pub use fixed_wide::fixed::{Fixed,Fix}; pub use ratio_ops::ratio::{Ratio,Divide}; //integer units /// specific example of a "default" time type #[derive(Clone,Copy,Hash,Eq,PartialEq,PartialOrd,Debug)] pub enum TimeInner{} pub type AbsoluteTime=Time; #[derive(Clone,Copy,Hash,Eq,PartialEq,PartialOrd,Debug)] pub struct Time(i64,core::marker::PhantomData); impl Time{ pub const MIN:Self=Self::raw(i64::MIN); pub const MAX:Self=Self::raw(i64::MAX); pub const ZERO:Self=Self::raw(0); pub const EPSILON:Self=Self::raw(1); pub const ONE_SECOND:Self=Self::raw(1_000_000_000); pub const ONE_MILLISECOND:Self=Self::raw(1_000_000); pub const ONE_MICROSECOND:Self=Self::raw(1_000); pub const ONE_NANOSECOND:Self=Self::raw(1); #[inline] pub const fn raw(num:i64)->Self{ Self(num,core::marker::PhantomData) } #[inline] pub const fn get(self)->i64{ self.0 } #[inline] pub const fn from_secs(num:i64)->Self{ Self::raw(Self::ONE_SECOND.0*num) } #[inline] pub const fn from_millis(num:i64)->Self{ Self::raw(Self::ONE_MILLISECOND.0*num) } #[inline] pub const fn from_micros(num:i64)->Self{ Self::raw(Self::ONE_MICROSECOND.0*num) } #[inline] pub const fn from_nanos(num:i64)->Self{ Self::raw(Self::ONE_NANOSECOND.0*num) } //should I have checked subtraction? force all time variables to be positive? #[inline] pub const fn nanos(self)->i64{ self.0 } #[inline] pub const fn to_ratio(self)->Ratio{ Ratio::new(Planar64::raw(self.0),Planar64::raw(1_000_000_000)) } #[inline] pub const fn coerce(self)->Time{ Time::raw(self.0) } } impl From for Time{ #[inline] fn from(value:Planar64)->Self{ Self::raw((value*Planar64::raw(1_000_000_000)).fix_1().to_raw()) } } impl From> for Time where Num:core::ops::Mul, N1:Divide, T1:Fix, { #[inline] fn from(value:Ratio)->Self{ Self::raw((value*Planar64::raw(1_000_000_000)).divide().fix().to_raw()) } } impl std::fmt::Display for Time{ #[inline] fn fmt(&self,f:&mut std::fmt::Formatter<'_>)->std::fmt::Result{ write!(f,"{}s+{:09}ns",self.0/Self::ONE_SECOND.0,self.0%Self::ONE_SECOND.0) } } impl std::default::Default for Time{ fn default()->Self{ Self::raw(0) } } impl std::ops::Neg for Time{ type Output=Self; #[inline] fn neg(self)->Self::Output { Self::raw(-self.0) } } macro_rules! impl_time_additive_operator { ($trait:ty, $method:ident) => { impl $trait for Time{ type Output=Self; #[inline] fn $method(self,rhs:Self)->Self::Output { Self::raw(self.0.$method(rhs.0)) } } }; } impl_time_additive_operator!(core::ops::Add,add); impl_time_additive_operator!(core::ops::Sub,sub); impl_time_additive_operator!(core::ops::Rem,rem); macro_rules! impl_time_additive_assign_operator { ($trait:ty, $method:ident) => { impl $trait for Time{ #[inline] fn $method(&mut self,rhs:Self){ self.0.$method(rhs.0) } } }; } impl_time_additive_assign_operator!(core::ops::AddAssign,add_assign); impl_time_additive_assign_operator!(core::ops::SubAssign,sub_assign); impl_time_additive_assign_operator!(core::ops::RemAssign,rem_assign); impl std::ops::Mul for Time{ type Output=Ratio,fixed_wide::fixed::Fixed<2,64>>; #[inline] fn mul(self,rhs:Self)->Self::Output{ Ratio::new(Fixed::raw(self.0)*Fixed::raw(rhs.0),Fixed::raw_digit(1_000_000_000i64.pow(2))) } } impl std::ops::Div for Time{ type Output=Self; #[inline] fn div(self,rhs:i64)->Self::Output{ Self::raw(self.0/rhs) } } impl std::ops::Mul for Time{ type Output=Self; #[inline] fn mul(self,rhs:i64)->Self::Output{ Self::raw(self.0*rhs) } } impl core::ops::Mul> for Planar64{ type Output=Ratio,Planar64>; fn mul(self,rhs:Time)->Self::Output{ Ratio::new(self*Fixed::raw(rhs.0),Planar64::raw(1_000_000_000)) } } #[cfg(test)] mod test_time{ use super::*; type Time=super::AbsoluteTime; #[test] fn time_from_planar64(){ let a:Time=Planar64::from(1).into(); assert_eq!(a,Time::ONE_SECOND); } #[test] fn time_from_ratio(){ let a:Time=Ratio::new(Planar64::from(1),Planar64::from(1)).into(); assert_eq!(a,Time::ONE_SECOND); } #[test] fn time_squared(){ let a=Time::from_secs(2); assert_eq!(a*a,Ratio::new(Fixed::<2,64>::raw_digit(1_000_000_000i64.pow(2))*4,Fixed::<2,64>::raw_digit(1_000_000_000i64.pow(2)))); } #[test] fn time_times_planar64(){ let a=Time::from_secs(2); let b=Planar64::from(2); assert_eq!(b*a,Ratio::new(Fixed::<2,64>::raw_digit(1_000_000_000*(1<<32))<<2,Fixed::<1,32>::raw_digit(1_000_000_000))); } } #[inline] const fn gcd(mut a:u64,mut b:u64)->u64{ while b!=0{ (a,b)=(b,a.rem_euclid(b)); }; a } #[derive(Clone,Copy,Debug,Hash)] pub struct Ratio64{ num:i64, den:u64, } impl Ratio64{ pub const ZERO:Self=Ratio64{num:0,den:1}; pub const ONE:Self=Ratio64{num:1,den:1}; #[inline] pub const fn new(num:i64,den:u64)->Option{ if den==0{ None }else{ let d=gcd(num.unsigned_abs(),den); Some(Self{num:num/(d as i64),den:den/d}) } } #[inline] pub const fn num(self)->i64{ self.num } #[inline] pub const fn den(self)->u64{ self.den } #[inline] pub const fn mul_int(&self,rhs:i64)->i64{ rhs*self.num/(self.den as i64) } #[inline] pub const fn rhs_div_int(&self,rhs:i64)->i64{ rhs*(self.den as i64)/self.num } #[inline] pub const fn mul_ref(&self,rhs:&Ratio64)->Ratio64{ let (num,den)=(self.num*rhs.num,self.den*rhs.den); let d=gcd(num.unsigned_abs(),den); Self{ num:num/(d as i64), den:den/d, } } } //from num_traits crate #[inline] fn integer_decode_f32(f: f32) -> (u64, i16, i8) { let bits: u32 = f.to_bits(); let sign: i8 = if bits >> 31 == 0 { 1 } else { -1 }; let mut exponent: i16 = ((bits >> 23) & 0xff) as i16; let mantissa = if exponent == 0 { (bits & 0x7fffff) << 1 } else { (bits & 0x7fffff) | 0x800000 }; // Exponent bias + mantissa shift exponent -= 127 + 23; (mantissa as u64, exponent, sign) } #[inline] fn integer_decode_f64(f: f64) -> (u64, i16, i8) { let bits: u64 = f.to_bits(); let sign: i8 = if bits >> 63 == 0 { 1 } else { -1 }; let mut exponent: i16 = ((bits >> 52) & 0x7ff) as i16; let mantissa = if exponent == 0 { (bits & 0xfffffffffffff) << 1 } else { (bits & 0xfffffffffffff) | 0x10000000000000 }; // Exponent bias + mantissa shift exponent -= 1023 + 52; (mantissa, exponent, sign) } #[derive(Debug)] pub enum Ratio64TryFromFloatError{ Nan, Infinite, Subnormal, HighlyNegativeExponent(i16), HighlyPositiveExponent(i16), } const MAX_DENOMINATOR:u128=u64::MAX as u128; #[inline] fn ratio64_from_mes((m,e,s):(u64,i16,i8))->Result{ if e< -127{ //this can also just be zero Err(Ratio64TryFromFloatError::HighlyNegativeExponent(e)) }else if e< -63{ //approximate input ratio within denominator limit let mut target_num=m as u128; let mut target_den=1u128<<-e; let mut num=1; let mut den=0; let mut prev_num=0; let mut prev_den=1; while target_den!=0{ let whole=target_num/target_den; (target_num,target_den)=(target_den,target_num-whole*target_den); let new_num=whole*num+prev_num; let new_den=whole*den+prev_den; if MAX_DENOMINATOR for Ratio64{ type Error=Ratio64TryFromFloatError; #[inline] fn try_from(value:f32)->Result{ match value.classify(){ std::num::FpCategory::Nan=>Err(Self::Error::Nan), std::num::FpCategory::Infinite=>Err(Self::Error::Infinite), std::num::FpCategory::Zero=>Ok(Self::ZERO), std::num::FpCategory::Subnormal |std::num::FpCategory::Normal=>ratio64_from_mes(integer_decode_f32(value)), } } } impl TryFrom for Ratio64{ type Error=Ratio64TryFromFloatError; #[inline] fn try_from(value:f64)->Result{ match value.classify(){ std::num::FpCategory::Nan=>Err(Self::Error::Nan), std::num::FpCategory::Infinite=>Err(Self::Error::Infinite), std::num::FpCategory::Zero=>Ok(Self::ZERO), std::num::FpCategory::Subnormal |std::num::FpCategory::Normal=>ratio64_from_mes(integer_decode_f64(value)), } } } impl std::ops::Mul for Ratio64{ type Output=Ratio64; #[inline] fn mul(self,rhs:Ratio64)->Self::Output{ let (num,den)=(self.num*rhs.num,self.den*rhs.den); let d=gcd(num.unsigned_abs(),den); Self{ num:num/(d as i64), den:den/d, } } } impl std::ops::Mul for Ratio64{ type Output=Ratio64; #[inline] fn mul(self,rhs:i64)->Self::Output { Self{ num:self.num*rhs, den:self.den, } } } impl std::ops::Div for Ratio64{ type Output=Ratio64; #[inline] fn div(self,rhs:u64)->Self::Output { Self{ num:self.num, den:self.den*rhs, } } } #[derive(Clone,Copy,Debug,Hash)] pub struct Ratio64Vec2{ pub x:Ratio64, pub y:Ratio64, } impl Ratio64Vec2{ pub const ONE:Self=Self{x:Ratio64::ONE,y:Ratio64::ONE}; #[inline] pub const fn new(x:Ratio64,y:Ratio64)->Self{ Self{x,y} } #[inline] pub const fn mul_int(&self,rhs:glam::I64Vec2)->glam::I64Vec2{ glam::i64vec2( self.x.mul_int(rhs.x), self.y.mul_int(rhs.y), ) } } impl std::ops::Mul for Ratio64Vec2{ type Output=Ratio64Vec2; #[inline] fn mul(self,rhs:i64)->Self::Output { Self{ x:self.x*rhs, y:self.y*rhs, } } } ///[-pi,pi) = [-2^31,2^31-1] #[derive(Clone,Copy,Hash)] pub struct Angle32(i32); impl Angle32{ const ANGLE32_TO_FLOAT64_RADIANS:f64=std::f64::consts::PI/((1i64<<31) as f64); pub const FRAC_PI_2:Self=Self(1<<30); pub const NEG_FRAC_PI_2:Self=Self(-1<<30); pub const PI:Self=Self(-1<<31); #[inline] pub const fn wrap_from_i64(theta:i64)->Self{ //take lower bits //note: this was checked on compiler explorer and compiles to 1 instruction! Self(i32::from_ne_bytes(((theta&((1<<32)-1)) as u32).to_ne_bytes())) } #[inline] pub fn clamp_from_i64(theta:i64)->Self{ //the assembly is a bit confusing for this, I thought it was checking the same thing twice //but it's just checking and then overwriting the value for both upper and lower bounds. Self(theta.clamp(i32::MIN as i64,i32::MAX as i64) as i32) } #[inline] pub const fn get(&self)->i32{ self.0 } /// Clamps the value towards the midpoint of the range. /// Note that theta_min can be larger than theta_max and it will wrap clamp the other way around #[inline] pub fn clamp(&self,theta_min:Self,theta_max:Self)->Self{ //((max-min as u32)/2 as i32)+min let midpoint=(( (theta_max.0 as u32) .wrapping_sub(theta_min.0 as u32) /2 ) as i32)//(u32::MAX/2) as i32 ALWAYS works .wrapping_add(theta_min.0); //(theta-mid).clamp(max-mid,min-mid)+mid Self( self.0.wrapping_sub(midpoint) .max(theta_min.0.wrapping_sub(midpoint)) .min(theta_max.0.wrapping_sub(midpoint)) .wrapping_add(midpoint) ) } #[inline] pub fn cos_sin(&self)->(Planar64,Planar64){ /* //cordic let a=self.0 as u32; //initialize based on the quadrant let (mut x,mut y)=match (a&(1<<31)!=0,a&(1<<30)!=0){ (false,false)=>( 1i64<<32, 0i64 ),//TR (false,true )=>( 0i64 , 1i64<<32),//TL (true ,false)=>(-1i64<<32, 0i64 ),//BL (true ,true )=>( 0i64 ,-1i64<<32),//BR }; println!("x={} y={}",Planar64::raw(x),Planar64::raw(y)); for i in 0..30{ if a&(1<<(29-i))!=0{ (x,y)=(x-(y>>i),y+(x>>i)); } println!("i={i} t={} x={} y={}",(a&(1<<(29-i))!=0) as u8,Planar64::raw(x),Planar64::raw(y)); } //don't forget the gain (Planar64::raw(x),Planar64::raw(y)) */ let (s,c)=(self.0 as f64*Self::ANGLE32_TO_FLOAT64_RADIANS).sin_cos(); (Planar64::raw((c*((1u64<<32) as f64)) as i64),Planar64::raw((s*((1u64<<32) as f64)) as i64)) } } impl Into for Angle32{ #[inline] fn into(self)->f32{ (self.0 as f64*Self::ANGLE32_TO_FLOAT64_RADIANS) as f32 } } impl std::ops::Neg for Angle32{ type Output=Angle32; #[inline] fn neg(self)->Self::Output{ Angle32(self.0.wrapping_neg()) } } impl std::ops::Add for Angle32{ type Output=Angle32; #[inline] fn add(self,rhs:Self)->Self::Output { Angle32(self.0.wrapping_add(rhs.0)) } } impl std::ops::Sub for Angle32{ type Output=Angle32; #[inline] fn sub(self,rhs:Self)->Self::Output { Angle32(self.0.wrapping_sub(rhs.0)) } } impl std::ops::Mul for Angle32{ type Output=Angle32; #[inline] fn mul(self,rhs:i32)->Self::Output { Angle32(self.0.wrapping_mul(rhs)) } } impl std::ops::Mul for Angle32{ type Output=Angle32; #[inline] fn mul(self,rhs:Self)->Self::Output { Angle32(self.0.wrapping_mul(rhs.0)) } } #[test] fn angle_sin_cos(){ fn close_enough(lhs:Planar64,rhs:Planar64)->bool{ (lhs-rhs).abs() Planar64{ Planar64(4*(self.0 as i64)) } } const UNIT32_ONE_FLOAT64=((1<<30) as f64); ///[-1.0,1.0] = [-2^30,2^30] pub struct Unit32Vec3(glam::IVec3); impl TryFrom<[f32;3]> for Unit32Vec3{ type Error=Unit32TryFromFloatError; fn try_from(value:[f32;3])->Result{ Ok(Self(glam::ivec3( Unit32::try_from(Planar64::try_from(value[0])?)?.0, Unit32::try_from(Planar64::try_from(value[1])?)?.0, Unit32::try_from(Planar64::try_from(value[2])?)?.0, ))) } } */ pub type Planar64TryFromFloatError=fixed_wide::fixed::FixedFromFloatError; pub type Planar64=fixed_wide::types::I32F32; pub type Planar64Vec3=linear_ops::types::Vector3; pub type Planar64Mat3=linear_ops::types::Matrix3; pub mod vec3{ use super::*; pub use linear_ops::types::Vector3; pub const MIN:Planar64Vec3=Planar64Vec3::new([Planar64::MIN;3]); pub const MAX:Planar64Vec3=Planar64Vec3::new([Planar64::MAX;3]); pub const ZERO:Planar64Vec3=Planar64Vec3::new([Planar64::ZERO;3]); pub const ZERO_2:linear_ops::types::Vector3>=linear_ops::types::Vector3::new([Fixed::<2,64>::ZERO;3]); pub const X:Planar64Vec3=Planar64Vec3::new([Planar64::ONE,Planar64::ZERO,Planar64::ZERO]); pub const Y:Planar64Vec3=Planar64Vec3::new([Planar64::ZERO,Planar64::ONE,Planar64::ZERO]); pub const Z:Planar64Vec3=Planar64Vec3::new([Planar64::ZERO,Planar64::ZERO,Planar64::ONE]); pub const ONE:Planar64Vec3=Planar64Vec3::new([Planar64::ONE,Planar64::ONE,Planar64::ONE]); pub const NEG_X:Planar64Vec3=Planar64Vec3::new([Planar64::NEG_ONE,Planar64::ZERO,Planar64::ZERO]); pub const NEG_Y:Planar64Vec3=Planar64Vec3::new([Planar64::ZERO,Planar64::NEG_ONE,Planar64::ZERO]); pub const NEG_Z:Planar64Vec3=Planar64Vec3::new([Planar64::ZERO,Planar64::ZERO,Planar64::NEG_ONE]); pub const NEG_ONE:Planar64Vec3=Planar64Vec3::new([Planar64::NEG_ONE,Planar64::NEG_ONE,Planar64::NEG_ONE]); #[inline] pub const fn int(x:i32,y:i32,z:i32)->Planar64Vec3{ Planar64Vec3::new([Planar64::raw((x as i64)<<32),Planar64::raw((y as i64)<<32),Planar64::raw((z as i64)<<32)]) } #[inline] pub fn raw_array(array:[i64;3])->Planar64Vec3{ Planar64Vec3::new(array.map(Planar64::raw)) } #[inline] pub fn raw_xyz(x:i64,y:i64,z:i64)->Planar64Vec3{ Planar64Vec3::new([Planar64::raw(x),Planar64::raw(y),Planar64::raw(z)]) } #[inline] pub fn try_from_f32_array([x,y,z]:[f32;3])->Result{ Ok(Planar64Vec3::new([ try_from_f32(x)?, try_from_f32(y)?, try_from_f32(z)?, ])) } } #[inline] pub fn int(value:i32)->Planar64{ Planar64::from(value) } #[inline] pub fn try_from_f32(value:f32)->Result{ let result:Result=value.try_into(); match result{ Ok(ok)=>Ok(ok), Err(e)=>e.underflow_to_zero(), } } pub mod mat3{ use super::*; pub use linear_ops::types::Matrix3; #[inline] pub const fn identity()->Planar64Mat3{ Planar64Mat3::new([ [Planar64::ONE,Planar64::ZERO,Planar64::ZERO], [Planar64::ZERO,Planar64::ONE,Planar64::ZERO], [Planar64::ZERO,Planar64::ZERO,Planar64::ONE], ]) } #[inline] pub fn from_diagonal(diag:Planar64Vec3)->Planar64Mat3{ Planar64Mat3::new([ [diag.x,Planar64::ZERO,Planar64::ZERO], [Planar64::ZERO,diag.y,Planar64::ZERO], [Planar64::ZERO,Planar64::ZERO,diag.z], ]) } #[inline] pub fn from_rotation_yx(x:Angle32,y:Angle32)->Planar64Mat3{ let (xc,xs)=x.cos_sin(); let (yc,ys)=y.cos_sin(); Planar64Mat3::from_cols([ Planar64Vec3::new([xc,Planar64::ZERO,-xs]), Planar64Vec3::new([(xs*ys).fix_1(),yc,(xc*ys).fix_1()]), Planar64Vec3::new([(xs*yc).fix_1(),-ys,(xc*yc).fix_1()]), ]) } #[inline] pub fn from_rotation_y(y:Angle32)->Planar64Mat3{ let (c,s)=y.cos_sin(); Planar64Mat3::from_cols([ Planar64Vec3::new([c,Planar64::ZERO,-s]), vec3::Y, Planar64Vec3::new([s,Planar64::ZERO,c]), ]) } #[inline] pub fn try_from_f32_array_2d([x_axis,y_axis,z_axis]:[[f32;3];3])->Result{ Ok(Planar64Mat3::new([ vec3::try_from_f32_array(x_axis)?.to_array(), vec3::try_from_f32_array(y_axis)?.to_array(), vec3::try_from_f32_array(z_axis)?.to_array(), ])) } } #[derive(Clone,Copy,Default,Hash,Eq,PartialEq)] pub struct Planar64Affine3{ pub matrix3:Planar64Mat3,//includes scale above 1 pub translation:Planar64Vec3, } impl Planar64Affine3{ #[inline] pub const fn new(matrix3:Planar64Mat3,translation:Planar64Vec3)->Self{ Self{matrix3,translation} } #[inline] pub fn transform_point3(&self,point:Planar64Vec3)->vec3::Vector3>{ self.translation.fix_2()+self.matrix3*point } } impl Into for Planar64Affine3{ #[inline] fn into(self)->glam::Mat4{ let matrix3=self.matrix3.to_array().map(|row|row.map(Into::::into)); let translation=self.translation.to_array().map(Into::::into); glam::Mat4::from_cols_array(&[ matrix3[0][0],matrix3[0][1],matrix3[0][2],0.0, matrix3[1][0],matrix3[1][1],matrix3[1][2],0.0, matrix3[2][0],matrix3[2][1],matrix3[2][2],0.0, translation[0],translation[1],translation[2],1.0 ]) } } #[test] fn test_sqrt(){ let r=int(400); assert_eq!(r,Planar64::raw(1717986918400)); let s=r.sqrt(); assert_eq!(s,Planar64::raw(85899345920)); }