreate_swapchain = true; } let mut builder = AutoCommandBufferBuilder::primary( &command_buffer_allocator, queue.queue_family_index(), CommandBufferUsage::OneTimeSubmit, ) .unwrap(); builder .begin_render_pass( RenderPassBeginInfo { clear_values: vec![ Some([0.0, 0.0, 1.0, 1.0].into()), Some(1f32.into()), ], ..RenderPassBeginInfo::framebuffer( framebuffers[image_index as usize].clone(), ) }, SubpassContents::Inline, ) .unwrap() .bind_pipeline_graphics(pipeline.clone()) .bind_descriptor_sets( PipelineBindPoint::Graphics, pipeline.layout().clone(), 0, set, ) .bind_vertex_buffers(0, (vertex_buffer.clone(), normals_buffer.clone())) .bind_index_buffer(index_buffer.clone()) .draw_indexed(index_buffer.len() as u32, 1, 0, 0, 0) .unwrap() .end_render_pass() .unwrap(); let command_buffer = builder.build().unwrap(); let future = previous_frame_end .take() .unwrap() .join(acquire_future) .then_execute(queue.clone(), command_buffer) .unwrap() .then_swapchain_present( queue.clone(), SwapchainPresentInfo::swapchain_image_index(swapchain.clone(), image_index), ) .then_signal_fence_and_flush(); match future { Ok(future) => { previous_frame_end = Some(future.boxed()); } Err(FlushError::OutOfDate) => { recreate_swapchain = true; previous_frame_end = Some(sync::now(device.clone()).boxed()); } Err(e) => { println!("failed to flush future: {e}"); previous_frame_end = Some(sync::now(device.clone()).boxed()); } } } }); } /// This function is called once during initialization, then again whenever the window is resized. fn window_size_dependent_setup( memory_allocator: &StandardMemoryAllocator, vs: &ShaderModule, fs: &ShaderModule, images: &[Arc], render_pass: Arc, ) -> (Arc, Vec>) { let dimensions = images[0].dimensions().width_height(); let depth_buffer = ImageView::new_default( AttachmentImage::transient(memory_allocator, dimensions, Format::D16_UNORM).unwrap(), ) .unwrap(); let framebuffers = images .iter() .map(|image| { let view = ImageView::new_default(image.clone()).unwrap(); Framebuffer::new( render_pass.clone(), FramebufferCreateInfo { attachments: vec![view, depth_buffer.clone()], ..Default::default() }, ) .unwrap() }) .collect::>(); // In the triangle example we use a dynamic viewport, as its a simple example. However in the // teapot example, we recreate the pipelines with a hardcoded viewport instead. This allows the // driver to optimize things, at the cost of slower window resizes. // https://computergraphics.stackexchange.com/questions/5742/vulkan-best-way-of-updating-pipeline-viewport let pipeline = GraphicsPipeline::start() .vertex_input_state([Position::per_vertex(), Normal::per_vertex()]) .vertex_shader(vs.entry_point("main").unwrap(), ()) .input_assembly_state(InputAssemblyState::new()) .viewport_state(ViewportState::viewport_fixed_scissor_irrelevant([ Viewport { origin: [0.0, 0.0], dimensions: [dimensions[0] as f32, dimensions[1] as f32], depth_range: 0.0..1.0, }, ])) .fragment_shader(fs.entry_point("main").unwrap(), ()) .depth_stencil_state(DepthStencilState::simple_depth_test()) .render_pass(Subpass::from(render_pass, 0).unwrap()) .build(memory_allocator.device().clone()) .unwrap(); (pipeline, framebuffers) } mod vs { vulkano_shaders::shader! { ty: "vertex", path: "src/vert.glsl", } } mod fs { vulkano_shaders::shader! { ty: "fragment", path: "src/frag.glsl", } }