119 lines
4.5 KiB
Rust
119 lines
4.5 KiB
Rust
use crate::physics::Body;
|
|
use crate::model_physics::{FEV,MeshQuery};
|
|
use crate::integer::{Time,Planar64,Planar64Vec3};
|
|
use crate::zeroes::zeroes2;
|
|
|
|
struct State<FEV>{
|
|
fev:FEV,
|
|
time:Time,
|
|
}
|
|
|
|
enum Transition<F,E,V>{
|
|
Miss,
|
|
Next(FEV<F,E,V>,Time),
|
|
Hit(F,Time),
|
|
}
|
|
|
|
impl<F:Copy,E:Copy,V:Copy> State<FEV<F,E,V>>{
|
|
fn next_transition(&self,mesh:&impl MeshQuery<F,E,V>,body:&Body,time_limit:Time)->Transition<F,E,V>{
|
|
//conflicting derivative means it crosses in the wrong direction.
|
|
//if the transition time is equal to an already tested transition, do not replace the current best.
|
|
let mut best_time=time_limit;
|
|
let mut best_transtition=Transition::Miss;
|
|
match &self.fev{
|
|
&FEV::<F,E,V>::Face(face_id)=>{
|
|
//test own face collision time, ignoring roots with zero or conflicting derivative
|
|
//n=face.normal d=face.dot
|
|
//n.a t^2+n.v t+n.p-d==0
|
|
let (n,d)=mesh.face_nd(face_id);
|
|
for t in zeroes2((n.dot(body.position)-d)*2,n.dot(body.velocity)*2,n.dot(body.acceleration)){
|
|
let t=body.time+Time::from(t);
|
|
if self.time<t&&t<best_time&&n.dot(body.extrapolated_velocity(t))<Planar64::ZERO{
|
|
best_time=t;
|
|
best_transtition=Transition::Hit(face_id,t);
|
|
}
|
|
}
|
|
//test each edge collision time, ignoring roots with zero or conflicting derivative
|
|
for &(edge_id,test_face_id) in mesh.face_edges(face_id).iter(){
|
|
let (n,d)=mesh.face_nd(test_face_id);
|
|
for t in zeroes2((n.dot(body.position)-d)*2,n.dot(body.velocity)*2,n.dot(body.acceleration)){
|
|
let t=body.time+Time::from(t);
|
|
if self.time<t&&t<best_time&&n.dot(body.extrapolated_velocity(t))<Planar64::ZERO{
|
|
best_time=t;
|
|
best_transtition=Transition::Next(FEV::<F,E,V>::Edge(edge_id),t);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
//if none:
|
|
},
|
|
&FEV::<F,E,V>::Edge(edge_id)=>{
|
|
//test each face collision time, ignoring roots with zero or conflicting derivative
|
|
for &test_face_id in mesh.edge_faces(edge_id).iter(){
|
|
let (n,d)=mesh.face_nd(test_face_id);
|
|
for t in zeroes2((n.dot(body.position)-d)*2,n.dot(body.velocity)*2,n.dot(body.acceleration)){
|
|
let t=body.time+Time::from(t);
|
|
if self.time<t&&t<best_time&&n.dot(body.extrapolated_velocity(t))<Planar64::ZERO{
|
|
best_time=t;
|
|
best_transtition=Transition::Next(FEV::<F,E,V>::Face(test_face_id),t);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
//test each vertex collision time, ignoring roots with zero or conflicting derivative
|
|
for &(vert_id,test_face_id) in mesh.edge_verts(edge_id).iter(){
|
|
let (n,d)=mesh.face_nd(test_face_id);
|
|
for t in zeroes2((n.dot(body.position)-d)*2,n.dot(body.velocity)*2,n.dot(body.acceleration)){
|
|
let t=body.time+Time::from(t);
|
|
if self.time<t&&t<best_time&&n.dot(body.extrapolated_velocity(t))<Planar64::ZERO{
|
|
best_time=t;
|
|
best_transtition=Transition::Next(FEV::<F,E,V>::Vert(vert_id),t);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
//if none:
|
|
},
|
|
&FEV::<F,E,V>::Vert(vertex_id)=>{
|
|
//test each edge collision time, ignoring roots with zero or conflicting derivative
|
|
for &(edge_id,test_face_id) in mesh.vert_edges(vertex_id).iter(){
|
|
let (n,d)=mesh.face_nd(test_face_id);
|
|
for t in zeroes2((n.dot(body.position)-d)*2,n.dot(body.velocity)*2,n.dot(body.acceleration)){
|
|
let t=body.time+Time::from(t);
|
|
if self.time<t&&t<best_time&&n.dot(body.extrapolated_velocity(t))<Planar64::ZERO{
|
|
best_time=t;
|
|
best_transtition=Transition::Next(FEV::<F,E,V>::Edge(edge_id),t);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
//if none:
|
|
},
|
|
}
|
|
best_transtition
|
|
}
|
|
}
|
|
|
|
pub fn predict_collision<F:Copy,E:Copy,V:Copy>(mesh:&impl MeshQuery<F,E,V>,relative_body:&Body,time_limit:Time)->Option<(F,Time)>{
|
|
let mut state=State{
|
|
fev:mesh.closest_fev(relative_body.position),
|
|
time:relative_body.time,
|
|
};
|
|
//it would be possible to write down the point of closest approach...
|
|
loop{
|
|
match state.next_transition(mesh,relative_body,time_limit){
|
|
Transition::Miss=>return None,
|
|
Transition::Next(fev,time)=>(state.fev,state.time)=(fev,time),
|
|
Transition::Hit(face,time)=>return Some((face,time)),
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn predict_collision_end<F:Copy,E:Copy,V:Copy>(mesh:&impl MeshQuery<F,E,V>,relative_body:&Body,time_limit:Time,c:&crate::physics::RelativeCollision)->Option<(F,Time)>{
|
|
//imagine the mesh without the collision face
|
|
//no algorithm needed, there is only one state and three cases (Face,Edge,None)
|
|
//determine when it passes an edge ("sliding off" case) or if it leaves the surface directly
|
|
//the state can be constructed from the RelativeCollision directly
|
|
None
|
|
}
|