strafe-project/src/physics.rs
2024-08-19 17:04:53 -07:00

1946 lines
71 KiB
Rust

use std::collections::{HashMap,HashSet};
use crate::model_physics::{self,PhysicsMesh,PhysicsMeshTransform,TransformedMesh,MeshQuery,PhysicsMeshId,PhysicsSubmeshId};
use strafesnet_common::bvh;
use strafesnet_common::map;
use strafesnet_common::run;
use strafesnet_common::aabb;
use strafesnet_common::model::{MeshId,ModelId};
use strafesnet_common::mouse::MouseState;
use strafesnet_common::gameplay_attributes::{self,CollisionAttributesId};
use strafesnet_common::gameplay_modes::{self,StageId};
use strafesnet_common::gameplay_style::{self,StyleModifiers};
use strafesnet_common::controls_bitflag::Controls;
use strafesnet_common::instruction::{self,InstructionEmitter,InstructionConsumer,TimedInstruction};
use strafesnet_common::integer::{self,Time,Planar64,Planar64Vec3,Planar64Mat3,Angle32,Ratio64Vec2};
use gameplay::ModeState;
//external influence
//this is how you influence the physics from outside
use strafesnet_common::physics::Instruction as PhysicsInputInstruction;
//internal influence
//when the physics asks itself what happens next, this is how it's represented
#[derive(Debug)]
enum PhysicsInternalInstruction{
CollisionStart(Collision),
CollisionEnd(Collision),
StrafeTick,
ReachWalkTargetVelocity,
// Water,
}
#[derive(Debug)]
enum PhysicsInstruction{
Internal(PhysicsInternalInstruction),
//InputInstructions conditionally activate RefreshWalkTarget
//(by doing what SetWalkTargetVelocity used to do and then flagging it)
Input(PhysicsInputInstruction),
}
#[derive(Clone,Copy,Debug,Default,Hash)]
pub struct Body{
pub position:Planar64Vec3,//I64 where 2^32 = 1 u
pub velocity:Planar64Vec3,//I64 where 2^32 = 1 u/s
pub acceleration:Planar64Vec3,//I64 where 2^32 = 1 u/s/s
pub time:Time,//nanoseconds x xxxxD!
}
impl std::ops::Neg for Body{
type Output=Self;
fn neg(self)->Self::Output{
Self{
position:self.position,
velocity:-self.velocity,
acceleration:self.acceleration,
time:-self.time,
}
}
}
#[derive(Clone,Debug,Default)]
pub struct InputState{
mouse:MouseState,
next_mouse:MouseState,
controls:strafesnet_common::controls_bitflag::Controls,
}
impl InputState{
pub const fn get_next_mouse(&self)->&MouseState{
&self.next_mouse
}
fn set_next_mouse(&mut self,next_mouse:MouseState){
//I like your functions magic language
self.mouse=std::mem::replace(&mut self.next_mouse,next_mouse);
//equivalently:
//(self.next_mouse,self.mouse)=(next_mouse,self.next_mouse.clone());
}
fn replace_mouse(&mut self,mouse:MouseState,next_mouse:MouseState){
(self.next_mouse,self.mouse)=(next_mouse,mouse);
}
fn set_control(&mut self,control:Controls,state:bool){
self.controls.set(control,state)
}
fn time_delta(&self)->Time{
self.next_mouse.time-self.mouse.time
}
fn mouse_delta(&self)->glam::IVec2{
self.next_mouse.pos-self.mouse.pos
}
fn lerp_delta(&self,time:Time)->glam::IVec2{
//these are deltas
let dm=self.mouse_delta().as_i64vec2();
let t=(time-self.mouse.time).nanos();
let dt=self.time_delta().nanos();
((dm*t)/dt).as_ivec2()
}
}
#[derive(Clone,Debug)]
enum JumpDirection{
Exactly(Planar64Vec3),
FromContactNormal,
}
impl JumpDirection{
fn direction(&self,models:&PhysicsModels,hitbox_mesh:&HitboxMesh,contact:&ContactCollision)->Planar64Vec3{
match self{
JumpDirection::FromContactNormal=>contact_normal(models,hitbox_mesh,contact),
&JumpDirection::Exactly(dir)=>dir,
}
}
}
#[derive(Clone,Debug)]
enum TransientAcceleration{
Reached,
Reachable{
acceleration:Planar64Vec3,
time:Time,
},
//walk target will never be reached
Unreachable{
acceleration:Planar64Vec3,
}
}
#[derive(Clone,Debug)]
struct ContactMoveState{
jump_direction:JumpDirection,
contact:ContactCollision,
target:TransientAcceleration,
}
impl TransientAcceleration{
fn with_target_diff(target_diff:Planar64Vec3,accel:Planar64,time:Time)->Self{
if target_diff==Planar64Vec3::ZERO{
TransientAcceleration::Reached
}else{
//normal friction acceleration is clippedAcceleration.dot(normal)*friction
TransientAcceleration::Reachable{
acceleration:target_diff.with_length(accel),
time:time+Time::from(target_diff.length()/accel)
}
}
}
fn ground(walk_settings:&gameplay_style::WalkSettings,body:&Body,gravity:Planar64Vec3,target_velocity:Planar64Vec3)->Self{
let target_diff=target_velocity-body.velocity;
//precalculate accel
let accel=walk_settings.accel(target_diff,gravity);
Self::with_target_diff(target_diff,accel,body.time)
}
fn ladder(ladder_settings:&gameplay_style::LadderSettings,body:&Body,gravity:Planar64Vec3,target_velocity:Planar64Vec3)->Self{
let target_diff=target_velocity-body.velocity;
let accel=ladder_settings.accel(target_diff,gravity);
Self::with_target_diff(target_diff,accel,body.time)
}
fn acceleration(&self)->Planar64Vec3{
match self{
TransientAcceleration::Reached=>Planar64Vec3::ZERO,
&TransientAcceleration::Reachable{acceleration,time:_}=>acceleration,
&TransientAcceleration::Unreachable{acceleration}=>acceleration,
}
}
}
impl ContactMoveState{
fn ground(walk_settings:&gameplay_style::WalkSettings,body:&Body,gravity:Planar64Vec3,target_velocity:Planar64Vec3,contact:ContactCollision)->Self{
Self{
target:TransientAcceleration::ground(walk_settings,body,gravity,target_velocity),
contact,
jump_direction:JumpDirection::Exactly(Planar64Vec3::Y),
}
}
fn ladder(ladder_settings:&gameplay_style::LadderSettings,body:&Body,gravity:Planar64Vec3,target_velocity:Planar64Vec3,contact:ContactCollision)->Self{
Self{//,style,velocity,normal,style.ladder_speed,style.ladder_accel
target:TransientAcceleration::ladder(ladder_settings,body,gravity,target_velocity),
contact,
jump_direction:JumpDirection::FromContactNormal,
}
}
}
fn ground_things(walk_settings:&gameplay_style::WalkSettings,contact:&ContactCollision,touching:&TouchingState,models:&PhysicsModels,hitbox_mesh:&HitboxMesh,style:&StyleModifiers,camera:&PhysicsCamera,input_state:&InputState)->(Planar64Vec3,Planar64Vec3){
let normal=contact_normal(models,hitbox_mesh,contact);
let gravity=touching.base_acceleration(models,style,camera,input_state);
let control_dir=style.get_y_control_dir(camera,input_state.controls);
let mut target_velocity=walk_settings.get_walk_target_velocity(control_dir,normal);
touching.constrain_velocity(models,hitbox_mesh,&mut target_velocity);
(gravity,target_velocity)
}
fn ladder_things(ladder_settings:&gameplay_style::LadderSettings,contact:&ContactCollision,touching:&TouchingState,models:&PhysicsModels,hitbox_mesh:&HitboxMesh,style:&StyleModifiers,camera:&PhysicsCamera,input_state:&InputState)->(Planar64Vec3,Planar64Vec3){
let normal=contact_normal(models,hitbox_mesh,contact);
let gravity=touching.base_acceleration(models,style,camera,input_state);
let control_dir=style.get_y_control_dir(camera,input_state.controls);
let mut target_velocity=ladder_settings.get_ladder_target_velocity(control_dir,normal);
touching.constrain_velocity(models,hitbox_mesh,&mut target_velocity);
(gravity,target_velocity)
}
#[derive(Default)]
struct PhysicsModels{
meshes:HashMap<PhysicsMeshId,PhysicsMesh>,
contact_models:HashMap<ContactModelId,ContactModel>,
intersect_models:HashMap<IntersectModelId,IntersectModel>,
contact_attributes:HashMap<ContactAttributesId,gameplay_attributes::ContactAttributes>,
intersect_attributes:HashMap<IntersectAttributesId,gameplay_attributes::IntersectAttributes>,
}
impl PhysicsModels{
fn clear(&mut self){
self.meshes.clear();
self.contact_models.clear();
self.intersect_models.clear();
self.contact_attributes.clear();
self.intersect_attributes.clear();
}
fn mesh(&self,convex_mesh_id:ConvexMeshId)->TransformedMesh{
let (mesh_id,transform)=match convex_mesh_id.model_id{
PhysicsModelId::Contact(model_id)=>{
let model=&self.contact_models[&model_id];
(&model.mesh_id,&model.transform)
},
PhysicsModelId::Intersect(model_id)=>{
let model=&self.intersect_models[&model_id];
(&model.mesh_id,&model.transform)
},
};
TransformedMesh::new(
self.meshes[mesh_id].submesh_view(convex_mesh_id.submesh_id),
transform
)
}
//it's a bit weird to have three functions, but it's always going to be one of these
fn contact_mesh(&self,contact:&ContactCollision)->TransformedMesh{
let model=&self.contact_models[&contact.model_id];
TransformedMesh::new(
self.meshes[&model.mesh_id].submesh_view(contact.submesh_id),
&model.transform
)
}
fn intersect_mesh(&self,intersect:&IntersectCollision)->TransformedMesh{
let model=&self.intersect_models[&intersect.model_id];
TransformedMesh::new(
self.meshes[&model.mesh_id].submesh_view(intersect.submesh_id),
&model.transform
)
}
fn get_model_transform(&self,model_id:ModelId)->Option<&PhysicsMeshTransform>{
//ModelId can possibly be a decoration
self.contact_models.get(&ContactModelId::new(model_id.get())).map_or_else(
||self.intersect_models.get(&IntersectModelId::new(model_id.get()))
.map(|model|&model.transform),
|model|Some(&model.transform)
)
}
fn contact_model(&self,model_id:ContactModelId)->&ContactModel{
&self.contact_models[&model_id]
}
fn intersect_model(&self,model_id:IntersectModelId)->&IntersectModel{
&self.intersect_models[&model_id]
}
fn contact_attr(&self,model_id:ContactModelId)->&gameplay_attributes::ContactAttributes{
&self.contact_attributes[&self.contact_models[&model_id].attr_id]
}
fn intersect_attr(&self,model_id:IntersectModelId)->&gameplay_attributes::IntersectAttributes{
&self.intersect_attributes[&self.intersect_models[&model_id].attr_id]
}
}
#[derive(Clone,Copy,Debug)]
pub struct PhysicsCamera{
//punch: Planar64Vec3,
//punch_velocity: Planar64Vec3,
sensitivity:Ratio64Vec2,//dots to Angle32 ratios
clamped_mouse_pos:glam::IVec2,//angles are calculated from this cumulative value
//angle limits could be an enum + struct that defines whether it's limited and selects clamp or wrap depending
// enum AngleLimit{
// Unlimited,
// Limited{lower:Angle32,upper:Angle32},
// }
//pitch_limit:AngleLimit,
//yaw_limit:AngleLimit,
}
impl PhysicsCamera{
const ANGLE_PITCH_LOWER_LIMIT:Angle32=Angle32::NEG_FRAC_PI_2;
const ANGLE_PITCH_UPPER_LIMIT:Angle32=Angle32::FRAC_PI_2;
pub fn move_mouse(&mut self,mouse_delta:glam::IVec2){
let mut unclamped_mouse_pos=self.clamped_mouse_pos+mouse_delta;
unclamped_mouse_pos.y=unclamped_mouse_pos.y.clamp(
self.sensitivity.y.rhs_div_int(Self::ANGLE_PITCH_LOWER_LIMIT.get() as i64) as i32,
self.sensitivity.y.rhs_div_int(Self::ANGLE_PITCH_UPPER_LIMIT.get() as i64) as i32,
);
self.clamped_mouse_pos=unclamped_mouse_pos;
}
pub fn simulate_move_angles(&self,mouse_delta:glam::IVec2)->glam::Vec2 {
let a=-self.sensitivity.mul_int((self.clamped_mouse_pos+mouse_delta).as_i64vec2());
let ax=Angle32::wrap_from_i64(a.x);
let ay=Angle32::clamp_from_i64(a.y)
//clamp to actual vertical cam limit
.clamp(Self::ANGLE_PITCH_LOWER_LIMIT,Self::ANGLE_PITCH_UPPER_LIMIT);
return glam::vec2(ax.into(),ay.into());
}
#[inline]
fn get_rotation(&self,mouse_pos:glam::IVec2)->Planar64Mat3{
let a=-self.sensitivity.mul_int(mouse_pos.as_i64vec2());
let ax=Angle32::wrap_from_i64(a.x);
let ay=Angle32::clamp_from_i64(a.y)
//clamp to actual vertical cam limit
.clamp(Self::ANGLE_PITCH_LOWER_LIMIT,Self::ANGLE_PITCH_UPPER_LIMIT);
Planar64Mat3::from_rotation_yx(ax,ay)
}
fn rotation(&self)->Planar64Mat3{
self.get_rotation(self.clamped_mouse_pos)
}
fn simulate_move_rotation(&self,mouse_delta:glam::IVec2)->Planar64Mat3{
self.get_rotation(self.clamped_mouse_pos+mouse_delta)
}
fn get_rotation_y(&self,mouse_pos_x:i32)->Planar64Mat3{
let ax=-self.sensitivity.x.mul_int(mouse_pos_x as i64);
Planar64Mat3::from_rotation_y(Angle32::wrap_from_i64(ax))
}
fn rotation_y(&self)->Planar64Mat3{
self.get_rotation_y(self.clamped_mouse_pos.x)
}
fn simulate_move_rotation_y(&self,mouse_delta_x:i32)->Planar64Mat3{
self.get_rotation_y(self.clamped_mouse_pos.x+mouse_delta_x)
}
}
impl std::default::Default for PhysicsCamera{
fn default()->Self{
Self{
sensitivity:Ratio64Vec2::ONE*200_000,
clamped_mouse_pos:glam::IVec2::ZERO,
}
}
}
mod gameplay{
use super::{gameplay_modes,HashSet,HashMap,ModelId};
#[derive(Clone,Debug)]
pub struct ModeState{
mode_id:gameplay_modes::ModeId,
stage_id:gameplay_modes::StageId,
next_ordered_checkpoint_id:gameplay_modes::CheckpointId,//which OrderedCheckpoint model_id you must pass next (if 0 you haven't passed OrderedCheckpoint0)
unordered_checkpoints:HashSet<ModelId>,
jump_counts:HashMap<ModelId,u32>,//model_id -> jump count
}
impl ModeState{
pub const fn get_mode_id(&self)->gameplay_modes::ModeId{
self.mode_id
}
pub const fn get_stage_id(&self)->gameplay_modes::StageId{
self.stage_id
}
pub const fn get_next_ordered_checkpoint_id(&self)->gameplay_modes::CheckpointId{
self.next_ordered_checkpoint_id
}
pub fn get_jump_count(&self,model_id:ModelId)->Option<u32>{
self.jump_counts.get(&model_id).copied()
}
pub const fn ordered_checkpoint_count(&self)->u32{
self.next_ordered_checkpoint_id.get()
}
pub fn unordered_checkpoint_count(&self)->u32{
self.unordered_checkpoints.len() as u32
}
pub fn set_mode_id(&mut self,mode_id:gameplay_modes::ModeId){
self.clear();
self.mode_id=mode_id;
}
pub fn set_stage_id(&mut self,stage_id:gameplay_modes::StageId){
self.clear_checkpoints();
self.stage_id=stage_id;
}
pub fn accumulate_ordered_checkpoint(&mut self,stage:&gameplay_modes::Stage,model_id:ModelId){
if stage.is_next_ordered_checkpoint(self.get_next_ordered_checkpoint_id(),model_id){
self.next_ordered_checkpoint_id=gameplay_modes::CheckpointId::new(self.next_ordered_checkpoint_id.get()+1);
}
}
pub fn accumulate_unordered_checkpoint(&mut self,stage:&gameplay_modes::Stage,model_id:ModelId){
if stage.is_unordered_checkpoint(model_id){
self.unordered_checkpoints.insert(model_id);
}
}
pub fn clear(&mut self){
self.clear_jump_counts();
self.clear_checkpoints();
}
pub fn clear_jump_counts(&mut self){
self.jump_counts.clear();
}
pub fn clear_checkpoints(&mut self){
self.next_ordered_checkpoint_id=gameplay_modes::CheckpointId::FIRST;
self.unordered_checkpoints.clear();
}
}
impl std::default::Default for ModeState{
fn default()->Self{
Self{
mode_id:gameplay_modes::ModeId::MAIN,
stage_id:gameplay_modes::StageId::FIRST,
next_ordered_checkpoint_id:gameplay_modes::CheckpointId::FIRST,
unordered_checkpoints:HashSet::new(),
jump_counts:HashMap::new(),
}
}
}
}
#[derive(Clone,Debug)]
struct WorldState{}
struct HitboxMesh{
halfsize:Planar64Vec3,
mesh:PhysicsMesh,
transform:PhysicsMeshTransform,
}
impl HitboxMesh{
fn new(mesh:PhysicsMesh,transform:integer::Planar64Affine3)->Self{
//calculate extents
let mut aabb=aabb::Aabb::default();
let transform=PhysicsMeshTransform::new(transform);
let transformed_mesh=TransformedMesh::new(mesh.complete_mesh_view(),&transform);
for vert in transformed_mesh.verts(){
aabb.grow(vert);
}
Self{
halfsize:aabb.size()/2,
mesh,
transform,
}
}
#[inline]
const fn transformed_mesh(&self)->TransformedMesh{
TransformedMesh::new(self.mesh.complete_mesh_view(),&self.transform)
}
}
trait StyleHelper{
fn get_control(&self,control:Controls,controls:Controls)->bool;
fn get_control_dir(&self,controls:Controls)->Planar64Vec3;
fn get_y_control_dir(&self,camera:&PhysicsCamera,controls:Controls)->Planar64Vec3;
fn get_propulsion_control_dir(&self,camera:&PhysicsCamera,controls:Controls)->Planar64Vec3;
fn calculate_mesh(&self)->HitboxMesh;
}
impl StyleHelper for StyleModifiers{
fn get_control(&self,control:Controls,controls:Controls)->bool{
controls.intersection(self.controls_mask).contains(control)
}
fn get_control_dir(&self,controls:Controls)->Planar64Vec3{
//don't get fancy just do it
let mut control_dir:Planar64Vec3 = Planar64Vec3::ZERO;
//Apply mask after held check so you can require non-allowed keys to be held for some reason
let controls=controls.intersection(self.controls_mask);
if controls.contains(Controls::MoveForward){
control_dir+=Self::FORWARD_DIR;
}
if controls.contains(Controls::MoveBackward){
control_dir-=Self::FORWARD_DIR;
}
if controls.contains(Controls::MoveLeft){
control_dir-=Self::RIGHT_DIR;
}
if controls.contains(Controls::MoveRight){
control_dir+=Self::RIGHT_DIR;
}
if controls.contains(Controls::MoveUp){
control_dir+=Self::UP_DIR;
}
if controls.contains(Controls::MoveDown){
control_dir-=Self::UP_DIR;
}
return control_dir
}
fn get_y_control_dir(&self,camera:&PhysicsCamera,controls:Controls)->Planar64Vec3{
camera.rotation_y()*self.get_control_dir(controls)
}
fn get_propulsion_control_dir(&self,camera:&PhysicsCamera,controls:Controls)->Planar64Vec3{
//don't interpolate this! discrete mouse movement, constant acceleration
camera.rotation()*self.get_control_dir(controls)
}
fn calculate_mesh(&self)->HitboxMesh{
let mesh=match self.hitbox.mesh{
gameplay_style::HitboxMesh::Box=>PhysicsMesh::unit_cube(),
gameplay_style::HitboxMesh::Cylinder=>PhysicsMesh::unit_cylinder(),
};
let transform=integer::Planar64Affine3::new(Planar64Mat3::from_diagonal(self.hitbox.halfsize),Planar64Vec3::ZERO);
HitboxMesh::new(mesh,transform)
}
}
#[derive(Clone,Debug)]
enum MoveState{
Air,
Walk(ContactMoveState),
Ladder(ContactMoveState),
Water,
Fly,
}
impl MoveState{
//call this after state.move_state is changed
fn apply_enum(&self,body:&mut Body,touching:&TouchingState,models:&PhysicsModels,hitbox_mesh:&HitboxMesh,style:&StyleModifiers,camera:&PhysicsCamera,input_state:&InputState){
match self{
MoveState::Fly=>body.acceleration=Planar64Vec3::ZERO,
MoveState::Air=>{
//calculate base acceleration
let a=touching.base_acceleration(models,style,camera,input_state);
//set_acceleration clips according to contacts
set_acceleration(body,touching,models,hitbox_mesh,a);
},
_=>(),
}
}
//function to coerce &mut self into &self
fn apply_to_body(&self,body:&mut Body,touching:&TouchingState,models:&PhysicsModels,hitbox_mesh:&HitboxMesh,style:&StyleModifiers,camera:&PhysicsCamera,input_state:&InputState){
match self{
MoveState::Air=>(),
MoveState::Water=>(),
MoveState::Fly=>{
//set velocity according to current control state
let v=style.get_propulsion_control_dir(camera,input_state.controls)*80;
//set_velocity clips velocity according to current touching state
set_velocity(body,touching,models,hitbox_mesh,v);
},
MoveState::Walk(walk_state)
|MoveState::Ladder(walk_state)
=>{
//accelerate towards walk target or do nothing
let a=walk_state.target.acceleration();
set_acceleration(body,touching,models,hitbox_mesh,a);
},
}
}
/// changes the move state
fn apply_input(&mut self,body:&Body,touching:&TouchingState,models:&PhysicsModels,hitbox_mesh:&HitboxMesh,style:&StyleModifiers,camera:&PhysicsCamera,input_state:&InputState){
match self{
MoveState::Fly
|MoveState::Air
|MoveState::Water=>(),
MoveState::Walk(ContactMoveState{target,contact,jump_direction:_})=>{
if let Some(walk_settings)=&style.walk{
let (gravity,target_velocity)=ground_things(walk_settings,contact,touching,models,hitbox_mesh,style,camera,input_state);
*target=TransientAcceleration::ground(walk_settings,body,gravity,target_velocity);
}else{
panic!("ContactMoveState exists in style which does not allow walking!");
}
},
MoveState::Ladder(ContactMoveState{target,contact,jump_direction:_})=>{
if let Some(ladder_settings)=&style.ladder{
let (gravity,target_velocity)=ladder_things(ladder_settings,contact,touching,models,hitbox_mesh,style,camera,input_state);
*target=TransientAcceleration::ladder(ladder_settings,body,gravity,target_velocity);
}else{
panic!("ContactMoveState exists in style which does not allow walking!");
}
},
}
}
fn get_walk_state(&self)->Option<&ContactMoveState>{
match self{
MoveState::Walk(walk_state)
|MoveState::Ladder(walk_state)
=>Some(walk_state),
MoveState::Air
|MoveState::Water
|MoveState::Fly
=>None,
}
}
fn next_move_instruction(&self,strafe:&Option<gameplay_style::StrafeSettings>,time:Time)->Option<TimedInstruction<PhysicsInternalInstruction>>{
//check if you have a valid walk state and create an instruction
match self{
MoveState::Walk(walk_state)|MoveState::Ladder(walk_state)=>match &walk_state.target{
&TransientAcceleration::Reachable{acceleration:_,time}=>Some(TimedInstruction{
time,
instruction:PhysicsInternalInstruction::ReachWalkTargetVelocity
}),
TransientAcceleration::Unreachable{acceleration:_}
|TransientAcceleration::Reached
=>None,
}
MoveState::Air=>strafe.as_ref().map(|strafe|{
TimedInstruction{
time:strafe.next_tick(time),
//only poll the physics if there is a before and after mouse event
instruction:PhysicsInternalInstruction::StrafeTick
}
}),
MoveState::Water=>None,//TODO
MoveState::Fly=>None,
}
}
}
#[derive(Clone,Default)]
pub struct PhysicsOutputState{
body:Body,
camera:PhysicsCamera,
camera_offset:Planar64Vec3,
mouse_pos:glam::IVec2,
}
impl PhysicsOutputState{
pub fn extrapolate(&self,mouse:MouseState)->(glam::Vec3,glam::Vec2){
((self.body.extrapolated_position(mouse.time)+self.camera_offset).into(),self.camera.simulate_move_angles(mouse.pos-self.mouse_pos))
}
}
#[derive(Clone,Hash,Eq,PartialEq)]
enum PhysicsCollisionAttributes{
Contact(gameplay_attributes::ContactAttributes),
Intersect(gameplay_attributes::IntersectAttributes),
}
struct NonPhysicsError;
impl TryFrom<&gameplay_attributes::CollisionAttributes> for PhysicsCollisionAttributes{
type Error=NonPhysicsError;
fn try_from(value:&gameplay_attributes::CollisionAttributes)->Result<Self,Self::Error>{
match value{
gameplay_attributes::CollisionAttributes::Decoration=>Err(NonPhysicsError),
gameplay_attributes::CollisionAttributes::Contact(attr)=>Ok(Self::Contact(attr.clone())),
gameplay_attributes::CollisionAttributes::Intersect(attr)=>Ok(Self::Intersect(attr.clone())),
}
}
}
#[derive(Clone,Copy,Hash,id::Id,Eq,PartialEq)]
struct ContactAttributesId(u32);
impl Into<CollisionAttributesId> for ContactAttributesId{
fn into(self)->CollisionAttributesId{
CollisionAttributesId::new(self.0)
}
}
impl From<CollisionAttributesId> for ContactAttributesId{
fn from(value:CollisionAttributesId)->Self{
Self::new(value.get())
}
}
#[derive(Clone,Copy,Hash,id::Id,Eq,PartialEq)]
struct IntersectAttributesId(u32);
impl Into<CollisionAttributesId> for IntersectAttributesId{
fn into(self)->CollisionAttributesId{
CollisionAttributesId::new(self.0)
}
}
impl From<CollisionAttributesId> for IntersectAttributesId{
fn from(value:CollisionAttributesId)->Self{
Self::new(value.get())
}
}
#[derive(Debug,Clone,Copy,Hash,id::Id,Eq,PartialEq)]
struct ContactModelId(u32);
impl Into<ModelId> for ContactModelId{
fn into(self)->ModelId{
ModelId::new(self.get())
}
}
#[derive(Debug,Clone,Copy,Hash,id::Id,Eq,PartialEq)]
struct IntersectModelId(u32);
impl Into<ModelId> for IntersectModelId{
fn into(self)->ModelId{
ModelId::new(self.get())
}
}
#[derive(Debug,Clone,Copy,Hash,Eq,PartialEq)]
enum PhysicsModelId{
Contact(ContactModelId),
Intersect(IntersectModelId),
}
impl Into<ModelId> for PhysicsModelId{
fn into(self)->ModelId{
ModelId::new(match self{
PhysicsModelId::Contact(model_id)=>model_id.get(),
PhysicsModelId::Intersect(model_id)=>model_id.get(),
})
}
}
//unique physics meshes indexed by this
#[derive(Debug,Clone,Copy,Eq,Hash,PartialEq)]
struct ConvexMeshId{
model_id:PhysicsModelId,
submesh_id:PhysicsSubmeshId,
}
struct ContactModel{
mesh_id:PhysicsMeshId,
attr_id:ContactAttributesId,
transform:PhysicsMeshTransform,
}
struct IntersectModel{
mesh_id:PhysicsMeshId,
attr_id:IntersectAttributesId,
transform:PhysicsMeshTransform,
}
#[derive(Debug,Clone,Copy,Eq,Hash,PartialEq)]
struct ContactCollision{
face_id:model_physics::MinkowskiFace,
model_id:ContactModelId,
submesh_id:PhysicsSubmeshId,
}
#[derive(Debug,Clone,Copy,Eq,Hash,PartialEq)]
struct IntersectCollision{
model_id:IntersectModelId,
submesh_id:PhysicsSubmeshId,
}
#[derive(Debug,Clone,Eq,Hash,PartialEq)]
enum Collision{
Contact(ContactCollision),
Intersect(IntersectCollision),
}
impl Collision{
const fn new(convex_mesh_id:ConvexMeshId,face_id:model_physics::MinkowskiFace)->Self{
match convex_mesh_id.model_id{
PhysicsModelId::Contact(model_id)=>Collision::Contact(ContactCollision{model_id,submesh_id:convex_mesh_id.submesh_id,face_id}),
PhysicsModelId::Intersect(model_id)=>Collision::Intersect(IntersectCollision{model_id,submesh_id:convex_mesh_id.submesh_id}),
}
}
}
#[derive(Clone,Debug,Default)]
struct TouchingState{
contacts:HashSet::<ContactCollision>,
intersects:HashSet::<IntersectCollision>,
}
impl TouchingState{
fn clear(&mut self){
self.contacts.clear();
self.intersects.clear();
}
fn insert(&mut self,collision:Collision)->bool{
match collision{
Collision::Contact(collision)=>self.contacts.insert(collision),
Collision::Intersect(collision)=>self.intersects.insert(collision),
}
}
fn remove(&mut self,collision:&Collision)->bool{
match collision{
Collision::Contact(collision)=>self.contacts.remove(collision),
Collision::Intersect(collision)=>self.intersects.remove(collision),
}
}
fn base_acceleration(&self,models:&PhysicsModels,style:&StyleModifiers,camera:&PhysicsCamera,input_state:&InputState)->Planar64Vec3{
let mut a=style.gravity;
if let Some(rocket_settings)=&style.rocket{
a+=rocket_settings.acceleration(style.get_propulsion_control_dir(camera,input_state.controls));
}
//add accelerators
for contact in &self.contacts{
if let Some(accelerator)=&models.contact_attr(contact.model_id).general.accelerator{
a+=accelerator.acceleration;
}
}
for intersect in &self.intersects{
if let Some(accelerator)=&models.intersect_attr(intersect.model_id).general.accelerator{
a+=accelerator.acceleration;
}
}
//TODO: add water
a
}
fn constrain_velocity(&self,models:&PhysicsModels,hitbox_mesh:&HitboxMesh,velocity:&mut Planar64Vec3){
//TODO: trey push solve
for contact in &self.contacts{
let n=contact_normal(models,hitbox_mesh,contact);
let d=n.dot128(*velocity);
if d<0{
*velocity-=n*Planar64::raw(((d<<32)/n.dot128(n)) as i64);
}
}
}
fn constrain_acceleration(&self,models:&PhysicsModels,hitbox_mesh:&HitboxMesh,acceleration:&mut Planar64Vec3){
//TODO: trey push solve
for contact in &self.contacts{
let n=contact_normal(models,hitbox_mesh,contact);
let d=n.dot128(*acceleration);
if d<0{
*acceleration-=n*Planar64::raw(((d<<32)/n.dot128(n)) as i64);
}
}
}
fn predict_collision_end(&self,collector:&mut instruction::InstructionCollector<PhysicsInternalInstruction>,models:&PhysicsModels,hitbox_mesh:&HitboxMesh,body:&Body,time:Time){
let relative_body=VirtualBody::relative(&Body::default(),body).body(time);
for contact in &self.contacts{
//detect face slide off
let model_mesh=models.contact_mesh(contact);
let minkowski=model_physics::MinkowskiMesh::minkowski_sum(model_mesh,hitbox_mesh.transformed_mesh());
collector.collect(minkowski.predict_collision_face_out(&relative_body,collector.time(),contact.face_id).map(|(_face,time)|{
TimedInstruction{
time,
instruction:PhysicsInternalInstruction::CollisionEnd(
Collision::Contact(*contact)
),
}
}));
}
for intersect in &self.intersects{
//detect model collision in reverse
let model_mesh=models.intersect_mesh(intersect);
let minkowski=model_physics::MinkowskiMesh::minkowski_sum(model_mesh,hitbox_mesh.transformed_mesh());
collector.collect(minkowski.predict_collision_out(&relative_body,collector.time()).map(|(_face,time)|{
TimedInstruction{
time,
instruction:PhysicsInternalInstruction::CollisionEnd(
Collision::Intersect(*intersect)
),
}
}));
}
}
}
impl Body{
pub const fn new(position:Planar64Vec3,velocity:Planar64Vec3,acceleration:Planar64Vec3,time:Time)->Self{
Self{
position,
velocity,
acceleration,
time,
}
}
pub fn extrapolated_position(&self,time:Time)->Planar64Vec3{
let dt=time-self.time;
self.position+self.velocity*dt+self.acceleration*(dt*dt/2)
}
pub fn extrapolated_velocity(&self,time:Time)->Planar64Vec3{
let dt=time-self.time;
self.velocity+self.acceleration*dt
}
pub fn advance_time(&mut self,time:Time){
self.position=self.extrapolated_position(time);
self.velocity=self.extrapolated_velocity(time);
self.time=time;
}
pub fn infinity_dir(&self)->Option<Planar64Vec3>{
if self.velocity==Planar64Vec3::ZERO{
if self.acceleration==Planar64Vec3::ZERO{
None
}else{
Some(self.acceleration)
}
}else{
Some(self.velocity)
}
}
pub fn grow_aabb(&self,aabb:&mut aabb::Aabb,t0:Time,t1:Time){
aabb.grow(self.extrapolated_position(t0));
aabb.grow(self.extrapolated_position(t1));
//v+a*t==0
//goober code
if self.acceleration.x()!=Planar64::ZERO{
let t=Time::from(-self.velocity.x()/self.acceleration.x());
if t0<t&&t<t1{
aabb.grow(self.extrapolated_position(t));
}
}
if self.acceleration.y()!=Planar64::ZERO{
let t=Time::from(-self.velocity.y()/self.acceleration.y());
if t0<t&&t<t1{
aabb.grow(self.extrapolated_position(t));
}
}
if self.acceleration.z()!=Planar64::ZERO{
let t=Time::from(-self.velocity.z()/self.acceleration.z());
if t0<t&&t<t1{
aabb.grow(self.extrapolated_position(t));
}
}
}
}
impl std::fmt::Display for Body{
fn fmt(&self,f:&mut std::fmt::Formatter<'_>)->std::fmt::Result{
write!(f,"p({}) v({}) a({}) t({})",self.position,self.velocity,self.acceleration,self.time)
}
}
struct VirtualBody<'a>{
body0:&'a Body,
body1:&'a Body,
}
impl VirtualBody<'_>{
const fn relative<'a>(body0:&'a Body,body1:&'a Body)->VirtualBody<'a>{
//(p0,v0,a0,t0)
//(p1,v1,a1,t1)
VirtualBody{
body0,
body1,
}
}
fn extrapolated_position(&self,time:Time)->Planar64Vec3{
self.body1.extrapolated_position(time)-self.body0.extrapolated_position(time)
}
fn extrapolated_velocity(&self,time:Time)->Planar64Vec3{
self.body1.extrapolated_velocity(time)-self.body0.extrapolated_velocity(time)
}
fn acceleration(&self)->Planar64Vec3{
self.body1.acceleration-self.body0.acceleration
}
fn body(&self,time:Time)->Body{
Body::new(self.extrapolated_position(time),self.extrapolated_velocity(time),self.acceleration(),time)
}
}
#[derive(Clone,Debug)]
pub struct PhysicsState{
time:Time,
body:Body,
world:WorldState,//currently there is only one state the world can be in
touching:TouchingState,
//camera must exist in state because wormholes modify the camera, also camera punch
camera:PhysicsCamera,
//input_state
input_state:InputState,
//style
style:StyleModifiers,//mode style with custom style updates applied
//gameplay_state
mode_state:ModeState,
move_state:MoveState,
//run is non optional: when you spawn in a run is created
//the run cannot be finished unless you start it by visiting
//a start zone. If you change mode, a new run is created.
run:run::Run,
}
//random collection of contextual data that doesn't belong in PhysicsState
pub struct PhysicsData{
//permanent map data
bvh:bvh::BvhNode<ConvexMeshId>,
//transient map/environment data (open world loads/unloads parts of this data)
models:PhysicsModels,
//semi-transient data
modes:gameplay_modes::Modes,
//cached calculations
hitbox_mesh:HitboxMesh,
}
impl Default for PhysicsState{
fn default()->Self{
Self{
body:Body::new(Planar64Vec3::int(0,50,0),Planar64Vec3::int(0,0,0),Planar64Vec3::int(0,-100,0),Time::ZERO),
time:Time::ZERO,
style:StyleModifiers::default(),
touching:TouchingState::default(),
move_state:MoveState::Air,
camera:PhysicsCamera::default(),
input_state:InputState::default(),
world:WorldState{},
mode_state:ModeState::default(),
run:run::Run::new(),
}
}
}
impl Default for PhysicsData{
fn default()->Self{
Self{
bvh:bvh::BvhNode::default(),
models:Default::default(),
modes:Default::default(),
hitbox_mesh:StyleModifiers::default().calculate_mesh(),
}
}
}
impl PhysicsState{
fn clear(&mut self){
self.touching.clear();
}
fn reset_to_default(&mut self){
let mut new_state=Self::default();
new_state.camera.sensitivity=self.camera.sensitivity;
*self=new_state;
}
fn next_move_instruction(&self)->Option<TimedInstruction<PhysicsInternalInstruction>>{
self.move_state.next_move_instruction(&self.style.strafe,self.time)
}
//lmao idk this is convenient
fn apply_enum_and_input_and_body(&mut self,data:&PhysicsData){
self.move_state.apply_enum(&mut self.body,&self.touching,&data.models,&data.hitbox_mesh,&self.style,&self.camera,&self.input_state);
self.move_state.apply_input(&self.body,&self.touching,&data.models,&data.hitbox_mesh,&self.style,&self.camera,&self.input_state);
self.move_state.apply_to_body(&mut self.body,&self.touching,&data.models,&data.hitbox_mesh,&self.style,&self.camera,&self.input_state);
}
fn apply_enum_and_body(&mut self,data:&PhysicsData){
self.move_state.apply_enum(&mut self.body,&self.touching,&data.models,&data.hitbox_mesh,&self.style,&self.camera,&self.input_state);
self.move_state.apply_to_body(&mut self.body,&self.touching,&data.models,&data.hitbox_mesh,&self.style,&self.camera,&self.input_state);
}
fn apply_input_and_body(&mut self,data:&PhysicsData){
self.move_state.apply_input(&self.body,&self.touching,&data.models,&data.hitbox_mesh,&self.style,&self.camera,&self.input_state);
self.move_state.apply_to_body(&mut self.body,&self.touching,&data.models,&data.hitbox_mesh,&self.style,&self.camera,&self.input_state);
}
fn set_move_state(&mut self,data:&PhysicsData,move_state:MoveState){
self.move_state=move_state;
//this function call reads the above state that was just set
self.apply_enum_and_body(data);
}
fn cull_velocity(&mut self,data:&PhysicsData,velocity:Planar64Vec3){
//TODO: be more precise about contacts
if set_velocity_cull(&mut self.body,&mut self.touching,&data.models,&data.hitbox_mesh,velocity){
//TODO do better
match self.move_state.get_walk_state(){
//did you stop touching the thing you were walking on?
Some(walk_state)=>if !self.touching.contacts.contains(&walk_state.contact){
self.set_move_state(data,MoveState::Air);
},
None=>self.apply_enum_and_body(data),
}
}
}
//state mutated on collision:
//Accelerator
//stair step-up
//state mutated on instruction
//change fly acceleration (fly_sustain)
//change fly velocity
//generic event emmiters
//PlatformStandTime
//walk/swim/air/ladder sounds
//VState?
//falling under the map
// fn next_respawn_instruction(&self) -> Option<TimedInstruction<PhysicsInstruction>> {
// if self.body.position<self.world.min_y {
// return Some(TimedInstruction{
// time:self.time,
// instruction:PhysicsInstruction::Trigger(None)
// });
// }
// }
// fn next_water_instruction(&self) -> Option<TimedInstruction<PhysicsInstruction>> {
// return Some(TimedInstruction{
// time:(self.time*self.strafe_tick_num/self.strafe_tick_den+1)*self.strafe_tick_den/self.strafe_tick_num,
// //only poll the physics if there is a before and after mouse event
// instruction:PhysicsInstruction::Water
// });
// }
}
#[derive(Default)]
pub struct PhysicsContext{
state:PhysicsState,//this captures the entire state of the physics.
data:PhysicsData,//data currently loaded into memory which is needded for physics to run, but is not part of the state.
}
//the physics consumes the generic PhysicsInstruction, but can only emit the more narrow PhysicsInternalInstruction
impl instruction::InstructionConsumer<PhysicsInstruction> for PhysicsContext{
fn process_instruction(&mut self,ins:TimedInstruction<PhysicsInstruction>){
atomic_state_update(&mut self.state,&self.data,ins)
}
}
impl instruction::InstructionEmitter<PhysicsInternalInstruction> for PhysicsContext{
//this little next instruction function can cache its return value and invalidate the cached value by watching the State.
fn next_instruction(&self,time_limit:Time)->Option<TimedInstruction<PhysicsInternalInstruction>>{
next_instruction_internal(&self.state,&self.data,time_limit)
}
}
impl PhysicsContext{
pub const fn output(&self)->PhysicsOutputState{
PhysicsOutputState{
body:self.state.body,
camera:self.state.camera,
camera_offset:self.state.style.camera_offset,
mouse_pos:self.state.input_state.mouse.pos,
}
}
pub const fn get_next_mouse(&self)->&MouseState{
self.state.input_state.get_next_mouse()
}
/// use with caution, this is the only non-instruction way to mess with physics
pub fn generate_models(&mut self,map:&map::CompleteMap){
self.state.clear();
let mut modes=map.modes.clone();
for mode in &mut modes.modes{
mode.denormalize_data();
}
let mut used_contact_attributes=Vec::new();
let mut used_intersect_attributes=Vec::new();
//temporary type for type safety lol
#[derive(Clone,Copy,Hash,Eq,PartialEq)]
enum PhysicsAttributesId{
Contact(ContactAttributesId),
Intersect(IntersectAttributesId),
}
let mut contact_models=HashMap::new();
let mut intersect_models=HashMap::new();
let mut physics_attr_id_from_model_attr_id=HashMap::<CollisionAttributesId,PhysicsAttributesId>::new();
let mut used_meshes=Vec::new();
let mut physics_mesh_id_from_model_mesh_id=HashMap::<MeshId,PhysicsMeshId>::new();
for (model_id,model) in map.models.iter().enumerate(){
//TODO: use .entry().or_insert_with(||{
let attr_id=if let Some(&attr_id)=physics_attr_id_from_model_attr_id.get(&model.attributes){
attr_id
}else{
//check if it's real
match map.attributes.get(model.attributes.get() as usize).and_then(|m_attr|{
PhysicsCollisionAttributes::try_from(m_attr).map_or(None,|p_attr|{
let attr_id=match p_attr{
PhysicsCollisionAttributes::Contact(attr)=>{
let attr_id=ContactAttributesId::new(used_contact_attributes.len() as u32);
used_contact_attributes.push(attr);
PhysicsAttributesId::Contact(attr_id)
},
PhysicsCollisionAttributes::Intersect(attr)=>{
let attr_id=IntersectAttributesId::new(used_intersect_attributes.len() as u32);
used_intersect_attributes.push(attr);
PhysicsAttributesId::Intersect(attr_id)
},
};
physics_attr_id_from_model_attr_id.insert(model.attributes,attr_id);
Some(attr_id)
})
}){
Some(attr_id)=>attr_id,
None=>continue,
}
};
let mesh_id=if let Some(&mesh_id)=physics_mesh_id_from_model_mesh_id.get(&model.mesh){
mesh_id
}else{
match map.meshes.get(model.mesh.get() as usize).and_then(|mesh|{
match PhysicsMesh::try_from(mesh){
Ok(physics_mesh)=>{
let mesh_id=PhysicsMeshId::new(used_meshes.len() as u32);
used_meshes.push(physics_mesh);
physics_mesh_id_from_model_mesh_id.insert(model.mesh,mesh_id);
Some(mesh_id)
},
Err(e)=>{
println!("Failed to build PhysicsMesh: {e}");
None
}
}
}){
Some(mesh_id)=>mesh_id,
None=>continue,
}
};
let transform=PhysicsMeshTransform::new(model.transform);
match attr_id{
PhysicsAttributesId::Contact(attr_id)=>{
contact_models.insert(ContactModelId::new(model_id as u32),ContactModel{
mesh_id,
attr_id,
transform,
});
},
PhysicsAttributesId::Intersect(attr_id)=>{
intersect_models.insert(IntersectModelId::new(model_id as u32),IntersectModel{
mesh_id,
attr_id,
transform,
});
},
}
}
let meshes:HashMap<PhysicsMeshId,PhysicsMesh>=used_meshes.into_iter()
.enumerate()
.map(|(mesh_id,mesh)|
(PhysicsMeshId::new(mesh_id as u32),mesh)
).collect();
let convex_mesh_aabb_list=
//map the two lists into a single type so they can be processed with one closure
contact_models.iter().map(|(&model_id,model)|
(PhysicsModelId::Contact(model_id),&model.mesh_id,&model.transform)
).chain(intersect_models.iter().map(|(&model_id,model)|
(PhysicsModelId::Intersect(model_id),&model.mesh_id,&model.transform)
))
.flat_map(|(model_id,mesh_id,transform)|{
meshes[mesh_id].submesh_views()
.enumerate().map(move|(submesh_id,view)|{
let mut aabb=aabb::Aabb::default();
let transformed_mesh=TransformedMesh::new(view,transform);
for v in transformed_mesh.verts(){
aabb.grow(v);
}
(ConvexMeshId{
model_id,
submesh_id:PhysicsSubmeshId::new(submesh_id as u32),
},aabb)
})
}).collect();
let bvh=bvh::generate_bvh(convex_mesh_aabb_list);
let model_count=contact_models.len()+intersect_models.len();
let models=PhysicsModels{
meshes,
contact_models,
intersect_models,
contact_attributes:used_contact_attributes.into_iter()
.enumerate()
.map(|(attr_id,attr)|
(ContactAttributesId::new(attr_id as u32),attr)
).collect(),
intersect_attributes:used_intersect_attributes.into_iter()
.enumerate()
.map(|(attr_id,attr)|
(IntersectAttributesId::new(attr_id as u32),attr)
).collect(),
};
self.data.bvh=bvh;
self.data.models=models;
self.data.modes=modes;
//hitbox_mesh is unchanged
println!("Physics Objects: {}",model_count);
}
//tickless gaming
fn run_internal_exhaustive(&mut self,time_limit:Time){
//prepare is ommitted - everything is done via instructions.
while let Some(instruction)=self.next_instruction(time_limit){//collect
//process
self.process_instruction(TimedInstruction{
time:instruction.time,
instruction:PhysicsInstruction::Internal(instruction.instruction),
});
//write hash lol
}
}
pub fn run_input_instruction(&mut self,instruction:TimedInstruction<PhysicsInputInstruction>){
self.run_internal_exhaustive(instruction.time);
self.process_instruction(TimedInstruction{
time:instruction.time,
instruction:PhysicsInstruction::Input(instruction.instruction),
});
}
}
//this is the one who asks
fn next_instruction_internal(state:&PhysicsState,data:&PhysicsData,time_limit:Time)->Option<TimedInstruction<PhysicsInternalInstruction>>{
//JUST POLLING!!! NO MUTATION
let mut collector = instruction::InstructionCollector::new(time_limit);
collector.collect(state.next_move_instruction());
//check for collision ends
state.touching.predict_collision_end(&mut collector,&data.models,&data.hitbox_mesh,&state.body,state.time);
//check for collision starts
let mut aabb=aabb::Aabb::default();
state.body.grow_aabb(&mut aabb,state.time,collector.time());
aabb.inflate(data.hitbox_mesh.halfsize);
//relative to moving platforms
//let relative_body=&VirtualBody::relative(&Body::default(),&state.body).body(state.time);
let relative_body=&state.body;
data.bvh.the_tester(&aabb,&mut |&convex_mesh_id|{
//no checks are needed because of the time limits.
let model_mesh=data.models.mesh(convex_mesh_id);
let minkowski=model_physics::MinkowskiMesh::minkowski_sum(model_mesh,data.hitbox_mesh.transformed_mesh());
collector.collect(minkowski.predict_collision_in(relative_body,collector.time())
//temp (?) code to avoid collision loops
.map_or(None,|(face,time)|if time<=state.time{None}else{Some((face,time))})
.map(|(face,time)|
TimedInstruction{
time,
instruction:PhysicsInternalInstruction::CollisionStart(
Collision::new(convex_mesh_id,face)
)
}
)
);
});
collector.instruction()
}
fn contact_normal(models:&PhysicsModels,hitbox_mesh:&HitboxMesh,contact:&ContactCollision)->Planar64Vec3{
let model_mesh=models.contact_mesh(contact);
let minkowski=model_physics::MinkowskiMesh::minkowski_sum(model_mesh,hitbox_mesh.transformed_mesh());
minkowski.face_nd(contact.face_id).0
}
fn set_position(body:&mut Body,touching:&mut TouchingState,point:Planar64Vec3)->Planar64Vec3{
//test intersections at new position
//hovering above the surface 0 units is not intersecting. you will fall into it just fine
body.position=point;
//manual clear //for c in contacts{process_instruction(CollisionEnd(c))}
touching.clear();
//TODO: calculate contacts and determine the actual state
//touching.recalculate(body);
point
}
fn set_velocity_cull(body:&mut Body,touching:&mut TouchingState,models:&PhysicsModels,hitbox_mesh:&HitboxMesh,v:Planar64Vec3)->bool{
//This is not correct but is better than what I have
let mut culled=false;
touching.contacts.retain(|contact|{
let n=contact_normal(models,hitbox_mesh,contact);
let r=n.dot(v)<=Planar64::ZERO;
if !r{
culled=true;
println!("set_velocity_cull contact={:?}",contact);
}
r
});
set_velocity(body,touching,models,hitbox_mesh,v);
culled
}
fn set_velocity(body:&mut Body,touching:&TouchingState,models:&PhysicsModels,hitbox_mesh:&HitboxMesh,mut v:Planar64Vec3){
touching.constrain_velocity(models,hitbox_mesh,&mut v);
body.velocity=v;
}
fn set_acceleration_cull(body:&mut Body,touching:&mut TouchingState,models:&PhysicsModels,hitbox_mesh:&HitboxMesh,a:Planar64Vec3)->bool{
//This is not correct but is better than what I have
let mut culled=false;
touching.contacts.retain(|contact|{
let n=contact_normal(models,hitbox_mesh,contact);
let r=n.dot(a)<=Planar64::ZERO;
if !r{
culled=true;
println!("set_acceleration_cull contact={:?}",contact);
}
r
});
set_acceleration(body,touching,models,hitbox_mesh,a);
culled
}
fn set_acceleration(body:&mut Body,touching:&TouchingState,models:&PhysicsModels,hitbox_mesh:&HitboxMesh,mut a:Planar64Vec3){
touching.constrain_acceleration(models,hitbox_mesh,&mut a);
body.acceleration=a;
}
fn teleport(body:&mut Body,touching:&mut TouchingState,models:&PhysicsModels,style:&StyleModifiers,hitbox_mesh:&HitboxMesh,point:Planar64Vec3)->MoveState{
set_position(body,touching,point);
set_acceleration(body,touching,models,hitbox_mesh,style.gravity);
MoveState::Air
}
fn teleport_to_spawn(body:&mut Body,touching:&mut TouchingState,style:&StyleModifiers,hitbox_mesh:&HitboxMesh,mode:&gameplay_modes::Mode,models:&PhysicsModels,stage_id:gameplay_modes::StageId)->Option<MoveState>{
let transform=models.get_model_transform(mode.get_spawn_model_id(stage_id)?)?;
let point=transform.vertex.transform_point3(Planar64Vec3::Y)+Planar64Vec3::Y*(style.hitbox.halfsize.y()+Planar64::ONE/16);
Some(teleport(body,touching,models,style,hitbox_mesh,point))
}
fn run_teleport_behaviour(
wormhole:&Option<gameplay_attributes::Wormhole>,
models:&PhysicsModels,
mode:&gameplay_modes::Mode,
style:&StyleModifiers,
hitbox_mesh:&HitboxMesh,
mode_state:&mut ModeState,
touching:&mut TouchingState,
body:&mut Body,
model_id:ModelId,
)->Option<MoveState>{
//TODO: jump count and checkpoints are always reset on teleport.
//Map makers are expected to use tools to prevent
//multi-boosting on JumpLimit boosters such as spawning into a SetVelocity
if let Some(stage_element)=mode.get_element(model_id){
if let Some(stage)=mode.get_stage(stage_element.stage_id()){
if mode_state.get_stage_id()<stage_element.stage_id(){
//checkpoint check
//check if current stage is complete
if let Some(current_stage)=mode.get_stage(mode_state.get_stage_id()){
if !current_stage.is_complete(mode_state.ordered_checkpoint_count(),mode_state.unordered_checkpoint_count()){
//do the stage checkpoints have to be reset?
return teleport_to_spawn(body,touching,style,hitbox_mesh,mode,models,mode_state.get_stage_id());
}
}
//check if all between stages have no checkpoints required to pass them
for stage_id in mode_state.get_stage_id().get()+1..stage_element.stage_id().get(){
let stage_id=StageId::new(stage_id);
//check if none of the between stages has checkpoints, if they do teleport back to that stage
if !mode.get_stage(stage_id)?.is_empty(){
mode_state.set_stage_id(stage_id);
return teleport_to_spawn(body,touching,style,hitbox_mesh,mode,models,stage_id);
}
}
//notably you do not get teleported for touching ordered checkpoints in the wrong order within the same stage.
mode_state.set_stage_id(stage_element.stage_id());
}else if stage_element.force(){
//forced stage_element will set the stage_id even if the stage has already been passed
mode_state.set_stage_id(stage_element.stage_id());
}
match stage_element.behaviour(){
gameplay_modes::StageElementBehaviour::SpawnAt=>(),
gameplay_modes::StageElementBehaviour::Trigger
|gameplay_modes::StageElementBehaviour::Teleport=>{
//I guess this is correct behaviour when trying to teleport to a non-existent spawn but it's still weird
return teleport_to_spawn(body,touching,style,hitbox_mesh,mode,models,mode_state.get_stage_id());
},
gameplay_modes::StageElementBehaviour::Platform=>(),
gameplay_modes::StageElementBehaviour::Check=>(),//this is to run the checkpoint check behaviour without any other side effects
gameplay_modes::StageElementBehaviour::Checkpoint=>{
//each of these checks if the model is actually a valid respective checkpoint object
//accumulate sequential ordered checkpoints
mode_state.accumulate_ordered_checkpoint(&stage,model_id);
//insert model id in accumulated unordered checkpoints
mode_state.accumulate_unordered_checkpoint(&stage,model_id);
},
}
}
}
match wormhole{
&Some(gameplay_attributes::Wormhole{destination_model})=>{
let origin=models.get_model_transform(model_id)?;
let destination=models.get_model_transform(destination_model)?;
//ignore the transform for now
Some(teleport(body,touching,models,style,hitbox_mesh,body.position-origin.vertex.translation+destination.vertex.translation))
}
None=>None,
}
}
fn collision_start_contact(
state:&mut PhysicsState,
data:&PhysicsData,
attr:&gameplay_attributes::ContactAttributes,
contact:ContactCollision,
){
let incident_velocity=state.body.velocity;
//add to touching
state.touching.insert(Collision::Contact(contact));
//clip v
set_velocity(&mut state.body,&state.touching,&data.models,&data.hitbox_mesh,incident_velocity);
match &attr.contacting.contact_behaviour{
Some(gameplay_attributes::ContactingBehaviour::Surf)=>println!("I'm surfing!"),
Some(gameplay_attributes::ContactingBehaviour::Cling)=>println!("Unimplemented!"),
&Some(gameplay_attributes::ContactingBehaviour::Elastic(elasticity))=>{
let reflected_velocity=state.body.velocity+(state.body.velocity-incident_velocity)*Planar64::raw(elasticity as i64+1);
set_velocity(&mut state.body,&state.touching,&data.models,&data.hitbox_mesh,reflected_velocity);
},
Some(gameplay_attributes::ContactingBehaviour::Ladder(contacting_ladder))=>
if let Some(ladder_settings)=&state.style.ladder{
if contacting_ladder.sticky{
//kill v
//actually you could do this with a booster attribute :thinking:
//it's a little bit different because maybe you want to chain ladders together
set_velocity(&mut state.body,&state.touching,&data.models,&data.hitbox_mesh,Planar64Vec3::ZERO);//model.velocity
}
//ladder walkstate
let (gravity,target_velocity)=ladder_things(ladder_settings,&contact,&state.touching,&data.models,&data.hitbox_mesh,&state.style,&state.camera,&state.input_state);
let walk_state=ContactMoveState::ladder(ladder_settings,&state.body,gravity,target_velocity,contact);
state.set_move_state(data,MoveState::Ladder(walk_state));
},
Some(gameplay_attributes::ContactingBehaviour::NoJump)=>todo!("nyi"),
None=>if let Some(walk_settings)=&state.style.walk{
if walk_settings.is_slope_walkable(contact_normal(&data.models,&data.hitbox_mesh,&contact),Planar64Vec3::Y){
//ground
let (gravity,target_velocity)=ground_things(walk_settings,&contact,&state.touching,&data.models,&data.hitbox_mesh,&state.style,&state.camera,&state.input_state);
let walk_state=ContactMoveState::ground(walk_settings,&state.body,gravity,target_velocity,contact);
state.set_move_state(data,MoveState::Walk(walk_state));
}
},
}
//I love making functions with 10 arguments to dodge the borrow checker
if let Some(mode)=data.modes.get_mode(state.mode_state.get_mode_id()){
run_teleport_behaviour(&attr.general.wormhole,&data.models,mode,&state.style,&data.hitbox_mesh,&mut state.mode_state,&mut state.touching,&mut state.body,contact.model_id.into());
}
if state.style.get_control(Controls::Jump,state.input_state.controls){
if let (Some(jump_settings),Some(walk_state))=(&state.style.jump,state.move_state.get_walk_state()){
let jump_dir=walk_state.jump_direction.direction(&data.models,&data.hitbox_mesh,&walk_state.contact);
let jumped_velocity=jump_settings.jumped_velocity(&state.style,jump_dir,state.body.velocity,attr.general.booster.as_ref());
state.cull_velocity(data,jumped_velocity);
}
}
match &attr.general.trajectory{
Some(trajectory)=>{
match trajectory{
gameplay_attributes::SetTrajectory::AirTime(_)=>todo!(),
gameplay_attributes::SetTrajectory::Height(_)=>todo!(),
gameplay_attributes::SetTrajectory::TargetPointTime { target_point: _, time: _ }=>todo!(),
gameplay_attributes::SetTrajectory::TargetPointSpeed { target_point: _, speed: _, trajectory_choice: _ }=>todo!(),
&gameplay_attributes::SetTrajectory::Velocity(velocity)=>{
state.cull_velocity(data,velocity);
},
gameplay_attributes::SetTrajectory::DotVelocity { direction: _, dot: _ }=>todo!(),
}
},
None=>(),
}
//doing enum to set the acceleration when surfing
//doing input_and_body to refresh the walk state if you hit a wall while accelerating
state.apply_enum_and_input_and_body(data);
}
fn collision_start_intersect(
state:&mut PhysicsState,
data:&PhysicsData,
attr:&gameplay_attributes::IntersectAttributes,
intersect:IntersectCollision,
){
//I think that setting the velocity to 0 was preventing surface contacts from entering an infinite loop
state.touching.insert(Collision::Intersect(intersect));
//insta booster!
if let Some(booster)=&attr.general.booster{
state.cull_velocity(data,booster.boost(state.body.velocity));
}
if let Some(mode)=data.modes.get_mode(state.mode_state.get_mode_id()){
let zone=mode.get_zone(intersect.model_id.into());
match zone{
Some(gameplay_modes::Zone::Start)=>{
println!("@@@@ Starting new run!");
state.run=run::Run::new();
},
Some(gameplay_modes::Zone::Finish)=>{
match state.run.finish(state.time){
Ok(())=>println!("@@@@ Finished run time={}",state.run.time(state.time)),
Err(e)=>println!("@@@@ Run Finish error:{e:?}"),
}
},
Some(gameplay_modes::Zone::Anticheat)=>state.run.flag(run::FlagReason::Anticheat),
None=>(),
}
run_teleport_behaviour(&attr.general.wormhole,&data.models,mode,&state.style,&data.hitbox_mesh,&mut state.mode_state,&mut state.touching,&mut state.body,intersect.model_id.into());
}
}
fn collision_end_contact(
state:&mut PhysicsState,
data:&PhysicsData,
_attr:&gameplay_attributes::ContactAttributes,
contact:ContactCollision,
){
state.touching.remove(&Collision::Contact(contact));//remove contact before calling contact_constrain_acceleration
//check ground
//TODO do better
//this is inner code from state.cull_velocity
match state.move_state.get_walk_state(){
//did you stop touching the thing you were walking on?
Some(walk_state)=>if walk_state.contact==contact{
state.set_move_state(data,MoveState::Air);
},
None=>state.apply_enum_and_body(data),
}
}
fn collision_end_intersect(
state:&mut PhysicsState,
data:&PhysicsData,
_attr:&gameplay_attributes::IntersectAttributes,
intersect:IntersectCollision,
){
state.touching.remove(&Collision::Intersect(intersect));
if let Some(mode)=data.modes.get_mode(state.mode_state.get_mode_id()){
let zone=mode.get_zone(intersect.model_id.into());
match zone{
Some(gameplay_modes::Zone::Start)=>{
match state.run.start(state.time){
Ok(())=>println!("@@@@ Started run"),
Err(e)=>println!("@@@@ Run Start error:{e:?}"),
}
},
_=>(),
}
}
}
fn atomic_internal_instruction(state:&mut PhysicsState,data:&PhysicsData,ins:TimedInstruction<PhysicsInternalInstruction>){
state.time=ins.time;
let should_advance_body=match ins.instruction{
PhysicsInternalInstruction::CollisionStart(_)
|PhysicsInternalInstruction::CollisionEnd(_)
|PhysicsInternalInstruction::StrafeTick
|PhysicsInternalInstruction::ReachWalkTargetVelocity=>true,
};
if should_advance_body{
state.body.advance_time(state.time);
}
match ins.instruction{
PhysicsInternalInstruction::CollisionStart(collision)=>match collision{
Collision::Contact(contact)=>collision_start_contact(state,data,data.models.contact_attr(contact.model_id),contact),
Collision::Intersect(intersect)=>collision_start_intersect(state,data,data.models.intersect_attr(intersect.model_id),intersect),
},
PhysicsInternalInstruction::CollisionEnd(collision)=>match collision{
Collision::Contact(contact)=>collision_end_contact(state,data,data.models.contact_attr(contact.model_id),contact),
Collision::Intersect(intersect)=>collision_end_intersect(state,data,data.models.intersect_attr(intersect.model_id),intersect),
},
PhysicsInternalInstruction::StrafeTick=>{
//TODO make this less huge
if let Some(strafe_settings)=&state.style.strafe{
let controls=state.input_state.controls;
if strafe_settings.activates(controls){
let masked_controls=strafe_settings.mask(controls);
let control_dir=state.style.get_control_dir(masked_controls);
if control_dir!=Planar64Vec3::ZERO{
let camera_mat=state.camera.simulate_move_rotation_y(state.input_state.lerp_delta(state.time).x);
if let Some(ticked_velocity)=strafe_settings.tick_velocity(state.body.velocity,(camera_mat*control_dir).with_length(Planar64::ONE)){
//this is wrong but will work ig
//need to note which push planes activate in push solve and keep those
state.cull_velocity(data,ticked_velocity);
}
}
}
}
}
PhysicsInternalInstruction::ReachWalkTargetVelocity=>{
match &mut state.move_state{
MoveState::Air
|MoveState::Water
|MoveState::Fly
=>println!("ReachWalkTargetVelocity fired for non-walking MoveState"),
MoveState::Walk(walk_state)|MoveState::Ladder(walk_state)=>{
match &walk_state.target{
//you are not supposed to reach a walk target which is already reached!
TransientAcceleration::Reached=>unreachable!(),
TransientAcceleration::Reachable{acceleration:_,time:_}=>{
//velocity is already handled by advance_time
//we know that the acceleration is precisely zero because the walk target is known to be reachable
//which means that gravity can be fully cancelled
//ignore moving platforms for now
set_acceleration(&mut state.body,&state.touching,&data.models,&data.hitbox_mesh,Planar64Vec3::ZERO);
walk_state.target=TransientAcceleration::Reached;
},
//you are not supposed to reach an unreachable walk target!
TransientAcceleration::Unreachable{acceleration:_}=>unreachable!(),
}
}
}
},
}
}
fn atomic_input_instruction(state:&mut PhysicsState,data:&PhysicsData,ins:TimedInstruction<PhysicsInputInstruction>){
state.time=ins.time;
let should_advance_body=match ins.instruction{
//the body may as well be a quantum wave function
//as far as these instruction are concerned (they don't care where it is)
PhysicsInputInstruction::SetSensitivity(..)
|PhysicsInputInstruction::Reset
|PhysicsInputInstruction::Restart
|PhysicsInputInstruction::Spawn(..)
|PhysicsInputInstruction::SetZoom(..)
|PhysicsInputInstruction::Idle=>false,
//these controls only update the body if you are on the ground
PhysicsInputInstruction::SetNextMouse(..)
|PhysicsInputInstruction::ReplaceMouse(..)
|PhysicsInputInstruction::SetMoveForward(..)
|PhysicsInputInstruction::SetMoveLeft(..)
|PhysicsInputInstruction::SetMoveBack(..)
|PhysicsInputInstruction::SetMoveRight(..)
|PhysicsInputInstruction::SetMoveUp(..)
|PhysicsInputInstruction::SetMoveDown(..)
|PhysicsInputInstruction::SetJump(..)=>{
match &state.move_state{
MoveState::Fly
|MoveState::Water
|MoveState::Walk(_)
|MoveState::Ladder(_)=>true,
MoveState::Air=>false,
}
},
//the body must be updated unconditionally
PhysicsInputInstruction::PracticeFly=>true,
};
if should_advance_body{
state.body.advance_time(state.time);
}
//TODO: UNTAB
let mut b_refresh_walk_target=true;
match ins.instruction{
PhysicsInputInstruction::SetSensitivity(sensitivity)=>state.camera.sensitivity=sensitivity,
PhysicsInputInstruction::SetNextMouse(m)=>{
state.camera.move_mouse(state.input_state.mouse_delta());
state.input_state.set_next_mouse(m);
},
PhysicsInputInstruction::ReplaceMouse(m0,m1)=>{
state.camera.move_mouse(m0.pos-state.input_state.mouse.pos);
state.input_state.replace_mouse(m0,m1);
},
PhysicsInputInstruction::SetMoveForward(s)=>state.input_state.set_control(Controls::MoveForward,s),
PhysicsInputInstruction::SetMoveLeft(s)=>state.input_state.set_control(Controls::MoveLeft,s),
PhysicsInputInstruction::SetMoveBack(s)=>state.input_state.set_control(Controls::MoveBackward,s),
PhysicsInputInstruction::SetMoveRight(s)=>state.input_state.set_control(Controls::MoveRight,s),
PhysicsInputInstruction::SetMoveUp(s)=>state.input_state.set_control(Controls::MoveUp,s),
PhysicsInputInstruction::SetMoveDown(s)=>state.input_state.set_control(Controls::MoveDown,s),
PhysicsInputInstruction::SetJump(s)=>{
state.input_state.set_control(Controls::Jump,s);
if let Some(walk_state)=state.move_state.get_walk_state(){
if let Some(jump_settings)=&state.style.jump{
let jump_dir=walk_state.jump_direction.direction(&data.models,&data.hitbox_mesh,&walk_state.contact);
let booster_option=data.models.contact_attr(walk_state.contact.model_id).general.booster.as_ref();
let jumped_velocity=jump_settings.jumped_velocity(&state.style,jump_dir,state.body.velocity,booster_option);
state.cull_velocity(&data,jumped_velocity);
}
}
b_refresh_walk_target=false;
},
PhysicsInputInstruction::SetZoom(s)=>{
state.input_state.set_control(Controls::Zoom,s);
b_refresh_walk_target=false;
},
PhysicsInputInstruction::Reset=>{
//totally reset physics state
state.reset_to_default();
b_refresh_walk_target=false;
},
PhysicsInputInstruction::Restart=>{
//teleport to start zone
let spawn_point=data.modes.get_mode(state.mode_state.get_mode_id()).and_then(|mode|
//TODO: spawn at the bottom of the start zone plus the hitbox size
//TODO: set camera andles to face the same way as the start zone
data.models.get_model_transform(mode.get_start().into()).map(|transform|
transform.vertex.translation
)
).unwrap_or(Planar64Vec3::ZERO);
set_position(&mut state.body,&mut state.touching,spawn_point);
set_velocity(&mut state.body,&state.touching,&data.models,&data.hitbox_mesh,Planar64Vec3::ZERO);
state.set_move_state(data,MoveState::Air);
b_refresh_walk_target=false;
}
PhysicsInputInstruction::Spawn(mode_id,stage_id)=>{
//spawn at a particular stage
if let Some(mode)=data.modes.get_mode(mode_id){
teleport_to_spawn(&mut state.body,&mut state.touching,&state.style,&data.hitbox_mesh,mode,&data.models,stage_id);
}
b_refresh_walk_target=false;
},
PhysicsInputInstruction::PracticeFly=>{
match &state.move_state{
MoveState::Fly=>{
state.set_move_state(data,MoveState::Air);
},
_=>{
state.set_move_state(data,MoveState::Fly);
},
}
b_refresh_walk_target=false;
},
PhysicsInputInstruction::Idle=>{
//literally idle!
b_refresh_walk_target=false;
},
}
if b_refresh_walk_target{
state.apply_input_and_body(data);
state.cull_velocity(data,state.body.velocity);
}
}
fn atomic_state_update(state:&mut PhysicsState,data:&PhysicsData,ins:TimedInstruction<PhysicsInstruction>){
match &ins.instruction{
PhysicsInstruction::Input(PhysicsInputInstruction::Idle)
|PhysicsInstruction::Input(PhysicsInputInstruction::SetNextMouse(_))
|PhysicsInstruction::Input(PhysicsInputInstruction::ReplaceMouse(_,_))
|PhysicsInstruction::Internal(PhysicsInternalInstruction::StrafeTick)
|PhysicsInstruction::Internal(PhysicsInternalInstruction::ReachWalkTargetVelocity)=>(),
_=>println!("{}|{:?}",ins.time,ins.instruction),
}
if ins.time<state.time{
println!("@@@@ Time travel warning! {:?}",ins);
}
//idle is special, it is specifically a no-op to get Internal events to catch up to real time
match ins.instruction{
PhysicsInstruction::Input(PhysicsInputInstruction::Idle)=>(),
PhysicsInstruction::Internal(instruction)=>atomic_internal_instruction(state,data,TimedInstruction{time:ins.time,instruction}),
PhysicsInstruction::Input(instruction)=>atomic_input_instruction(state,data,TimedInstruction{time:ins.time,instruction}),
}
}
#[cfg(test)]
mod test{
use super::*;
fn test_collision_axis_aligned(relative_body:Body,expected_collision_time:Option<Time>){
let h0=HitboxMesh::new(PhysicsMesh::unit_cube(),integer::Planar64Affine3::new(Planar64Mat3::from_diagonal(Planar64Vec3::int(5,1,5)/2),Planar64Vec3::ZERO));
let h1=StyleModifiers::roblox_bhop().calculate_mesh();
let hitbox_mesh=h1.transformed_mesh();
let platform_mesh=h0.transformed_mesh();
let minkowski=model_physics::MinkowskiMesh::minkowski_sum(platform_mesh,hitbox_mesh);
let collision=minkowski.predict_collision_in(&relative_body,Time::MAX);
assert_eq!(collision.map(|tup|tup.1),expected_collision_time,"Incorrect time of collision");
}
fn test_collision_rotated(relative_body:Body,expected_collision_time:Option<Time>){
let h0=HitboxMesh::new(PhysicsMesh::unit_cube(),
integer::Planar64Affine3::new(
integer::Planar64Mat3::from_cols(
Planar64Vec3::int(5,0,1)/2,
Planar64Vec3::int(0,1,0)/2,
Planar64Vec3::int(-1,0,5)/2,
),
Planar64Vec3::ZERO,
)
);
let h1=StyleModifiers::roblox_bhop().calculate_mesh();
let hitbox_mesh=h1.transformed_mesh();
let platform_mesh=h0.transformed_mesh();
let minkowski=model_physics::MinkowskiMesh::minkowski_sum(platform_mesh,hitbox_mesh);
let collision=minkowski.predict_collision_in(&relative_body,Time::MAX);
assert_eq!(collision.map(|tup|tup.1),expected_collision_time,"Incorrect time of collision");
}
fn test_collision(relative_body:Body,expected_collision_time:Option<Time>){
test_collision_axis_aligned(relative_body.clone(),expected_collision_time);
test_collision_rotated(relative_body,expected_collision_time);
}
#[test]
fn test_collision_degenerate(){
test_collision(Body::new(
Planar64Vec3::int(0,5,0),
Planar64Vec3::int(0,-1,0),
Planar64Vec3::ZERO,
Time::ZERO
),Some(Time::from_secs(2)));
}
#[test]
fn test_collision_degenerate_east(){
test_collision(Body::new(
Planar64Vec3::int(3,5,0),
Planar64Vec3::int(0,-1,0),
Planar64Vec3::ZERO,
Time::ZERO
),Some(Time::from_secs(2)));
}
#[test]
fn test_collision_degenerate_south(){
test_collision(Body::new(
Planar64Vec3::int(0,5,3),
Planar64Vec3::int(0,-1,0),
Planar64Vec3::ZERO,
Time::ZERO
),Some(Time::from_secs(2)));
}
#[test]
fn test_collision_degenerate_west(){
test_collision(Body::new(
Planar64Vec3::int(-3,5,0),
Planar64Vec3::int(0,-1,0),
Planar64Vec3::ZERO,
Time::ZERO
),Some(Time::from_secs(2)));
}
#[test]
fn test_collision_degenerate_north(){
test_collision(Body::new(
Planar64Vec3::int(0,5,-3),
Planar64Vec3::int(0,-1,0),
Planar64Vec3::ZERO,
Time::ZERO
),Some(Time::from_secs(2)));
}
#[test]
fn test_collision_parabola_edge_east_from_west(){
test_collision(VirtualBody::relative(&Body::default(),&Body::new(
Planar64Vec3::int(3,3,0),
Planar64Vec3::int(100,-1,0),
Planar64Vec3::int(0,-1,0),
Time::ZERO
)).body(Time::from_secs(-1)),Some(Time::from_secs(0)));
}
#[test]
fn test_collision_parabola_edge_south_from_north(){
test_collision(VirtualBody::relative(&Body::default(),&Body::new(
Planar64Vec3::int(0,3,3),
Planar64Vec3::int(0,-1,100),
Planar64Vec3::int(0,-1,0),
Time::ZERO
)).body(Time::from_secs(-1)),Some(Time::from_secs(0)));
}
#[test]
fn test_collision_parabola_edge_west_from_east(){
test_collision(VirtualBody::relative(&Body::default(),&Body::new(
Planar64Vec3::int(-3,3,0),
Planar64Vec3::int(-100,-1,0),
Planar64Vec3::int(0,-1,0),
Time::ZERO
)).body(Time::from_secs(-1)),Some(Time::from_secs(0)));
}
#[test]
fn test_collision_parabola_edge_north_from_south(){
test_collision(VirtualBody::relative(&Body::default(),&Body::new(
Planar64Vec3::int(0,3,-3),
Planar64Vec3::int(0,-1,-100),
Planar64Vec3::int(0,-1,0),
Time::ZERO
)).body(Time::from_secs(-1)),Some(Time::from_secs(0)));
}
#[test]
fn test_collision_parabola_edge_north_from_ne(){
test_collision(VirtualBody::relative(&Body::default(),&Body::new(
Planar64Vec3::int(0,6,-7)/2,
Planar64Vec3::int(-10,-1,1),
Planar64Vec3::int(0,-1,0),
Time::ZERO
)).body(Time::from_secs(-1)),Some(Time::from_secs(0)));
}
#[test]
fn test_collision_parabola_edge_north_from_nw(){
test_collision(VirtualBody::relative(&Body::default(),&Body::new(
Planar64Vec3::int(0,6,-7)/2,
Planar64Vec3::int(10,-1,1),
Planar64Vec3::int(0,-1,0),
Time::ZERO
)).body(Time::from_secs(-1)),Some(Time::from_secs(0)));
}
#[test]
fn test_collision_parabola_edge_east_from_se(){
test_collision(VirtualBody::relative(&Body::default(),&Body::new(
Planar64Vec3::int(7,6,0)/2,
Planar64Vec3::int(-1,-1,-10),
Planar64Vec3::int(0,-1,0),
Time::ZERO
)).body(Time::from_secs(-1)),Some(Time::from_secs(0)));
}
#[test]
fn test_collision_parabola_edge_east_from_ne(){
test_collision(VirtualBody::relative(&Body::default(),&Body::new(
Planar64Vec3::int(7,6,0)/2,
Planar64Vec3::int(-1,-1,10),
Planar64Vec3::int(0,-1,0),
Time::ZERO
)).body(Time::from_secs(-1)),Some(Time::from_secs(0)));
}
#[test]
fn test_collision_parabola_edge_south_from_se(){
test_collision(VirtualBody::relative(&Body::default(),&Body::new(
Planar64Vec3::int(0,6,7)/2,
Planar64Vec3::int(-10,-1,-1),
Planar64Vec3::int(0,-1,0),
Time::ZERO
)).body(Time::from_secs(-1)),Some(Time::from_secs(0)));
}
#[test]
fn test_collision_parabola_edge_south_from_sw(){
test_collision(VirtualBody::relative(&Body::default(),&Body::new(
Planar64Vec3::int(0,6,7)/2,
Planar64Vec3::int(10,-1,-1),
Planar64Vec3::int(0,-1,0),
Time::ZERO
)).body(Time::from_secs(-1)),Some(Time::from_secs(0)));
}
#[test]
fn test_collision_parabola_edge_west_from_se(){
test_collision(VirtualBody::relative(&Body::default(),&Body::new(
Planar64Vec3::int(-7,6,0)/2,
Planar64Vec3::int(1,-1,-10),
Planar64Vec3::int(0,-1,0),
Time::ZERO
)).body(Time::from_secs(-1)),Some(Time::from_secs(0)));
}
#[test]
fn test_collision_parabola_edge_west_from_ne(){
test_collision(VirtualBody::relative(&Body::default(),&Body::new(
Planar64Vec3::int(-7,6,0)/2,
Planar64Vec3::int(1,-1,10),
Planar64Vec3::int(0,-1,0),
Time::ZERO
)).body(Time::from_secs(-1)),Some(Time::from_secs(0)));
}
#[test]
fn test_collision_oblique(){
test_collision(Body::new(
Planar64Vec3::int(0,5,0),
Planar64Vec3::int(1,-64,2)/64,
Planar64Vec3::ZERO,
Time::ZERO
),Some(Time::from_secs(2)));
}
#[test]
fn zoom_hit_nothing(){
test_collision(Body::new(
Planar64Vec3::int(0,10,0),
Planar64Vec3::int(1,0,0),
Planar64Vec3::int(0,1,0),
Time::ZERO
),None);
}
#[test]
fn already_inside_hit_nothing(){
test_collision(Body::new(
Planar64Vec3::ZERO,
Planar64Vec3::int(1,0,0),
Planar64Vec3::int(0,1,0),
Time::ZERO
),None);
}
}