333 lines
10 KiB
Rust

use std::cmp::Ordering;
use std::collections::BTreeMap;
use crate::aabb::Aabb;
use crate::ray::Ray;
use crate::integer::{Ratio,Planar64};
use crate::instruction::{InstructionCollector,TimedInstruction};
//da algaritum
//lista boxens
//sort by {minx,maxx,miny,maxy,minz,maxz} (6 lists)
//find the sets that minimizes the sum of surface areas
//splitting is done when the minimum split sum of surface areas is larger than the node's own surface area
//start with bisection into octrees because a bad bvh is still 1000x better than no bvh
//sort the centerpoints on each axis (3 lists)
//bv is put into octant based on whether it is upper or lower in each list
pub fn intersect_aabb(ray:&Ray,aabb:&Aabb)->Option<Ratio<Planar64,Planar64>>{
// n.(o+d*t)==n.p
// n.o + n.d * t == n.p
// t == (n.p - n.o)/n.d
let mut hit=None;
match ray.direction.x.cmp(&Planar64::ZERO){
Ordering::Less=>{
let rel_min=aabb.min()-ray.origin;
let rel_max=aabb.max()-ray.origin;
let dy=rel_max.x*ray.direction.y;
let dz=rel_max.x*ray.direction.z;
// x is negative, so inequalities are flipped
if rel_min.y*ray.direction.x>dy&&dy>rel_max.y*ray.direction.x
&&rel_min.z*ray.direction.x>dz&&dz>rel_max.z*ray.direction.x{
let t=rel_max.x/ray.direction.x;
hit=Some(hit.map_or(t,|best_t|t.min(best_t)));
}
},
Ordering::Equal=>(),
Ordering::Greater=>{
let rel_min=aabb.min()-ray.origin;
let rel_max=aabb.max()-ray.origin;
let dy=rel_min.x*ray.direction.y;
let dz=rel_min.x*ray.direction.z;
// x is positive, so inequalities are normal
if rel_min.y*ray.direction.x<dy&&dy<rel_max.y*ray.direction.x
&&rel_min.z*ray.direction.x<dz&&dz<rel_max.z*ray.direction.x{
let t=rel_min.x/ray.direction.x;
hit=Some(hit.map_or(t,|best_t|t.min(best_t)));
}
},
}
match ray.direction.z.cmp(&Planar64::ZERO){
Ordering::Less=>{
let rel_min=aabb.min()-ray.origin;
let rel_max=aabb.max()-ray.origin;
let dx=rel_max.z*ray.direction.x;
let dy=rel_max.z*ray.direction.y;
// z is negative, so inequalities are flipped
if rel_min.x*ray.direction.z>dx&&dx>rel_max.x*ray.direction.z
&&rel_min.y*ray.direction.z>dy&&dy>rel_max.y*ray.direction.z{
let t=rel_max.z/ray.direction.z;
hit=Some(hit.map_or(t,|best_t|t.min(best_t)));
}
},
Ordering::Equal=>(),
Ordering::Greater=>{
let rel_min=aabb.min()-ray.origin;
let rel_max=aabb.max()-ray.origin;
let dx=rel_min.z*ray.direction.x;
let dy=rel_min.z*ray.direction.y;
// z is positive, so inequalities are normal
if rel_min.x*ray.direction.z<dx&&dx<rel_max.x*ray.direction.z
&&rel_min.y*ray.direction.z<dy&&dy<rel_max.y*ray.direction.z{
let t=rel_min.z/ray.direction.z;
hit=Some(hit.map_or(t,|best_t|t.min(best_t)));
}
},
}
match ray.direction.y.cmp(&Planar64::ZERO){
Ordering::Less=>{
let rel_min=aabb.min()-ray.origin;
let rel_max=aabb.max()-ray.origin;
let dz=rel_max.y*ray.direction.z;
let dx=rel_max.y*ray.direction.x;
// y is negative, so inequalities are flipped
if rel_min.z*ray.direction.y>dz&&dz>rel_max.z*ray.direction.y
&&rel_min.x*ray.direction.y>dx&&dx>rel_max.x*ray.direction.y{
let t=rel_max.y/ray.direction.y;
hit=Some(hit.map_or(t,|best_t|t.min(best_t)));
}
},
Ordering::Equal=>(),
Ordering::Greater=>{
let rel_min=aabb.min()-ray.origin;
let rel_max=aabb.max()-ray.origin;
let dz=rel_min.y*ray.direction.z;
let dx=rel_min.y*ray.direction.x;
// y is positive, so inequalities are normal
if rel_min.z*ray.direction.y<dz&&dz<rel_max.z*ray.direction.y
&&rel_min.x*ray.direction.y<dx&&dx<rel_max.x*ray.direction.y{
let t=rel_min.y/ray.direction.y;
hit=Some(hit.map_or(t,|best_t|t.min(best_t)));
}
},
}
hit
}
pub enum RecursiveContent<N,L>{
Branch(Vec<N>),
Leaf(L),
}
impl<N,L> RecursiveContent<N,L>{
pub fn empty()->Self{
Self::Branch(Vec::new())
}
}
pub struct BvhNode<L>{
content:RecursiveContent<BvhNode<L>,L>,
aabb:Aabb,
}
impl<L> BvhNode<L>{
pub fn empty()->Self{
Self{
content:RecursiveContent::empty(),
aabb:Aabb::default(),
}
}
pub fn sample_aabb<F:FnMut(&L)>(&self,aabb:&Aabb,f:&mut F){
match &self.content{
RecursiveContent::Leaf(model)=>f(model),
RecursiveContent::Branch(children)=>for child in children{
//this test could be moved outside the match statement
//but that would test the root node aabb
//you're probably not going to spend a lot of time outside the map,
//so the test is extra work for nothing
if aabb.intersects(&child.aabb){
child.sample_aabb(aabb,f);
}
},
}
}
fn populate_nodes<'a,T,F>(
&'a self,
collector:&mut InstructionCollector<&'a L,Ratio<Planar64,Planar64>>,
nodes:&mut BTreeMap<Ratio<Planar64,Planar64>,&'a BvhNode<L>>,
ray:&Ray,
start_time:Ratio<Planar64,Planar64>,
f:&F,
)
where
T:Ord+Copy,
Ratio<Planar64,Planar64>:From<T>,
F:Fn(&L,&Ray)->Option<T>,
{
match &self.content{
RecursiveContent::Leaf(leaf)=>if let Some(time)=f(leaf,ray){
let ins=TimedInstruction{time:time.into(),instruction:leaf};
if start_time.lt_ratio(ins.time)&&ins.time.lt_ratio(collector.time()){
collector.collect(Some(ins));
}
},
RecursiveContent::Branch(children)=>for child in children{
if child.aabb.contains(ray.origin){
child.populate_nodes(collector,nodes,ray,start_time,f);
}else{
// Am I an upcoming superstar?
if let Some(t)=intersect_aabb(ray,&child.aabb){
if start_time.lt_ratio(t)&&t.lt_ratio(collector.time()){
nodes.insert(t,child);
}
}
}
},
}
}
pub fn sample_ray<T,F>(
&self,
ray:&Ray,
start_time:T,
time_limit:T,
f:F,
)->Option<(T,&L)>
where
T:Ord+Copy,
T:From<Ratio<Planar64,Planar64>>,
Ratio<Planar64,Planar64>:From<T>,
F:Fn(&L,&Ray)->Option<T>,
{
// source of nondeterminism when Aabb boundaries are coplanar
let mut nodes=BTreeMap::new();
let start_time=start_time.into();
let time_limit=time_limit.into();
let mut collector=InstructionCollector::new(time_limit);
// break open all nodes that contain ray.origin and populate nodes with future intersection times
self.populate_nodes(&mut collector,&mut nodes,ray,start_time,&f);
// swim through nodes one at a time
while let Some((t,node))=nodes.pop_first(){
if collector.time()<t{
break;
}
match &node.content{
RecursiveContent::Leaf(leaf)=>if let Some(time)=f(leaf,ray){
let ins=TimedInstruction{time:time.into(),instruction:leaf};
// this lower bound can also be omitted
// but it causes type inference errors lol
if start_time.lt_ratio(ins.time)&&ins.time.lt_ratio(collector.time()){
collector.collect(Some(ins));
}
},
// break open the node and predict collisions with the child nodes
RecursiveContent::Branch(children)=>for child in children{
// Am I an upcoming superstar?
if let Some(t)=intersect_aabb(ray,&child.aabb){
// we don't need to check the lower bound
// because child aabbs are guaranteed to be within the parent bounds.
if t<collector.time(){
nodes.insert(t,child);
}
}
},
}
}
collector.take().map(|TimedInstruction{time,instruction:leaf}|(time.into(),leaf))
}
pub fn into_inner(self)->(RecursiveContent<BvhNode<L>,L>,Aabb){
(self.content,self.aabb)
}
pub fn into_visitor<F:FnMut(L)>(self,f:&mut F){
match self.content{
RecursiveContent::Leaf(model)=>f(model),
RecursiveContent::Branch(children)=>for child in children{
child.into_visitor(f)
},
}
}
}
pub fn generate_bvh<T>(boxen:Vec<(T,Aabb)>)->BvhNode<T>{
generate_bvh_node(boxen,false)
}
fn generate_bvh_node<T>(boxen:Vec<(T,Aabb)>,force:bool)->BvhNode<T>{
let n=boxen.len();
if force||n<20{
let mut aabb=Aabb::default();
let nodes=boxen.into_iter().map(|b|{
aabb.join(&b.1);
BvhNode{
content:RecursiveContent::Leaf(b.0),
aabb:b.1,
}
}).collect();
BvhNode{
content:RecursiveContent::Branch(nodes),
aabb,
}
}else{
let mut sort_x=Vec::with_capacity(n);
let mut sort_y=Vec::with_capacity(n);
let mut sort_z=Vec::with_capacity(n);
for (i,(_,aabb)) in boxen.iter().enumerate(){
let center=aabb.center();
sort_x.push((i,center.x));
sort_y.push((i,center.y));
sort_z.push((i,center.z));
}
sort_x.sort_by_key(|&(_,c)|c);
sort_y.sort_by_key(|&(_,c)|c);
sort_z.sort_by_key(|&(_,c)|c);
let h=n/2;
let median_x=sort_x[h].1;
let median_y=sort_y[h].1;
let median_z=sort_z[h].1;
//locate a run of values equal to the median
//partition point gives the first index for which the predicate evaluates to false
let first_index_eq_median_x=sort_x.partition_point(|&(_,x)|x<median_x);
let first_index_eq_median_y=sort_y.partition_point(|&(_,y)|y<median_y);
let first_index_eq_median_z=sort_z.partition_point(|&(_,z)|z<median_z);
let first_index_gt_median_x=sort_x.partition_point(|&(_,x)|x<=median_x);
let first_index_gt_median_y=sort_y.partition_point(|&(_,y)|y<=median_y);
let first_index_gt_median_z=sort_z.partition_point(|&(_,z)|z<=median_z);
//pick which side median value copies go into such that both sides are as balanced as possible based on distance from n/2
let partition_point_x=if n.abs_diff(2*first_index_eq_median_x)<n.abs_diff(2*first_index_gt_median_x){first_index_eq_median_x}else{first_index_gt_median_x};
let partition_point_y=if n.abs_diff(2*first_index_eq_median_y)<n.abs_diff(2*first_index_gt_median_y){first_index_eq_median_y}else{first_index_gt_median_y};
let partition_point_z=if n.abs_diff(2*first_index_eq_median_z)<n.abs_diff(2*first_index_gt_median_z){first_index_eq_median_z}else{first_index_gt_median_z};
//this ids which octant the boxen is put in
let mut octant=vec![0;n];
for &(i,_) in &sort_x[partition_point_x..]{
octant[i]+=1<<0;
}
for &(i,_) in &sort_y[partition_point_y..]{
octant[i]+=1<<1;
}
for &(i,_) in &sort_z[partition_point_z..]{
octant[i]+=1<<2;
}
//generate lists for unique octant values
let mut list_list=Vec::with_capacity(8);
let mut octant_list=Vec::with_capacity(8);
for (i,(data,aabb)) in boxen.into_iter().enumerate(){
let octant_id=octant[i];
let list_id=if let Some(list_id)=octant_list.iter().position(|&id|id==octant_id){
list_id
}else{
let list_id=list_list.len();
octant_list.push(octant_id);
list_list.push(Vec::new());
list_id
};
list_list[list_id].push((data,aabb));
}
let mut aabb=Aabb::default();
if list_list.len()==1{
generate_bvh_node(list_list.remove(0),true)
}else{
BvhNode{
content:RecursiveContent::Branch(
list_list.into_iter().map(|b|{
let node=generate_bvh_node(b,false);
aabb.join(&node.aabb);
node
}).collect()
),
aabb,
}
}
}
}