use crate::physics::Body; use crate::model_physics::{GigaTime,FEV,MeshQuery,DirectedEdge,MinkowskiMesh,MinkowskiFace,MinkowskiDirectedEdge,MinkowskiVert}; use strafesnet_common::integer::{Time,Fixed,Ratio}; #[derive(Debug)] enum Transition{ Miss, Next(FEV,GigaTime), Hit(F,GigaTime), } type MinkowskiFEV=FEV; type MinkowskiTransition=Transition; fn next_transition(fev:&MinkowskiFEV,body_time:GigaTime,mesh:&MinkowskiMesh,body:&Body,mut best_time:GigaTime)->MinkowskiTransition{ //conflicting derivative means it crosses in the wrong direction. //if the transition time is equal to an already tested transition, do not replace the current best. let mut best_transition=MinkowskiTransition::Miss; match fev{ &MinkowskiFEV::Face(face_id)=>{ //test own face collision time, ignoring roots with zero or conflicting derivative //n=face.normal d=face.dot //n.a t^2+n.v t+n.p-d==0 let (n,d)=mesh.face_nd(face_id); //TODO: use higher precision d value? //use the mesh transform translation instead of baking it into the d value. for dt in Fixed::<4,128>::zeroes2((n.dot(body.position)-d)*2,n.dot(body.velocity)*2,n.dot(body.acceleration)){ if body_time.le_ratio(dt)&&dt.lt_ratio(best_time)&&n.dot(body.extrapolated_velocity_ratio_dt(dt)).is_negative(){ best_time=dt; best_transition=MinkowskiTransition::Hit(face_id,dt); break; } } //test each edge collision time, ignoring roots with zero or conflicting derivative for &directed_edge_id in mesh.face_edges(face_id).iter(){ let edge_n=mesh.directed_edge_n(directed_edge_id); let n=n.cross(edge_n); let verts=mesh.edge_verts(directed_edge_id.as_undirected()); //WARNING: d is moved out of the *2 block because of adding two vertices! //WARNING: precision is swept under the rug! for dt in Fixed::<4,128>::zeroes2(n.dot(body.position*2-(mesh.vert(verts[0])+mesh.vert(verts[1]))).fix_4(),n.dot(body.velocity).fix_4()*2,n.dot(body.acceleration).fix_4()){ if body_time.le_ratio(dt)&&dt.lt_ratio(best_time)&&n.dot(body.extrapolated_velocity_ratio_dt(dt)).is_negative(){ best_time=dt; best_transition=MinkowskiTransition::Next(MinkowskiFEV::Edge(directed_edge_id.as_undirected()),dt); break; } } } //if none: }, &MinkowskiFEV::Edge(edge_id)=>{ //test each face collision time, ignoring roots with zero or conflicting derivative let edge_n=mesh.edge_n(edge_id); let edge_verts=mesh.edge_verts(edge_id); let delta_pos=body.position*2-(mesh.vert(edge_verts[0])+mesh.vert(edge_verts[1])); for (i,&edge_face_id) in mesh.edge_faces(edge_id).iter().enumerate(){ let face_n=mesh.face_nd(edge_face_id).0; //edge_n gets parity from the order of edge_faces let n=face_n.cross(edge_n)*((i as i64)*2-1); //WARNING yada yada d *2 for dt in Fixed::<4,128>::zeroes2(n.dot(delta_pos).fix_4(),n.dot(body.velocity).fix_4()*2,n.dot(body.acceleration).fix_4()){ if body_time.le_ratio(dt)&&dt.lt_ratio(best_time)&&n.dot(body.extrapolated_velocity_ratio_dt(dt)).is_negative(){ best_time=dt; best_transition=MinkowskiTransition::Next(MinkowskiFEV::Face(edge_face_id),dt); break; } } } //test each vertex collision time, ignoring roots with zero or conflicting derivative for (i,&vert_id) in edge_verts.iter().enumerate(){ //vertex normal gets parity from vert index let n=edge_n*(1-2*(i as i64)); for dt in Fixed::<2,64>::zeroes2((n.dot(body.position-mesh.vert(vert_id)))*2,n.dot(body.velocity)*2,n.dot(body.acceleration)){ if body_time.le_ratio(dt)&&dt.lt_ratio(best_time)&&n.dot(body.extrapolated_velocity_ratio_dt(dt)).is_negative(){ let dt=Ratio::new(dt.num.fix_4(),dt.den.fix_4()); best_time=dt; best_transition=MinkowskiTransition::Next(MinkowskiFEV::Vert(vert_id),dt); break; } } } //if none: }, &MinkowskiFEV::Vert(vert_id)=>{ //test each edge collision time, ignoring roots with zero or conflicting derivative for &directed_edge_id in mesh.vert_edges(vert_id).iter(){ //edge is directed away from vertex, but we want the dot product to turn out negative let n=-mesh.directed_edge_n(directed_edge_id); for dt in Fixed::<2,64>::zeroes2((n.dot(body.position-mesh.vert(vert_id)))*2,n.dot(body.velocity)*2,n.dot(body.acceleration)){ if body_time.le_ratio(dt)&&dt.lt_ratio(best_time)&&n.dot(body.extrapolated_velocity_ratio_dt(dt)).is_negative(){ let dt=Ratio::new(dt.num.fix_4(),dt.den.fix_4()); best_time=dt; best_transition=MinkowskiTransition::Next(MinkowskiFEV::Edge(directed_edge_id.as_undirected()),dt); break; } } } //if none: }, } best_transition } pub enum CrawlResult{ Miss(FEV), Hit(F,GigaTime), } type MinkowskiCrawlResult=CrawlResult; pub fn crawl_fev(mut fev:MinkowskiFEV,mesh:&MinkowskiMesh,relative_body:&Body,start_time:Time,time_limit:Time)->MinkowskiCrawlResult{ let mut body_time={ let r=(start_time-relative_body.time).to_ratio(); Ratio::new(r.num.fix_4(),r.den.fix_4()) }; let time_limit={ let r=(time_limit-relative_body.time).to_ratio(); Ratio::new(r.num.fix_4(),r.den.fix_4()) }; for _ in 0..20{ match next_transition(&fev,body_time,mesh,relative_body,time_limit){ Transition::Miss=>return CrawlResult::Miss(fev), Transition::Next(next_fev,next_time)=>(fev,body_time)=(next_fev,next_time), Transition::Hit(face,time)=>return CrawlResult::Hit(face,time), } } //TODO: fix all bugs //println!("Too many iterations! Using default behaviour instead of crashing..."); CrawlResult::Miss(fev) }