135 lines
5.6 KiB
Rust
135 lines
5.6 KiB
Rust
use crate::model_physics::{GigaTime,FEV,MeshQuery,DirectedEdge};
|
|
use strafesnet_common::integer::{Fixed,Ratio,vec3::Vector3};
|
|
use crate::physics::{Time,Body};
|
|
|
|
enum Transition<M:MeshQuery>{
|
|
Miss,
|
|
Next(FEV<M>,GigaTime),
|
|
Hit(M::Face,GigaTime),
|
|
}
|
|
|
|
pub enum CrawlResult<M:MeshQuery>{
|
|
Miss(FEV<M>),
|
|
Hit(M::Face,GigaTime),
|
|
}
|
|
|
|
impl<F:Copy,M:MeshQuery<Normal=Vector3<F>,Offset=Fixed<4,128>>> FEV<M>
|
|
where
|
|
// This is hardcoded for MinkowskiMesh lol
|
|
M::Face:Copy,
|
|
M::Edge:Copy,
|
|
M::Vert:Copy,
|
|
F:core::ops::Mul<Fixed<1,32>,Output=Fixed<4,128>>,
|
|
<F as core::ops::Mul<Fixed<1,32>>>::Output:core::iter::Sum,
|
|
<M as MeshQuery>::Offset:core::ops::Sub<<F as std::ops::Mul<Fixed<1,32>>>::Output>,
|
|
{
|
|
fn next_transition(&self,body_time:GigaTime,mesh:&M,body:&Body,mut best_time:GigaTime)->Transition<M>{
|
|
//conflicting derivative means it crosses in the wrong direction.
|
|
//if the transition time is equal to an already tested transition, do not replace the current best.
|
|
let mut best_transition=Transition::Miss;
|
|
match self{
|
|
&FEV::Face(face_id)=>{
|
|
//test own face collision time, ignoring roots with zero or conflicting derivative
|
|
//n=face.normal d=face.dot
|
|
//n.a t^2+n.v t+n.p-d==0
|
|
let (n,d)=mesh.face_nd(face_id);
|
|
//TODO: use higher precision d value?
|
|
//use the mesh transform translation instead of baking it into the d value.
|
|
for dt in Fixed::<4,128>::zeroes2((n.dot(body.position)-d)*2,n.dot(body.velocity)*2,n.dot(body.acceleration)){
|
|
if body_time.le_ratio(dt)&&dt.lt_ratio(best_time)&&n.dot(body.extrapolated_velocity_ratio_dt(dt)).is_negative(){
|
|
best_time=dt;
|
|
best_transition=Transition::Hit(face_id,dt);
|
|
break;
|
|
}
|
|
}
|
|
//test each edge collision time, ignoring roots with zero or conflicting derivative
|
|
for &directed_edge_id in mesh.face_edges(face_id).iter(){
|
|
let edge_n=mesh.directed_edge_n(directed_edge_id);
|
|
let n=n.cross(edge_n);
|
|
let verts=mesh.edge_verts(directed_edge_id.as_undirected());
|
|
//WARNING: d is moved out of the *2 block because of adding two vertices!
|
|
//WARNING: precision is swept under the rug!
|
|
for dt in Fixed::<4,128>::zeroes2(n.dot(body.position*2-(mesh.vert(verts[0])+mesh.vert(verts[1]))).fix_4(),n.dot(body.velocity).fix_4()*2,n.dot(body.acceleration).fix_4()){
|
|
if body_time.le_ratio(dt)&&dt.lt_ratio(best_time)&&n.dot(body.extrapolated_velocity_ratio_dt(dt)).is_negative(){
|
|
best_time=dt;
|
|
best_transition=Transition::Next(FEV::Edge(directed_edge_id.as_undirected()),dt);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
//if none:
|
|
},
|
|
&FEV::Edge(edge_id)=>{
|
|
//test each face collision time, ignoring roots with zero or conflicting derivative
|
|
let edge_n=mesh.edge_n(edge_id);
|
|
let edge_verts=mesh.edge_verts(edge_id);
|
|
let delta_pos=body.position*2-(mesh.vert(edge_verts[0])+mesh.vert(edge_verts[1]));
|
|
for (i,&edge_face_id) in mesh.edge_faces(edge_id).iter().enumerate(){
|
|
let face_n=mesh.face_nd(edge_face_id).0;
|
|
//edge_n gets parity from the order of edge_faces
|
|
let n=face_n.cross(edge_n)*((i as i64)*2-1);
|
|
//WARNING yada yada d *2
|
|
for dt in Fixed::<4,128>::zeroes2(n.dot(delta_pos).fix_4(),n.dot(body.velocity).fix_4()*2,n.dot(body.acceleration).fix_4()){
|
|
if body_time.le_ratio(dt)&&dt.lt_ratio(best_time)&&n.dot(body.extrapolated_velocity_ratio_dt(dt)).is_negative(){
|
|
best_time=dt;
|
|
best_transition=Transition::Next(FEV::Face(edge_face_id),dt);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
//test each vertex collision time, ignoring roots with zero or conflicting derivative
|
|
for (i,&vert_id) in edge_verts.iter().enumerate(){
|
|
//vertex normal gets parity from vert index
|
|
let n=edge_n*(1-2*(i as i64));
|
|
for dt in Fixed::<2,64>::zeroes2((n.dot(body.position-mesh.vert(vert_id)))*2,n.dot(body.velocity)*2,n.dot(body.acceleration)){
|
|
if body_time.le_ratio(dt)&&dt.lt_ratio(best_time)&&n.dot(body.extrapolated_velocity_ratio_dt(dt)).is_negative(){
|
|
let dt=Ratio::new(dt.num.fix_4(),dt.den.fix_4());
|
|
best_time=dt;
|
|
best_transition=Transition::Next(FEV::Vert(vert_id),dt);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
//if none:
|
|
},
|
|
&FEV::Vert(vert_id)=>{
|
|
//test each edge collision time, ignoring roots with zero or conflicting derivative
|
|
for &directed_edge_id in mesh.vert_edges(vert_id).iter(){
|
|
//edge is directed away from vertex, but we want the dot product to turn out negative
|
|
let n=-mesh.directed_edge_n(directed_edge_id);
|
|
for dt in Fixed::<2,64>::zeroes2((n.dot(body.position-mesh.vert(vert_id)))*2,n.dot(body.velocity)*2,n.dot(body.acceleration)){
|
|
if body_time.le_ratio(dt)&&dt.lt_ratio(best_time)&&n.dot(body.extrapolated_velocity_ratio_dt(dt)).is_negative(){
|
|
let dt=Ratio::new(dt.num.fix_4(),dt.den.fix_4());
|
|
best_time=dt;
|
|
best_transition=Transition::Next(FEV::Edge(directed_edge_id.as_undirected()),dt);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
//if none:
|
|
},
|
|
}
|
|
best_transition
|
|
}
|
|
pub fn crawl(mut self,mesh:&M,relative_body:&Body,start_time:Time,time_limit:Time)->CrawlResult<M>{
|
|
let mut body_time={
|
|
let r=(start_time-relative_body.time).to_ratio();
|
|
Ratio::new(r.num.fix_4(),r.den.fix_4())
|
|
};
|
|
let time_limit={
|
|
let r=(time_limit-relative_body.time).to_ratio();
|
|
Ratio::new(r.num.fix_4(),r.den.fix_4())
|
|
};
|
|
for _ in 0..20{
|
|
match self.next_transition(body_time,mesh,relative_body,time_limit){
|
|
Transition::Miss=>return CrawlResult::Miss(self),
|
|
Transition::Next(next_fev,next_time)=>(self,body_time)=(next_fev,next_time),
|
|
Transition::Hit(face,time)=>return CrawlResult::Hit(face,time),
|
|
}
|
|
}
|
|
//TODO: fix all bugs
|
|
//println!("Too many iterations! Using default behaviour instead of crashing...");
|
|
CrawlResult::Miss(self)
|
|
}
|
|
}
|