691 lines
22 KiB
Rust
691 lines
22 KiB
Rust
use crate::{instruction::{InstructionEmitter, InstructionConsumer, TimedInstruction}, zeroes::zeroes2};
|
|
|
|
pub enum PhysicsInstruction {
|
|
CollisionStart(RelativeCollision),
|
|
CollisionEnd(RelativeCollision),
|
|
StrafeTick,
|
|
Jump,
|
|
SetWalkTargetVelocity(glam::Vec3),
|
|
ReachWalkTargetVelocity,
|
|
// Water,
|
|
// Spawn(
|
|
// Option<SpawnId>,
|
|
// bool,//true = Trigger; false = teleport
|
|
// bool,//true = Force
|
|
// )
|
|
}
|
|
|
|
pub struct Body {
|
|
position: glam::Vec3,//I64 where 2^32 = 1 u
|
|
velocity: glam::Vec3,//I64 where 2^32 = 1 u/s
|
|
acceleration: glam::Vec3,//I64 where 2^32 = 1 u/s/s
|
|
time: TIME,//nanoseconds x xxxxD!
|
|
}
|
|
|
|
pub enum MoveRestriction {
|
|
Air,
|
|
Water,
|
|
Ground,
|
|
Ladder,//multiple ladders how
|
|
}
|
|
|
|
enum MouseInterpolation {
|
|
First,//just checks the last value
|
|
Lerp,//lerps between
|
|
}
|
|
|
|
enum InputInstruction {
|
|
MoveMouse(glam::IVec2),
|
|
Jump(bool),
|
|
}
|
|
|
|
struct InputState {
|
|
controls: u32,
|
|
mouse_interpolation: MouseInterpolation,
|
|
time: TIME,
|
|
}
|
|
|
|
impl InputState {
|
|
pub fn get_control(&self,control:u32) -> bool {
|
|
self.controls&control!=0
|
|
}
|
|
pub fn process_instruction(&mut self,ins:InputInstruction){
|
|
match ins {
|
|
InputInstruction::MoveMouse(m) => todo!("set mouse_interpolation"),
|
|
InputInstruction::Jump(b) => todo!("how does info about style modifiers get here"),
|
|
}
|
|
}
|
|
}
|
|
|
|
pub struct MouseInterpolationState {
|
|
interpolation: MouseInterpolation,
|
|
time0: TIME,
|
|
time1: TIME,
|
|
mouse0: glam::IVec2,
|
|
mouse1: glam::IVec2,
|
|
}
|
|
|
|
impl MouseInterpolationState {
|
|
pub fn move_mouse(&mut self,time:TIME,pos:glam::IVec2){
|
|
self.time0=self.time1;
|
|
self.mouse0=self.mouse1;
|
|
self.time1=time;
|
|
self.mouse1=pos;
|
|
}
|
|
pub fn interpolated_position(&self,time:TIME) -> glam::IVec2 {
|
|
match self.interpolation {
|
|
MouseInterpolation::First => self.mouse0,
|
|
MouseInterpolation::Lerp => {
|
|
let m0=self.mouse0.as_i64vec2();
|
|
let m1=self.mouse1.as_i64vec2();
|
|
//these are deltas
|
|
let t1t=(self.time1-time) as i64;
|
|
let tt0=(time-self.time0) as i64;
|
|
let dt=(self.time1-self.time0) as i64;
|
|
((m0*t1t+m1*tt0)/dt).as_ivec2()
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
pub struct PhysicsState {
|
|
pub body: Body,
|
|
pub hitbox_halfsize: glam::Vec3,
|
|
pub contacts: std::collections::HashSet::<RelativeCollision>,
|
|
//pub intersections: Vec<ModelId>,
|
|
//temp
|
|
pub models_cringe_clone: Vec<Model>,
|
|
pub temp_control_dir: glam::Vec3,
|
|
//camera must exist in state because wormholes modify the camera, also camera punch
|
|
//pub camera: Camera,
|
|
//pub mouse_interpolation: MouseInterpolationState,
|
|
pub time: TIME,
|
|
pub strafe_tick_num: TIME,
|
|
pub strafe_tick_den: TIME,
|
|
pub tick: u32,
|
|
pub mv: f32,
|
|
pub walkspeed: f32,
|
|
pub friction: f32,
|
|
pub walk_target_velocity: glam::Vec3,
|
|
pub gravity: glam::Vec3,
|
|
pub grounded: bool,
|
|
pub jump_trying: bool,
|
|
}
|
|
|
|
#[derive(Clone,Copy,Hash,Eq,PartialEq)]
|
|
pub enum AabbFace{
|
|
Right,//+X
|
|
Top,
|
|
Back,
|
|
Left,
|
|
Bottom,
|
|
Front,
|
|
}
|
|
|
|
pub struct Aabb {
|
|
min: glam::Vec3,
|
|
max: glam::Vec3,
|
|
}
|
|
|
|
impl Aabb {
|
|
// const FACE_DATA: [[f32; 3]; 6] = [
|
|
// [0.0f32, 0., 1.],
|
|
// [0.0f32, 0., -1.],
|
|
// [1.0f32, 0., 0.],
|
|
// [-1.0f32, 0., 0.],
|
|
// [0.0f32, 1., 0.],
|
|
// [0.0f32, -1., 0.],
|
|
// ];
|
|
const VERTEX_DATA: [glam::Vec3; 8] = [
|
|
glam::vec3(1., -1., -1.),
|
|
glam::vec3(1., 1., -1.),
|
|
glam::vec3(1., 1., 1.),
|
|
glam::vec3(1., -1., 1.),
|
|
glam::vec3(-1., -1., 1.),
|
|
glam::vec3(-1., 1., 1.),
|
|
glam::vec3(-1., 1., -1.),
|
|
glam::vec3(-1., -1., -1.),
|
|
];
|
|
const VERTEX_DATA_RIGHT: [glam::Vec3; 4] = [
|
|
glam::vec3(1., -1., -1.),
|
|
glam::vec3(1., 1., -1.),
|
|
glam::vec3(1., 1., 1.),
|
|
glam::vec3(1., -1., 1.),
|
|
];
|
|
const VERTEX_DATA_TOP: [glam::Vec3; 4] = [
|
|
glam::vec3(1., 1., -1.),
|
|
glam::vec3(-1., 1., -1.),
|
|
glam::vec3(-1., 1., 1.),
|
|
glam::vec3(1., 1., 1.),
|
|
];
|
|
const VERTEX_DATA_BACK: [glam::Vec3; 4] = [
|
|
glam::vec3(-1., -1., 1.),
|
|
glam::vec3(1., -1., 1.),
|
|
glam::vec3(1., 1., 1.),
|
|
glam::vec3(-1., 1., 1.),
|
|
];
|
|
const VERTEX_DATA_LEFT: [glam::Vec3; 4] = [
|
|
glam::vec3(-1., -1., 1.),
|
|
glam::vec3(-1., 1., 1.),
|
|
glam::vec3(-1., 1., -1.),
|
|
glam::vec3(-1., -1., -1.),
|
|
];
|
|
const VERTEX_DATA_BOTTOM: [glam::Vec3; 4] = [
|
|
glam::vec3(1., -1., 1.),
|
|
glam::vec3(-1., -1., 1.),
|
|
glam::vec3(-1., -1., -1.),
|
|
glam::vec3(1., -1., -1.),
|
|
];
|
|
const VERTEX_DATA_FRONT: [glam::Vec3; 4] = [
|
|
glam::vec3(-1., 1., -1.),
|
|
glam::vec3(1., 1., -1.),
|
|
glam::vec3(1., -1., -1.),
|
|
glam::vec3(-1., -1., -1.),
|
|
];
|
|
|
|
pub fn new() -> Self {
|
|
Self {min: glam::Vec3::INFINITY,max: glam::Vec3::NEG_INFINITY}
|
|
}
|
|
|
|
pub fn grow(&mut self, point:glam::Vec3){
|
|
self.min=self.min.min(point);
|
|
self.max=self.max.max(point);
|
|
}
|
|
|
|
pub fn normal(face:AabbFace) -> glam::Vec3 {
|
|
match face {
|
|
AabbFace::Right => glam::vec3(1.,0.,0.),
|
|
AabbFace::Top => glam::vec3(0.,1.,0.),
|
|
AabbFace::Back => glam::vec3(0.,0.,1.),
|
|
AabbFace::Left => glam::vec3(-1.,0.,0.),
|
|
AabbFace::Bottom => glam::vec3(0.,-1.,0.),
|
|
AabbFace::Front => glam::vec3(0.,0.,-1.),
|
|
}
|
|
}
|
|
pub fn unit_vertices() -> [glam::Vec3;8] {
|
|
return Self::VERTEX_DATA;
|
|
}
|
|
pub fn unit_face_vertices(face:AabbFace) -> [glam::Vec3;4] {
|
|
match face {
|
|
AabbFace::Right => Self::VERTEX_DATA_RIGHT,
|
|
AabbFace::Top => Self::VERTEX_DATA_TOP,
|
|
AabbFace::Back => Self::VERTEX_DATA_BACK,
|
|
AabbFace::Left => Self::VERTEX_DATA_LEFT,
|
|
AabbFace::Bottom => Self::VERTEX_DATA_BOTTOM,
|
|
AabbFace::Front => Self::VERTEX_DATA_FRONT,
|
|
}
|
|
}
|
|
}
|
|
|
|
//pretend to be using what we want to eventually do
|
|
type TreyMeshFace = AabbFace;
|
|
type TreyMesh = Aabb;
|
|
|
|
pub struct Model {
|
|
//A model is a thing that has a hitbox. can be represented by a list of TreyMesh-es
|
|
//in this iteration, all it needs is extents.
|
|
transform: glam::Mat4,
|
|
}
|
|
|
|
impl Model {
|
|
pub fn new(transform:glam::Mat4) -> Self {
|
|
Self{transform}
|
|
}
|
|
pub fn unit_vertices(&self) -> [glam::Vec3;8] {
|
|
Aabb::unit_vertices()
|
|
}
|
|
pub fn mesh(&self) -> TreyMesh {
|
|
let mut aabb=Aabb::new();
|
|
for &vertex in self.unit_vertices().iter() {
|
|
aabb.grow(glam::Vec4Swizzles::xyz(self.transform*vertex.extend(1.0)));
|
|
}
|
|
return aabb;
|
|
}
|
|
pub fn unit_face_vertices(&self,face:TreyMeshFace) -> [glam::Vec3;4] {
|
|
Aabb::unit_face_vertices(face)
|
|
}
|
|
pub fn face_mesh(&self,face:TreyMeshFace) -> TreyMesh {
|
|
let mut aabb=Aabb::new();
|
|
for &vertex in self.unit_face_vertices(face).iter() {
|
|
aabb.grow(glam::Vec4Swizzles::xyz(self.transform*vertex.extend(1.0)));
|
|
}
|
|
return aabb;
|
|
}
|
|
pub fn face_normal(&self,face:TreyMeshFace) -> glam::Vec3 {
|
|
glam::Vec4Swizzles::xyz(self.transform*Aabb::normal(face).extend(0.0))//this is wrong for scale
|
|
}
|
|
}
|
|
|
|
//need non-face (full model) variant for CanCollide false objects
|
|
//OR have a separate list from contacts for model intersection
|
|
#[derive(Eq, Hash, PartialEq)]
|
|
pub struct RelativeCollision {
|
|
face: TreyMeshFace,//just an id
|
|
model: u32,//using id to avoid lifetimes
|
|
}
|
|
|
|
impl RelativeCollision {
|
|
pub fn mesh(&self,models:&Vec<Model>) -> TreyMesh {
|
|
return models.get(self.model as usize).unwrap().face_mesh(self.face)
|
|
}
|
|
pub fn normal(&self,models:&Vec<Model>) -> glam::Vec3 {
|
|
return models.get(self.model as usize).unwrap().face_normal(self.face)
|
|
}
|
|
}
|
|
|
|
pub type TIME = i64;
|
|
|
|
impl Body {
|
|
pub fn with_position(position:glam::Vec3) -> Self {
|
|
Self{
|
|
position: position,
|
|
velocity: glam::Vec3::ZERO,
|
|
acceleration: glam::Vec3::ZERO,
|
|
time: 0,
|
|
}
|
|
}
|
|
pub fn extrapolated_position(&self,time: TIME)->glam::Vec3{
|
|
let dt=(time-self.time) as f64/1_000_000_000f64;
|
|
self.position+self.velocity*(dt as f32)+self.acceleration*((0.5*dt*dt) as f32)
|
|
}
|
|
pub fn advance_time(&mut self, time: TIME){
|
|
self.position=self.extrapolated_position(time);
|
|
self.time=time;
|
|
}
|
|
}
|
|
|
|
impl PhysicsState {
|
|
//tickless gaming
|
|
pub fn run(&mut self, time: TIME){
|
|
//prepare is ommitted - everything is done via instructions.
|
|
while let Some(instruction) = self.next_instruction(time) {//collect
|
|
//advance
|
|
//self.advance_time(instruction.time);
|
|
//process
|
|
self.process_instruction(instruction);
|
|
//write hash lol
|
|
}
|
|
}
|
|
|
|
pub fn advance_time(&mut self, time: TIME){
|
|
self.body.advance_time(time);
|
|
self.time=time;
|
|
}
|
|
|
|
fn next_strafe_instruction(&self) -> Option<TimedInstruction<PhysicsInstruction>> {
|
|
return Some(TimedInstruction{
|
|
time:(self.time*self.strafe_tick_num/self.strafe_tick_den+1)*self.strafe_tick_den/self.strafe_tick_num,
|
|
//only poll the physics if there is a before and after mouse event
|
|
instruction:PhysicsInstruction::StrafeTick
|
|
});
|
|
}
|
|
|
|
//state mutated on collision:
|
|
//Accelerator
|
|
//stair step-up
|
|
|
|
//state mutated on instruction
|
|
//change fly acceleration (fly_sustain)
|
|
//change fly velocity
|
|
|
|
//generic event emmiters
|
|
//PlatformStandTime
|
|
//walk/swim/air/ladder sounds
|
|
//VState?
|
|
|
|
//falling under the map
|
|
// fn next_respawn_instruction(&self) -> Option<TimedInstruction<PhysicsInstruction>> {
|
|
// if self.body.position<self.world.min_y {
|
|
// return Some(TimedInstruction{
|
|
// time:self.time,
|
|
// instruction:PhysicsInstruction::Trigger(None)
|
|
// });
|
|
// }
|
|
// }
|
|
|
|
// fn next_water_instruction(&self) -> Option<TimedInstruction<PhysicsInstruction>> {
|
|
// return Some(TimedInstruction{
|
|
// time:(self.time*self.strafe_tick_num/self.strafe_tick_den+1)*self.strafe_tick_den/self.strafe_tick_num,
|
|
// //only poll the physics if there is a before and after mouse event
|
|
// instruction:PhysicsInstruction::Water
|
|
// });
|
|
// }
|
|
|
|
fn next_walk_instruction(&self) -> Option<TimedInstruction<PhysicsInstruction>> {
|
|
//check if you are accelerating towards a walk target velocity and create an instruction
|
|
return None;
|
|
}
|
|
fn mesh(&self) -> TreyMesh {
|
|
let mut aabb=Aabb::new();
|
|
for vertex in Aabb::unit_vertices(){
|
|
aabb.grow(self.body.position+self.hitbox_halfsize*vertex);
|
|
}
|
|
aabb
|
|
}
|
|
fn predict_collision_end(&self,model:&Model,time_limit:TIME,model_id:u32) -> Option<TimedInstruction<PhysicsInstruction>> {
|
|
//must treat cancollide false objects differently: you may not exit through the same face you entered.
|
|
//RelativeCollsion must reference the full model instead of a particular face
|
|
//this is Ctrl+C Ctrl+V of predict_collision_start but with v=-v before the calc and t=-t after the calc
|
|
//find best t
|
|
let mut best_delta_time=time_limit-self.body.time;
|
|
let mut best_face:Option<TreyMeshFace>=None;
|
|
let mesh0=self.mesh();
|
|
let mesh1=model.mesh();
|
|
let (p,v,a)=(self.body.position,-self.body.velocity,self.body.acceleration);
|
|
//collect x
|
|
for t in zeroes2(mesh0.max.x-mesh1.min.x, v.x, a.x) {
|
|
//negative t = back in time
|
|
//must be moving towards surface to collide
|
|
//must beat the current soonest collision time
|
|
//must be moving towards surface
|
|
let t_time=((-t as f64)*1_000_000_000f64) as TIME;
|
|
if 0<=t_time&&t_time<best_delta_time&&0f32<(-v.x+a.x*t){
|
|
let dp=self.body.extrapolated_position(self.body.time+t_time)-p;
|
|
//faces must be overlapping
|
|
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
|
|
//collect valid t
|
|
best_delta_time=t_time;
|
|
best_face=Some(TreyMeshFace::Left);
|
|
}
|
|
}
|
|
}
|
|
for t in zeroes2(mesh0.min.x-mesh1.max.x, v.x, a.x) {
|
|
//negative t = back in time
|
|
//must be moving towards surface to collide
|
|
//must beat the current soonest collision time
|
|
//must be moving towards surface
|
|
let t_time=((-t as f64)*1_000_000_000f64) as TIME;
|
|
if 0<=t_time&&t_time<best_delta_time&&(-v.x+a.x*t)<0f32{
|
|
let dp=self.body.extrapolated_position(self.body.time+t_time)-p;
|
|
//faces must be overlapping
|
|
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
|
|
//collect valid t
|
|
best_delta_time=t_time;
|
|
best_face=Some(TreyMeshFace::Right);
|
|
}
|
|
}
|
|
}
|
|
//collect y
|
|
for t in zeroes2(mesh0.max.y-mesh1.min.y, v.y, a.y) {
|
|
//negative t = back in time
|
|
//must be moving towards surface to collide
|
|
//must beat the current soonest collision time
|
|
//must be moving towards surface
|
|
let t_time=((-t as f64)*1_000_000_000f64) as TIME;
|
|
if 0<=t_time&&t_time<best_delta_time&&0f32<(-v.y+a.y*t){
|
|
let dp=self.body.extrapolated_position(self.body.time+t_time)-p;
|
|
//faces must be overlapping
|
|
if mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
|
|
//collect valid t
|
|
best_delta_time=t_time;
|
|
best_face=Some(TreyMeshFace::Bottom);
|
|
}
|
|
}
|
|
}
|
|
for t in zeroes2(mesh0.min.y-mesh1.max.y, v.y, a.y) {
|
|
//negative t = back in time
|
|
//must be moving towards surface to collide
|
|
//must beat the current soonest collision time
|
|
//must be moving towards surface
|
|
let t_time=((-t as f64)*1_000_000_000f64) as TIME;
|
|
if 0<=t_time&&t_time<best_delta_time&&(-v.y+a.y*t)<0f32{
|
|
let dp=self.body.extrapolated_position(self.body.time+t_time)-p;
|
|
//faces must be overlapping
|
|
if mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
|
|
//collect valid t
|
|
best_delta_time=t_time;
|
|
best_face=Some(TreyMeshFace::Top);
|
|
}
|
|
}
|
|
}
|
|
//collect z
|
|
for t in zeroes2(mesh0.max.z-mesh1.min.z, v.z, a.z) {
|
|
//negative t = back in time
|
|
//must be moving towards surface to collide
|
|
//must beat the current soonest collision time
|
|
//must be moving towards surface
|
|
let t_time=((-t as f64)*1_000_000_000f64) as TIME;
|
|
if 0<=t_time&&t_time<best_delta_time&&0f32<(-v.z+a.z*t){
|
|
let dp=self.body.extrapolated_position(self.body.time+t_time)-p;
|
|
//faces must be overlapping
|
|
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x {
|
|
//collect valid t
|
|
best_delta_time=t_time;
|
|
best_face=Some(TreyMeshFace::Front);
|
|
}
|
|
}
|
|
}
|
|
for t in zeroes2(mesh0.min.z-mesh1.max.z, v.z, a.z) {
|
|
//negative t = back in time
|
|
//must be moving towards surface to collide
|
|
//must beat the current soonest collision time
|
|
//must be moving towards surface
|
|
let t_time=((-t as f64)*1_000_000_000f64) as TIME;
|
|
if 0<=t_time&&t_time<best_delta_time&&(-v.z+a.z*t)<0f32{
|
|
let dp=self.body.extrapolated_position(self.body.time+t_time)-p;
|
|
//faces must be overlapping
|
|
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x {
|
|
//collect valid t
|
|
best_delta_time=t_time;
|
|
best_face=Some(TreyMeshFace::Back);
|
|
}
|
|
}
|
|
}
|
|
//generate instruction
|
|
if let Some(face) = best_face{
|
|
return Some(TimedInstruction {
|
|
time: self.body.time+best_delta_time,
|
|
instruction: PhysicsInstruction::CollisionStart(RelativeCollision {
|
|
face,
|
|
model: model_id
|
|
})
|
|
})
|
|
}
|
|
None
|
|
}
|
|
fn predict_collision_start(&self,model:&Model,time_limit:TIME,model_id:u32) -> Option<TimedInstruction<PhysicsInstruction>> {
|
|
//find best t
|
|
let mut best_delta_time=time_limit-self.body.time;
|
|
let mut best_face:Option<TreyMeshFace>=None;
|
|
let mesh0=self.mesh();
|
|
let mesh1=model.mesh();
|
|
let (p,v,a)=(self.body.position,self.body.velocity,self.body.acceleration);
|
|
//collect x
|
|
for t in zeroes2(mesh0.max.x-mesh1.min.x, v.x, a.x) {
|
|
//negative t = back in time
|
|
//must be moving towards surface to collide
|
|
//must beat the current soonest collision time
|
|
//must be moving towards surface
|
|
let t_time=((t as f64)*1_000_000_000f64) as TIME;
|
|
if 0<=t_time&&t_time<best_delta_time&&0f32<v.x+a.x*t{
|
|
let dp=self.body.extrapolated_position(self.body.time+t_time)-p;
|
|
//faces must be overlapping
|
|
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
|
|
//collect valid t
|
|
best_delta_time=t_time;
|
|
best_face=Some(TreyMeshFace::Left);
|
|
}
|
|
}
|
|
}
|
|
for t in zeroes2(mesh0.min.x-mesh1.max.x, v.x, a.x) {
|
|
//negative t = back in time
|
|
//must be moving towards surface to collide
|
|
//must beat the current soonest collision time
|
|
//must be moving towards surface
|
|
let t_time=((t as f64)*1_000_000_000f64) as TIME;
|
|
if 0<=t_time&&t_time<best_delta_time&&v.x+a.x*t<0f32{
|
|
let dp=self.body.extrapolated_position(self.body.time+t_time)-p;
|
|
//faces must be overlapping
|
|
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
|
|
//collect valid t
|
|
best_delta_time=t_time;
|
|
best_face=Some(TreyMeshFace::Right);
|
|
}
|
|
}
|
|
}
|
|
//collect y
|
|
for t in zeroes2(mesh0.max.y-mesh1.min.y, v.y, a.y) {
|
|
//negative t = back in time
|
|
//must be moving towards surface to collide
|
|
//must beat the current soonest collision time
|
|
//must be moving towards surface
|
|
let t_time=((t as f64)*1_000_000_000f64) as TIME;
|
|
if 0<=t_time&&t_time<best_delta_time&&0f32<v.y+a.y*t{
|
|
let dp=self.body.extrapolated_position(self.body.time+t_time)-p;
|
|
//faces must be overlapping
|
|
if mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
|
|
//collect valid t
|
|
best_delta_time=t_time;
|
|
best_face=Some(TreyMeshFace::Bottom);
|
|
}
|
|
}
|
|
}
|
|
for t in zeroes2(mesh0.min.y-mesh1.max.y, v.y, a.y) {
|
|
//negative t = back in time
|
|
//must be moving towards surface to collide
|
|
//must beat the current soonest collision time
|
|
//must be moving towards surface
|
|
let t_time=((t as f64)*1_000_000_000f64) as TIME;
|
|
if 0<=t_time&&t_time<best_delta_time&&v.y+a.y*t<0f32{
|
|
let dp=self.body.extrapolated_position(self.body.time+t_time)-p;
|
|
//faces must be overlapping
|
|
if mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
|
|
//collect valid t
|
|
best_delta_time=t_time;
|
|
best_face=Some(TreyMeshFace::Top);
|
|
}
|
|
}
|
|
}
|
|
//collect z
|
|
for t in zeroes2(mesh0.max.z-mesh1.min.z, v.z, a.z) {
|
|
//negative t = back in time
|
|
//must be moving towards surface to collide
|
|
//must beat the current soonest collision time
|
|
//must be moving towards surface
|
|
let t_time=((t as f64)*1_000_000_000f64) as TIME;
|
|
if 0<=t_time&&t_time<best_delta_time&&0f32<v.z+a.z*t{
|
|
let dp=self.body.extrapolated_position(self.body.time+t_time)-p;
|
|
//faces must be overlapping
|
|
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x {
|
|
//collect valid t
|
|
best_delta_time=t_time;
|
|
best_face=Some(TreyMeshFace::Front);
|
|
}
|
|
}
|
|
}
|
|
for t in zeroes2(mesh0.min.z-mesh1.max.z, v.z, a.z) {
|
|
//negative t = back in time
|
|
//must be moving towards surface to collide
|
|
//must beat the current soonest collision time
|
|
//must be moving towards surface
|
|
let t_time=((t as f64)*1_000_000_000f64) as TIME;
|
|
if 0<=t_time&&t_time<best_delta_time&&v.z+a.z*t<0f32{
|
|
let dp=self.body.extrapolated_position(self.body.time+t_time)-p;
|
|
//faces must be overlapping
|
|
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x {
|
|
//collect valid t
|
|
best_delta_time=t_time;
|
|
best_face=Some(TreyMeshFace::Back);
|
|
}
|
|
}
|
|
}
|
|
//generate instruction
|
|
if let Some(face) = best_face{
|
|
return Some(TimedInstruction {
|
|
time: self.body.time+best_delta_time,
|
|
instruction: PhysicsInstruction::CollisionStart(RelativeCollision {
|
|
face,
|
|
model: model_id
|
|
})
|
|
})
|
|
}
|
|
None
|
|
}
|
|
}
|
|
|
|
impl crate::instruction::InstructionEmitter<PhysicsInstruction> for PhysicsState {
|
|
//this little next instruction function can cache its return value and invalidate the cached value by watching the State.
|
|
fn next_instruction(&self,time_limit:TIME) -> Option<TimedInstruction<PhysicsInstruction>> {
|
|
//JUST POLLING!!! NO MUTATION
|
|
let mut collector = crate::instruction::InstructionCollector::new(time_limit);
|
|
//autohop (already pressing spacebar; the signal to begin trying to jump is different)
|
|
if self.grounded&&self.jump_trying {
|
|
//scroll will be implemented with InputInstruction::Jump(true) but it blocks setting self.jump_trying=true
|
|
collector.collect(Some(TimedInstruction{
|
|
time:self.time,
|
|
instruction:PhysicsInstruction::Jump
|
|
}));
|
|
}
|
|
//check for collision stop instructions with curent contacts
|
|
for collision_data in self.contacts.iter() {
|
|
collector.collect(self.predict_collision_end(self.models_cringe_clone.get(collision_data.model as usize).unwrap(),time_limit,collision_data.model));
|
|
}
|
|
//check for collision start instructions (against every part in the game with no optimization!!)
|
|
for (i,model) in self.models_cringe_clone.iter().enumerate() {
|
|
collector.collect(self.predict_collision_start(model,time_limit,i as u32));
|
|
}
|
|
if self.grounded {
|
|
//walk maintenance
|
|
collector.collect(self.next_walk_instruction());
|
|
}else{
|
|
//check to see when the next strafe tick is
|
|
collector.collect(self.next_strafe_instruction());
|
|
}
|
|
collector.instruction()
|
|
}
|
|
}
|
|
|
|
impl crate::instruction::InstructionConsumer<PhysicsInstruction> for PhysicsState {
|
|
fn process_instruction(&mut self, ins:TimedInstruction<PhysicsInstruction>) {
|
|
//mutate position and velocity and time
|
|
self.advance_time(ins.time);//should this be in run?
|
|
match ins.instruction {
|
|
PhysicsInstruction::CollisionStart(c) => {
|
|
//flatten v
|
|
let n=c.normal(&self.models_cringe_clone);
|
|
let d=self.body.velocity.dot(n)/n.length_squared();
|
|
self.body.velocity-=d*n;
|
|
//check ground
|
|
match c.face {
|
|
AabbFace::Top => {
|
|
//ground
|
|
self.grounded=true;
|
|
self.body.acceleration=glam::Vec3::ZERO;
|
|
},
|
|
_ => (),
|
|
}
|
|
self.contacts.insert(c);
|
|
},
|
|
PhysicsInstruction::CollisionEnd(c) => {
|
|
//check ground
|
|
match c.face {
|
|
AabbFace::Top => {
|
|
//ground
|
|
self.body.acceleration=self.gravity;
|
|
},
|
|
_ => (),
|
|
}
|
|
self.contacts.remove(&c);
|
|
},
|
|
PhysicsInstruction::StrafeTick => {
|
|
//let control_dir=self.get_control_dir();//this should respect your mouse interpolation settings
|
|
let d=self.body.velocity.dot(self.temp_control_dir);
|
|
if d<self.mv {
|
|
self.body.velocity+=(self.mv-d)*self.temp_control_dir;
|
|
}
|
|
}
|
|
PhysicsInstruction::Jump => {
|
|
self.grounded=false;//do I need this?
|
|
self.body.velocity+=glam::Vec3::new(0.0,0.715588/2.0*100.0,0.0);
|
|
}
|
|
PhysicsInstruction::ReachWalkTargetVelocity => {
|
|
//precisely set velocity
|
|
self.body.velocity=self.walk_target_velocity;
|
|
}
|
|
PhysicsInstruction::SetWalkTargetVelocity(v) => {
|
|
self.walk_target_velocity=v;
|
|
//calculate acceleration yada yada
|
|
},
|
|
}
|
|
}
|
|
} |