Compare commits

..

6 Commits

15 changed files with 284 additions and 1040 deletions

View File

@@ -33,7 +33,7 @@ impl<T:Copy> std::ops::Neg for &Body<T>{
impl<T> Body<T>
where Time<T>:Copy,
{
pub const ZERO:Self=Self::new(vec3::zero(),vec3::zero(),vec3::zero(),Time::ZERO);
pub const ZERO:Self=Self::new(vec3::ZERO,vec3::ZERO,vec3::ZERO,Time::ZERO);
pub const fn new(position:Planar64Vec3,velocity:Planar64Vec3,acceleration:Planar64Vec3,time:Time<T>)->Self{
Self{
position,
@@ -107,8 +107,8 @@ impl<T> Body<T>
self.time+=dt.into();
}
pub fn infinity_dir(&self)->Option<Planar64Vec3>{
if self.velocity==vec3::zero(){
if self.acceleration==vec3::zero(){
if self.velocity==vec3::ZERO{
if self.acceleration==vec3::ZERO{
None
}else{
Some(self.acceleration)

View File

@@ -21,6 +21,12 @@ impl<M:MeshQuery> CrawlResult<M>{
CrawlResult::Hit(face,time)=>Some((face,time)),
}
}
pub fn miss(self)->Option<FEV<M>>{
match self{
CrawlResult::Miss(fev)=>Some(fev),
CrawlResult::Hit(_,_)=>None,
}
}
}
// TODO: move predict_collision_face_out algorithm in here or something

View File

@@ -1,8 +1,7 @@
mod body;
mod push_solve;
mod face_crawler;
mod model;
mod push_solve;
mod minimum_difference;
pub mod physics;

View File

@@ -1,844 +0,0 @@
use strafesnet_common::integer::vec3;
use strafesnet_common::integer::vec3::Vector3;
use strafesnet_common::integer::{Fixed,Planar64,Planar64Vec3};
use crate::model::{DirectedEdge,FEV,MeshQuery};
// This algorithm is based on Lua code
// written by Trey Reynolds in 2021
type Simplex<const N:usize,Vert>=[Vert;N];
#[derive(Clone,Copy)]
enum Simplex1_3<Vert>{
Simplex1(Simplex<1,Vert>),
Simplex2(Simplex<2,Vert>),
Simplex3(Simplex<3,Vert>),
}
impl<Vert> Simplex1_3<Vert>{
fn push_front(self,v:Vert)->Simplex2_4<Vert>{
match self{
Simplex1_3::Simplex1([v0])=>Simplex2_4::Simplex2([v,v0]),
Simplex1_3::Simplex2([v0,v1])=>Simplex2_4::Simplex3([v,v0,v1]),
Simplex1_3::Simplex3([v0,v1,v2])=>Simplex2_4::Simplex4([v,v0,v1,v2]),
}
}
}
#[derive(Clone,Copy)]
enum Simplex2_4<Vert>{
Simplex2(Simplex<2,Vert>),
Simplex3(Simplex<3,Vert>),
Simplex4(Simplex<4,Vert>),
}
/*
local function absDet(r, u, v, w)
if w then
return math.abs((u - r):Cross(v - r):Dot(w - r))
elseif v then
return (u - r):Cross(v - r).magnitude
elseif u then
return (u - r).magnitude
else
return 1
end
end
*/
impl<Vert> Simplex2_4<Vert>{
fn det_is_zero<M:MeshQuery<Vert=Vert>>(self,mesh:&M)->bool{
match self{
Self::Simplex4([p0,p1,p2,p3])=>{
let p0=mesh.vert(p0);
let p1=mesh.vert(p1);
let p2=mesh.vert(p2);
let p3=mesh.vert(p3);
(p1-p0).cross(p2-p0).dot(p3-p0)==Fixed::ZERO
},
Self::Simplex3([p0,p1,p2])=>{
let p0=mesh.vert(p0);
let p1=mesh.vert(p1);
let p2=mesh.vert(p2);
(p1-p0).cross(p2-p0)==vec3::zero()
},
Self::Simplex2([p0,p1])=>{
let p0=mesh.vert(p0);
let p1=mesh.vert(p1);
p1-p0==vec3::zero()
}
}
}
}
/*
local function choosePerpendicularDirection(d)
local x, y, z = d.x, d.y, d.z
local best = math.min(x*x, y*y, z*z)
if x*x == best then
return Vector3.new(y*y + z*z, -x*y, -x*z)
elseif y*y == best then
return Vector3.new(-x*y, x*x + z*z, -y*z)
else
return Vector3.new(-x*z, -y*z, x*x + y*y)
end
end
*/
fn choose_perpendicular_direction(d:Planar64Vec3)->Planar64Vec3{
let x=d.x.abs();
let y=d.y.abs();
let z=d.z.abs();
if x<y&&x<z{
Vector3::new([Fixed::ZERO,-d.z,d.y])
}else if y<z{
Vector3::new([d.z,Fixed::ZERO,-d.x])
}else{
Vector3::new([-d.y,d.x,Fixed::ZERO])
}
}
const fn choose_any_direction()->Planar64Vec3{
vec3::X
}
fn reduce1<M:MeshQuery>(
[v0]:Simplex<1,M::Vert>,
mesh:&M,
point:Planar64Vec3,
)->Reduced<M::Vert>{
// --debug.profilebegin("reduceSimplex0")
// local a = a1 - a0
let p0=mesh.vert(v0);
// local p = -a
let p=-(p0+point);
// local direction = p
let mut dir=p;
// if direction.magnitude == 0 then
// direction = chooseAnyDirection()
if dir==vec3::zero(){
dir=choose_any_direction();
}
// return direction, a0, a1
Reduced{
dir,
simplex:Simplex1_3::Simplex1([v0]),
}
}
// local function reduceSimplex1(a0, a1, b0, b1)
fn reduce2<M:MeshQuery>(
[v0,v1]:Simplex<2,M::Vert>,
mesh:&M,
point:Planar64Vec3,
)->Reduced<M::Vert>{
// --debug.profilebegin("reduceSimplex1")
// local a = a1 - a0
// local b = b1 - b0
let p0=mesh.vert(v0);
let p1=mesh.vert(v1);
// local p = -a
// local u = b - a
let p=-(p0+point);
let u=p1-p0;
// -- modify to take into account the radiuses
// local p_u = p:Dot(u)
let p_u=p.dot(u);
// if p_u >= 0 then
if !p_u.is_negative(){
// local direction = u:Cross(p):Cross(u)
let direction=u.cross(p).cross(u);
// if direction.magnitude == 0 then
if direction==vec3::zero(){
return Reduced{
dir:choose_perpendicular_direction(u),
simplex:Simplex1_3::Simplex2([v0,v1]),
};
}
// -- modify the direction to take into account a0R and b0R
// return direction, a0, a1, b0, b1
return Reduced{
dir:direction.narrow_1().unwrap(),
simplex:Simplex1_3::Simplex2([v0,v1]),
};
}
// local direction = p
let mut dir=p;
// if direction.magnitude == 0 then
if dir==vec3::zero(){
dir=choose_perpendicular_direction(u);
}
// return direction, a0, a1
Reduced{
dir,
simplex:Simplex1_3::Simplex1([v0]),
}
}
// local function reduceSimplex2(a0, a1, b0, b1, c0, c1)
fn reduce3<M:MeshQuery>(
[v0,mut v1,v2]:Simplex<3,M::Vert>,
mesh:&M,
point:Planar64Vec3,
)->Reduced<M::Vert>{
// --debug.profilebegin("reduceSimplex2")
// local a = a1 - a0
// local b = b1 - b0
// local c = c1 - c0
let p0=mesh.vert(v0);
let p1=mesh.vert(v1);
let p2=mesh.vert(v2);
// local p = -a
// local u = b - a
// local v = c - a
let p=-(p0+point);
let mut u=p1-p0;
let v=p2-p0;
// local uv = u:Cross(v)
// local up = u:Cross(p)
// local pv = p:Cross(v)
// local uv_up = uv:Dot(up)
// local uv_pv = uv:Dot(pv)
let mut uv=u.cross(v);
let mut up=u.cross(p);
let pv=p.cross(v);
let uv_up=uv.dot(up);
let uv_pv=uv.dot(pv);
// if uv_up >= 0 and uv_pv >= 0 then
if !uv_up.is_negative()&&!uv_pv.is_negative(){
// local uvp = uv:Dot(p)
let uvp=uv.dot(p);
// local direction = uvp < 0 and -uv or uv
let direction=if uvp.is_negative(){
-uv
}else{
uv
};
// return direction, a0, a1, b0, b1, c0, c1
return Reduced{
dir:direction.narrow_1().unwrap(),
simplex:Simplex1_3::Simplex3([v0,v1,v2]),
};
}
// local u_u = u:Dot(u)
// local v_v = v:Dot(v)
// local uDist = uv_up/(u_u*v.magnitude)
// local vDist = uv_pv/(v_v*u.magnitude)
// local minDist2 = math.min(uDist, vDist)
let u_dist=uv_up*v.length();
let v_dist=uv_pv*u.length();
// if vDist == minDist2 then
if v_dist<u_dist{
u=v;
up=-pv;
uv=-uv;
// b0 = c0
// b1 = c1
v1=v2;
}
// local p_u = p:Dot(u)
let p_u=p.dot(u);
// if p_u >= 0 then
if !p_u.is_negative(){
// local direction = up:Cross(u)
let direction=up.cross(u);
// if direction.magnitude == 0 then
if direction==vec3::zero(){
// direction = uv
return Reduced{
dir:uv.narrow_1().unwrap(),
simplex:Simplex1_3::Simplex2([v0,v1]),
};
}
// return direction, a0, a1, b0, b1
return Reduced{
dir:direction.narrow_1().unwrap(),
simplex:Simplex1_3::Simplex2([v0,v1]),
};
}
// local direction = p
let dir=p;
// if direction.magnitude == 0 then
if dir==vec3::zero(){
// direction = uv
return Reduced{
dir:uv.narrow_1().unwrap(),
simplex:Simplex1_3::Simplex1([v0]),
};
}
// return direction, a0, a0
Reduced{
dir,
simplex:Simplex1_3::Simplex1([v0]),
}
}
// local function reduceSimplex3(a0, a1, b0, b1, c0, c1, d0, d1)
fn reduce4<M:MeshQuery>(
[v0,mut v1,mut v2,v3]:Simplex<4,M::Vert>,
mesh:&M,
point:Planar64Vec3,
)->Reduce<M::Vert>{
// --debug.profilebegin("reduceSimplex3")
// local a = a1 - a0
// local b = b1 - b0
// local c = c1 - c0
// local d = d1 - d0
let p0=mesh.vert(v0);
let p1=mesh.vert(v1);
let p2=mesh.vert(v2);
let p3=mesh.vert(v3);
// local p = -a
// local u = b - a
// local v = c - a
// local w = d - a
let p=-(p0+point);
let mut u=p1-p0;
let mut v=p2-p0;
let w=p3-p0;
// local uv = u:Cross(v)
// local vw = v:Cross(w)
// local wu = w:Cross(u)
// local uvw = uv:Dot(w)
// local pvw = vw:Dot(p)
// local upw = wu:Dot(p)
// local uvp = uv:Dot(p)
let mut uv=u.cross(v);
let vw=v.cross(w);
let wu=w.cross(u);
let uv_w=uv.dot(w);
let pv_w=vw.dot(p);
let up_w=wu.dot(p);
let uv_p=uv.dot(p);
// if pvw/uvw >= 0 and upw/uvw >= 0 and uvp/uvw >= 0 then
if !pv_w.div_sign(uv_w).is_negative()
||!up_w.div_sign(uv_w).is_negative()
||!uv_p.div_sign(uv_w).is_negative(){
// origin is contained, this is a positive detection
// local direction = Vector3.new(0, 0, 0)
// return direction, a0, a1, b0, b1, c0, c1, d0, d1
return Reduce::Escape([v0,v1,v2,v3]);
}
// local uvwSign = uvw < 0 and -1 or uvw > 0 and 1 or 0
// local uvDist = uvp*uvwSign/uv.magnitude
// local vwDist = pvw*uvwSign/vw.magnitude
// local wuDist = upw*uvwSign/wu.magnitude
// local minDist3 = math.min(uvDist, vwDist, wuDist)
let uv_dist=uv_p.mul_sign(uv_w);
let vw_dist=pv_w.mul_sign(uv_w);
let wu_dist=up_w.mul_sign(uv_w);
let wu_len=wu.length();
let uv_len=uv.length();
let vw_len=vw.length();
if vw_dist*wu_len<wu_dist*vw_len{
// if vwDist == minDist3 then
if vw_dist*uv_len<uv_dist*vw_len{
(u,v)=(v,w);
uv=vw;
// uv_p=pv_w; // unused
// b0, c0 = c0, d0
// b1, c1 = c1, d1
(v1,v2)=(v2,v3);
}else{
v2=v3;
}
}else{
// elseif wuDist == minDist3 then
if wu_dist*uv_len<uv_dist*wu_len{
(u,v)=(w,u);
uv=wu;
// uv_p=up_w; // unused
// b0, c0 = d0, b0
// b1, c1 = d1, b1
// before [a,b,c,d]
(v1,v2)=(v3,v1);
// after [a,d,b]
}else{
v2=v3;
}
}
// local up = u:Cross(p)
// local pv = p:Cross(v)
// local uv_up = uv:Dot(up)
// local uv_pv = uv:Dot(pv)
let mut up=u.cross(p);
let pv=p.cross(v);
let uv_up=uv.dot(up);
let uv_pv=uv.dot(pv);
// if uv_up >= 0 and uv_pv >= 0 then
if !uv_up.is_negative()&&!uv_pv.is_negative(){
// local direction = uvw < 0 and uv or -uv
// return direction, a0, a1, b0, b1, c0, c1
if uv_w.is_negative(){
return Reduce::Reduced(Reduced{
dir:uv.narrow_1().unwrap(),
simplex:Simplex1_3::Simplex3([v0,v1,v2]),
});
}else{
return Reduce::Reduced(Reduced{
dir:-uv.narrow_1().unwrap(),
simplex:Simplex1_3::Simplex3([v0,v1,v2]),
});
}
}
// local u_u = u:Dot(u)
// local v_v = v:Dot(v)
// local uDist = uv_up/(u_u*v.magnitude)
// local vDist = uv_pv/(v_v*u.magnitude)
// local minDist2 = math.min(uDist, vDist)
let u_dist=uv_up*v.length();
let v_dist=uv_pv*u.length();
// if vDist == minDist2 then
if v_dist<u_dist{
u=v;
up=-pv;
uv=-uv;
// b0 = c0
// b1 = c1
v1=v2;
}
// local p_u = p:Dot(u)
let p_u=p.dot(u);
// if p_u >= 0 then
if !p_u.is_negative(){
// local direction = up:Cross(u)
let direction=up.cross(u);
// if direction.magnitude == 0 then
if direction==vec3::zero(){
// direction = uvw < 0 and uv or -uv
// return direction, a0, a1, b0, b1
if uv_w.is_negative(){
return Reduce::Reduced(Reduced{
dir:uv.narrow_1().unwrap(),
simplex:Simplex1_3::Simplex2([v0,v1]),
});
}else{
return Reduce::Reduced(Reduced{
dir:-uv.narrow_1().unwrap(),
simplex:Simplex1_3::Simplex2([v0,v1]),
});
}
}
// return direction, a0, a1, b0, b1
return Reduce::Reduced(Reduced{
dir:direction.narrow_1().unwrap(),
simplex:Simplex1_3::Simplex2([v0,v1]),
});
}
// local direction = p
let dir=p;
// if direction.magnitude == 0 then
if dir==vec3::zero(){
// direction = uvw < 0 and uv or -uv
if uv_w.is_negative(){
return Reduce::Reduced(Reduced{
dir:uv.narrow_1().unwrap(),
simplex:Simplex1_3::Simplex1([v0]),
});
}else{
return Reduce::Reduced(Reduced{
dir:-uv.narrow_1().unwrap(),
simplex:Simplex1_3::Simplex1([v0]),
});
}
}
// return direction, a0, a1
Reduce::Reduced(Reduced{
dir,
simplex:Simplex1_3::Simplex1([v0]),
})
}
struct Reduced<Vert>{
dir:Planar64Vec3,
simplex:Simplex1_3<Vert>,
}
enum Reduce<Vert>{
Escape(Simplex<4,Vert>),
Reduced(Reduced<Vert>),
}
impl<Vert> Simplex2_4<Vert>{
fn reduce<M:MeshQuery<Vert=Vert>>(self,mesh:&M,point:Planar64Vec3)->Reduce<Vert>{
match self{
Self::Simplex2(simplex)=>Reduce::Reduced(reduce2(simplex,mesh,point)),
Self::Simplex3(simplex)=>Reduce::Reduced(reduce3(simplex,mesh,point)),
Self::Simplex4(simplex)=>reduce4(simplex,mesh,point),
}
}
}
pub fn contains_point<M:MeshQuery>(mesh:&M,point:Planar64Vec3)->bool{
const ENABLE_FAST_FAIL:bool=true;
// TODO: remove mesh negation
minimum_difference::<ENABLE_FAST_FAIL,_,M>(&-mesh,point,
// on_exact
|is_intersecting,_simplex|{
is_intersecting
},
// on_escape
|_simplex|{
// intersection is guaranteed at this point
true
},
// fast_fail value
||false
)
}
//infinity fev algorithm state transition
#[derive(Debug)]
enum Transition<Vert>{
Done,//found closest vert, no edges are better
Vert(Vert),//transition to vert
}
enum EV<M:MeshQuery>{
Vert(M::Vert),
Edge(<M::Edge as DirectedEdge>::UndirectedEdge),
}
impl<M:MeshQuery> From<EV<M>> for FEV<M>{
fn from(value:EV<M>)->Self{
match value{
EV::Vert(minkowski_vert)=>FEV::Vert(minkowski_vert),
EV::Edge(minkowski_edge)=>FEV::Edge(minkowski_edge),
}
}
}
trait Contains{
fn contains(&self,point:Planar64Vec3)->bool;
}
// convenience type to check if a point is within some threshold of a plane.
struct ThickPlane{
point:Planar64Vec3,
normal:Vector3<Fixed<2,64>>,
epsilon:Fixed<3,96>,
}
impl ThickPlane{
fn new<M:MeshQuery>(mesh:&M,[v0,v1,v2]:Simplex<3,M::Vert>)->Self{
let p0=mesh.vert(v0);
let p1=mesh.vert(v1);
let p2=mesh.vert(v2);
let point=p0;
let normal=(p1-p0).cross(p2-p0);
// Allow ~ 2*sqrt(3) units of thickness on the plane
// This is to account for the variance of two voxels across the longest diagonal
let epsilon=(normal.length()*(Planar64::EPSILON*3)).wrap_3();
Self{point,normal,epsilon}
}
}
impl Contains for ThickPlane{
fn contains(&self,point:Planar64Vec3)->bool{
(point-self.point).dot(self.normal).abs()<=self.epsilon
}
}
struct ThickLine{
point:Planar64Vec3,
dir:Planar64Vec3,
epsilon:Fixed<4,128>,
}
impl ThickLine{
fn new<M:MeshQuery>(mesh:&M,[v0,v1]:Simplex<2,M::Vert>)->Self{
let p0=mesh.vert(v0);
let p1=mesh.vert(v1);
let point=p0;
let dir=p1-p0;
// Allow ~ 2*sqrt(3) units of thickness on the plane
// This is to account for the variance of two voxels across the longest diagonal
let epsilon=(dir.length_squared()*(Planar64::EPSILON*3)).widen_4();
Self{point,dir,epsilon}
}
}
impl Contains for ThickLine{
fn contains(&self,point:Planar64Vec3)->bool{
(point-self.point).cross(self.dir).length_squared()<=self.epsilon
}
}
struct EVFinder<'a,M,C>{
mesh:&'a M,
constraint:C,
best_distance_squared:Fixed<2,64>,
}
impl<M:MeshQuery,C:Contains> EVFinder<'_,M,C>{
fn next_transition_vert(&mut self,vert_id:M::Vert,point:Planar64Vec3)->Transition<M::Vert>{
let mut best_transition=Transition::Done;
for &directed_edge_id in self.mesh.vert_edges(vert_id).as_ref(){
//test if this edge's opposite vertex closer
let edge_verts=self.mesh.edge_verts(directed_edge_id.as_undirected());
//select opposite vertex
let test_vert_id=edge_verts.as_ref()[directed_edge_id.parity() as usize];
let test_pos=self.mesh.vert(test_vert_id);
let diff=point-test_pos;
let distance_squared=diff.dot(diff);
// ensure test_vert_id is coplanar to simplex
if distance_squared<self.best_distance_squared&&self.constraint.contains(test_pos){
best_transition=Transition::Vert(test_vert_id);
self.best_distance_squared=distance_squared;
}
}
best_transition
}
fn final_ev(&mut self,vert_id:M::Vert,point:Planar64Vec3)->EV<M>{
let mut best_transition=EV::Vert(vert_id);
let vert_pos=self.mesh.vert(vert_id);
let diff=point-vert_pos;
for &directed_edge_id in self.mesh.vert_edges(vert_id).as_ref(){
//test if this edge is closer
let edge_verts=self.mesh.edge_verts(directed_edge_id.as_undirected());
let test_vert_id=edge_verts.as_ref()[directed_edge_id.parity() as usize];
let test_pos=self.mesh.vert(test_vert_id);
let edge_n=test_pos-vert_pos;
let d=edge_n.dot(diff);
//test the edge
let edge_nn=edge_n.dot(edge_n);
// ensure edge contains closest point and directed_edge_id is coplanar to simplex
if !d.is_negative()&&d<=edge_nn&&self.constraint.contains(test_pos){
let distance_squared={
let c=diff.cross(edge_n);
//wrap for speed
(c.dot(c)/edge_nn).divide().wrap_2()
};
if distance_squared<=self.best_distance_squared{
best_transition=EV::Edge(directed_edge_id.as_undirected());
self.best_distance_squared=distance_squared;
}
}
}
best_transition
}
fn crawl_boundaries(&mut self,mut vert_id:M::Vert,point:Planar64Vec3)->EV<M>{
loop{
match self.next_transition_vert(vert_id,point){
Transition::Done=>return self.final_ev(vert_id,point),
Transition::Vert(new_vert_id)=>vert_id=new_vert_id,
}
}
}
}
/// This function drops a vertex down to an edge or a face if the path from infinity did not cross any vertex-edge boundaries but the point is supposed to have already crossed a boundary down from a vertex
fn crawl_to_closest_ev<M:MeshQuery>(mesh:&M,simplex:Simplex<2,M::Vert>,point:Planar64Vec3)->EV<M>{
// naively start at the closest vertex
// the closest vertex is not necessarily the one with the fewest boundary hops
// but it doesn't matter, we will get there regardless.
let (vert_id,best_distance_squared)=simplex.into_iter().map(|vert_id|{
let diff=point-mesh.vert(vert_id);
(vert_id,diff.dot(diff))
}).min_by_key(|&(_,d)|d).unwrap();
let constraint=ThickLine::new(mesh,simplex);
let mut finder=EVFinder{constraint,mesh,best_distance_squared};
//start on any vertex
//cross uncrossable vertex-edge boundaries until you find the closest vertex or edge
//cross edge-face boundary if it's uncrossable
finder.crawl_boundaries(vert_id,point)
}
/// This function drops a vertex down to an edge or a face if the path from infinity did not cross any vertex-edge boundaries but the point is supposed to have already crossed a boundary down from a vertex
fn crawl_to_closest_fev<M:MeshQuery>(mesh:&M,simplex:Simplex<3,M::Vert>,point:Planar64Vec3)->FEV::<M>{
// naively start at the closest vertex
// the closest vertex is not necessarily the one with the fewest boundary hops
// but it doesn't matter, we will get there regardless.
let (vert_id,best_distance_squared)=simplex.into_iter().map(|vert_id|{
let diff=point-mesh.vert(vert_id);
(vert_id,diff.dot(diff))
}).min_by_key(|&(_,d)|d).unwrap();
let constraint=ThickPlane::new(mesh,simplex);
let mut finder=EVFinder{constraint,mesh,best_distance_squared};
//start on any vertex
//cross uncrossable vertex-edge boundaries until you find the closest vertex or edge
//cross edge-face boundary if it's uncrossable
match finder.crawl_boundaries(vert_id,point){
//if a vert is returned, it is the closest point to the infinity point
EV::Vert(vert_id)=>FEV::Vert(vert_id),
EV::Edge(edge_id)=>{
//cross to face if we are on the wrong side
let edge_n=mesh.edge_n(edge_id);
// point is multiplied by two because vert_sum sums two vertices.
let delta_pos=point*2-{
let &[v0,v1]=mesh.edge_verts(edge_id).as_ref();
mesh.vert(v0)+mesh.vert(v1)
};
for (i,&face_id) in mesh.edge_faces(edge_id).as_ref().iter().enumerate(){
//test if this face is closer
let (face_n,d)=mesh.face_nd(face_id);
//if test point is behind face, the face is invalid
// TODO: find out why I thought of this backwards
if !(face_n.dot(point)-d).is_positive(){
continue;
}
//edge-face boundary nd, n facing out of the face towards the edge
let boundary_n=face_n.cross(edge_n)*(i as i64*2-1);
let boundary_d=boundary_n.dot(delta_pos);
//is test point behind edge, i.e. contained in the face
if !boundary_d.is_positive(){
//both faces cannot pass this condition, return early if one does.
return FEV::Face(face_id);
}
}
FEV::Edge(edge_id)
},
}
}
pub fn closest_fev_not_inside<M:MeshQuery>(mesh:&M,point:Planar64Vec3)->Option<FEV<M>>{
const ENABLE_FAST_FAIL:bool=false;
// TODO: remove mesh negation
minimum_difference::<ENABLE_FAST_FAIL,_,M>(&-mesh,point,
// on_exact
|is_intersecting,simplex|{
if is_intersecting{
return None;
}
// Convert simplex to FEV
// Vertices must be inverted since the mesh is inverted
Some(match simplex{
Simplex1_3::Simplex1([v0])=>FEV::Vert(-v0),
Simplex1_3::Simplex2([v0,v1])=>{
// invert
let (v0,v1)=(-v0,-v1);
let ev=crawl_to_closest_ev(mesh,[v0,v1],point);
if !matches!(ev,EV::Edge(_)){
println!("I can't believe it's not an edge!");
}
ev.into()
},
Simplex1_3::Simplex3([v0,v1,v2])=>{
// invert
let (v0,v1,v2)=(-v0,-v1,-v2);
// Shimmy to the side until you find a face that contains the closest point
// it's ALWAYS representable as a face, but this algorithm may
// return E or V in edge cases but I don't think that will break the face crawler
let fev=crawl_to_closest_fev(mesh,[v0,v1,v2],point);
if !matches!(fev,FEV::Face(_)){
println!("I can't believe it's not a face!");
}
fev
},
})
},
// on_escape
|_simplex|{
// intersection is guaranteed at this point
// local norm, dist, u0, u1, v0, v1, w0, w1 = expand(queryP, queryQ, a0, a1, b0, b1, c0, c1, d0, d1, 1e-5)
// let simplex=refine_to_exact(mesh,simplex);
None
},
// fast_fail value is irrelevant and will never be returned!
||unreachable!()
)
}
// local function minimumDifference(
// queryP, radiusP,
// queryQ, radiusQ,
// exitRadius, testIntersection
// )
fn minimum_difference<const ENABLE_FAST_FAIL:bool,T,M:MeshQuery>(
mesh:&M,
point:Planar64Vec3,
on_exact:impl FnOnce(bool,Simplex1_3<M::Vert>)->T,
on_escape:impl FnOnce(Simplex<4,M::Vert>)->T,
on_fast_fail:impl FnOnce()->T,
)->T{
// local initialAxis = queryQ() - queryP()
// local new_point_p = queryP(initialAxis)
// local new_point_q = queryQ(-initialAxis)
// local direction, a0, a1, b0, b1, c0, c1, d0, d1
let mut initial_axis=mesh.hint_point()+point;
// degenerate case
if initial_axis==vec3::zero(){
initial_axis=choose_any_direction();
}
let last_point=mesh.farthest_vert(-initial_axis);
// this represents the 'a' value in the commented code
let mut last_pos=mesh.vert(last_point);
let Reduced{dir:mut direction,simplex:mut simplex_small}=reduce1([last_point],mesh,point);
// exitRadius = testIntersection and 0 or exitRadius or 1/0
// for _ = 1, 100 do
loop{
// new_point_p = queryP(-direction)
// new_point_q = queryQ(direction)
// local next_point = new_point_q - new_point_p
let next_point=mesh.farthest_vert(direction);
let next_pos=mesh.vert(next_point);
// if -direction:Dot(next_point) > (exitRadius + radiusP + radiusQ)*direction.magnitude then
if ENABLE_FAST_FAIL&&direction.dot(next_pos+point).is_negative(){
return on_fast_fail();
}
let simplex_big=simplex_small.push_front(next_point);
// if
// direction:Dot(next_point - a) <= 0 or
// absDet(next_point, a, b, c) < 1e-6
if !direction.dot(next_pos-last_pos).is_positive()
||simplex_big.det_is_zero(mesh){
// Found enough information to compute the exact closest point.
// local norm = direction.unit
// local dist = a:Dot(norm)
// local hits = -dist < radiusP + radiusQ
let is_intersecting=(last_pos+point).dot(direction).is_positive();
return on_exact(is_intersecting,simplex_small);
}
// direction, a0, a1, b0, b1, c0, c1, d0, d1 = reduceSimplex(new_point_p, new_point_q, a0, a1, b0, b1, c0, c1)
match simplex_big.reduce(mesh,point){
// if a and b and c and d then
Reduce::Escape(simplex)=>{
// Enough information to conclude that the meshes are intersecting.
// Topology information is computed if needed.
return on_escape(simplex);
},
Reduce::Reduced(reduced)=>{
direction=reduced.dir;
simplex_small=reduced.simplex;
},
}
// next loop this will be a
last_pos=next_pos;
}
}
// TODO: unit tests

View File

@@ -90,9 +90,6 @@ pub trait MeshQuery{
let &[v0,v1]=self.edge_verts(directed_edge_id.as_undirected()).as_ref();
(self.vert(v1)-self.vert(v0))*((directed_edge_id.parity() as i64)*2-1)
}
/// This must return a point inside the mesh.
fn hint_point(&self)->Planar64Vec3;
fn farthest_vert(&self,dir:Planar64Vec3)->Self::Vert;
fn vert(&self,vert_id:Self::Vert)->Planar64Vec3;
fn face_nd(&self,face_id:Self::Face)->(Self::Normal,Self::Offset);
fn face_edges(&self,face_id:Self::Face)->impl AsRef<[Self::Edge]>;
@@ -435,7 +432,7 @@ impl TryFrom<&model::Mesh> for PhysicsMesh{
}
}
#[derive(Debug,Clone,Copy)]
#[derive(Debug)]
pub struct PhysicsMeshView<'a>{
data:&'a PhysicsMeshData,
topology:&'a PhysicsMeshTopology,
@@ -450,22 +447,6 @@ impl MeshQuery for PhysicsMeshView<'_>{
let face_idx=self.topology.faces[face_id.get() as usize].get() as usize;
(self.data.faces[face_idx].normal,self.data.faces[face_idx].dot)
}
fn hint_point(&self)->Planar64Vec3{
// invariant: meshes always encompass the origin
vec3::zero()
}
fn farthest_vert(&self,dir:Planar64Vec3)->SubmeshVertId{
//this happens to be well-defined. there are no virtual virtices
SubmeshVertId::new(
self.topology.verts.iter()
.enumerate()
.max_by_key(|&(_,&vert_id)|
dir.dot(self.data.verts[vert_id.get() as usize].0)
)
//assume there is more than zero vertices.
.unwrap().0 as u32
)
}
//ideally I never calculate the vertex position, but I have to for the graphical meshes...
fn vert(&self,vert_id:SubmeshVertId)->Planar64Vec3{
let vert_idx=self.topology.verts[vert_id.get() as usize].get() as usize;
@@ -504,7 +485,7 @@ impl PhysicsMeshTransform{
}
}
#[derive(Debug,Clone,Copy)]
#[derive(Debug)]
pub struct TransformedMesh<'a>{
view:PhysicsMeshView<'a>,
transform:&'a PhysicsMeshTransform,
@@ -522,6 +503,18 @@ impl TransformedMesh<'_>{
pub fn verts<'a>(&'a self)->impl Iterator<Item=Vector3<Fixed<2,64>>>+'a{
self.view.data.verts.iter().map(|&Vert(pos)|self.transform.vertex.transform_point3(pos))
}
fn farthest_vert(&self,dir:Planar64Vec3)->SubmeshVertId{
//this happens to be well-defined. there are no virtual virtices
SubmeshVertId::new(
self.view.topology.verts.iter()
.enumerate()
.max_by_key(|&(_,&vert_id)|
dir.dot(self.transform.vertex.transform_point3(self.view.data.verts[vert_id.get() as usize].0))
)
//assume there is more than zero vertices.
.unwrap().0 as u32
)
}
}
impl MeshQuery for TransformedMesh<'_>{
type Face=SubmeshFaceId;
@@ -539,21 +532,6 @@ impl MeshQuery for TransformedMesh<'_>{
// wrap for speed
self.transform.vertex.transform_point3(self.view.vert(vert_id)).wrap_1()
}
fn hint_point(&self)->Planar64Vec3{
self.transform.vertex.translation
}
fn farthest_vert(&self,dir:Planar64Vec3)->SubmeshVertId{
//this happens to be well-defined. there are no virtual virtices
SubmeshVertId::new(
self.view.topology.verts.iter()
.enumerate()
.max_by_key(|&(_,&vert_id)|
dir.dot(self.transform.vertex.transform_point3(self.view.data.verts[vert_id.get() as usize].0))
)
//assume there is more than zero vertices.
.unwrap().0 as u32
)
}
#[inline]
fn face_edges(&self,face_id:SubmeshFaceId)->impl AsRef<[SubmeshDirectedEdgeId]>{
self.view.face_edges(face_id)
@@ -580,20 +558,11 @@ impl MeshQuery for TransformedMesh<'_>{
//(face,vertex)
//(edge,edge)
//(vertex,face)
#[derive(Clone,Copy,Debug,Eq,PartialEq)]
#[derive(Clone,Copy,Debug)]
pub enum MinkowskiVert{
VertVert(SubmeshVertId,SubmeshVertId),
}
// TODO: remove this
impl core::ops::Neg for MinkowskiVert{
type Output=Self;
fn neg(self)->Self::Output{
match self{
MinkowskiVert::VertVert(v0,v1)=>MinkowskiVert::VertVert(v1,v0),
}
}
}
#[derive(Clone,Copy,Debug,Eq,PartialEq)]
#[derive(Clone,Copy,Debug)]
pub enum MinkowskiEdge{
VertEdge(SubmeshVertId,SubmeshEdgeId),
EdgeVert(SubmeshEdgeId,SubmeshVertId),
@@ -608,7 +577,7 @@ impl UndirectedEdge for MinkowskiEdge{
}
}
}
#[derive(Clone,Copy,Debug,Eq,PartialEq)]
#[derive(Clone,Copy,Debug)]
pub enum MinkowskiDirectedEdge{
VertEdge(SubmeshVertId,SubmeshDirectedEdgeId),
EdgeVert(SubmeshDirectedEdgeId,SubmeshVertId),
@@ -629,7 +598,7 @@ impl DirectedEdge for MinkowskiDirectedEdge{
}
}
}
#[derive(Clone,Copy,Debug,Hash)]
#[derive(Clone,Copy,Debug,Hash,Eq,PartialEq)]
pub enum MinkowskiFace{
VertFace(SubmeshVertId,SubmeshFaceId),
EdgeEdge(SubmeshEdgeId,SubmeshEdgeId,bool),
@@ -645,20 +614,23 @@ pub struct MinkowskiMesh<'a>{
mesh1:TransformedMesh<'a>,
}
//infinity fev algorithm state transition
#[derive(Debug)]
enum Transition{
Done,//found closest vert, no edges are better
Vert(MinkowskiVert),//transition to vert
}
enum EV{
Vert(MinkowskiVert),
Edge(MinkowskiEdge),
}
pub type GigaTime=Ratio<Fixed<4,128>,Fixed<4,128>>;
pub fn into_giga_time(time:Time,relative_to:Time)->GigaTime{
let r=(time-relative_to).to_ratio();
Ratio::new(r.num.widen_4(),r.den.widen_4())
}
// TODO: remove this
impl<'a> core::ops::Neg for &MinkowskiMesh<'a>{
type Output=MinkowskiMesh<'a>;
fn neg(self)->Self::Output{
MinkowskiMesh::minkowski_sum(self.mesh1,self.mesh0)
}
}
impl MinkowskiMesh<'_>{
pub fn minkowski_sum<'a>(mesh0:TransformedMesh<'a>,mesh1:TransformedMesh<'a>)->MinkowskiMesh<'a>{
MinkowskiMesh{
@@ -666,21 +638,155 @@ impl MinkowskiMesh<'_>{
mesh1,
}
}
fn farthest_vert(&self,dir:Planar64Vec3)->MinkowskiVert{
MinkowskiVert::VertVert(self.mesh0.farthest_vert(dir),self.mesh1.farthest_vert(-dir))
}
fn next_transition_vert(&self,vert_id:MinkowskiVert,best_distance_squared:&mut Fixed<2,64>,infinity_dir:Planar64Vec3,point:Planar64Vec3)->Transition{
let mut best_transition=Transition::Done;
for &directed_edge_id in self.vert_edges(vert_id).as_ref(){
let edge_n=self.directed_edge_n(directed_edge_id);
//is boundary uncrossable by a crawl from infinity
let edge_verts=self.edge_verts(directed_edge_id.as_undirected());
//select opposite vertex
let test_vert_id=edge_verts.as_ref()[directed_edge_id.parity() as usize];
//test if it's closer
let diff=point-self.vert(test_vert_id);
if edge_n.dot(infinity_dir).is_zero(){
let distance_squared=diff.dot(diff);
if distance_squared<*best_distance_squared{
best_transition=Transition::Vert(test_vert_id);
*best_distance_squared=distance_squared;
}
}
}
best_transition
}
fn final_ev(&self,vert_id:MinkowskiVert,best_distance_squared:&mut Fixed<2,64>,infinity_dir:Planar64Vec3,point:Planar64Vec3)->EV{
let mut best_transition=EV::Vert(vert_id);
let diff=point-self.vert(vert_id);
for &directed_edge_id in self.vert_edges(vert_id).as_ref(){
let edge_n=self.directed_edge_n(directed_edge_id);
//is boundary uncrossable by a crawl from infinity
//check if time of collision is outside Time::MIN..Time::MAX
if edge_n.dot(infinity_dir).is_zero(){
let d=edge_n.dot(diff);
//test the edge
let edge_nn=edge_n.dot(edge_n);
if !d.is_negative()&&d<=edge_nn{
let distance_squared={
let c=diff.cross(edge_n);
//wrap for speed
(c.dot(c)/edge_nn).divide().wrap_2()
};
if distance_squared<=*best_distance_squared{
best_transition=EV::Edge(directed_edge_id.as_undirected());
*best_distance_squared=distance_squared;
}
}
}
}
best_transition
}
fn crawl_boundaries(&self,mut vert_id:MinkowskiVert,infinity_dir:Planar64Vec3,point:Planar64Vec3)->EV{
let mut best_distance_squared={
let diff=point-self.vert(vert_id);
diff.dot(diff)
};
loop{
match self.next_transition_vert(vert_id,&mut best_distance_squared,infinity_dir,point){
Transition::Done=>return self.final_ev(vert_id,&mut best_distance_squared,infinity_dir,point),
Transition::Vert(new_vert_id)=>vert_id=new_vert_id,
}
}
}
/// This function drops a vertex down to an edge or a face if the path from infinity did not cross any vertex-edge boundaries but the point is supposed to have already crossed a boundary down from a vertex
fn infinity_fev(&self,infinity_dir:Planar64Vec3,point:Planar64Vec3)->FEV::<MinkowskiMesh<'_>>{
//start on any vertex
//cross uncrossable vertex-edge boundaries until you find the closest vertex or edge
//cross edge-face boundary if it's uncrossable
match self.crawl_boundaries(self.farthest_vert(infinity_dir),infinity_dir,point){
//if a vert is returned, it is the closest point to the infinity point
EV::Vert(vert_id)=>FEV::Vert(vert_id),
EV::Edge(edge_id)=>{
//cross to face if the boundary is not crossable and we are on the wrong side
let edge_n=self.edge_n(edge_id);
// point is multiplied by two because vert_sum sums two vertices.
let delta_pos=point*2-{
let &[v0,v1]=self.edge_verts(edge_id).as_ref();
self.vert(v0)+self.vert(v1)
};
for (i,&face_id) in self.edge_faces(edge_id).as_ref().iter().enumerate(){
let face_n=self.face_nd(face_id).0;
//edge-face boundary nd, n facing out of the face towards the edge
let boundary_n=face_n.cross(edge_n)*(i as i64*2-1);
let boundary_d=boundary_n.dot(delta_pos);
//check if time of collision is outside Time::MIN..Time::MAX
//infinity_dir can always be treated as a velocity
if !boundary_d.is_positive()&&boundary_n.dot(infinity_dir).is_zero(){
//both faces cannot pass this condition, return early if one does.
return FEV::Face(face_id);
}
}
FEV::Edge(edge_id)
},
}
}
// TODO: fundamentally improve this algorithm.
// All it needs to do is find the closest point on the mesh
// and return the FEV which the point resides on.
//
// What it actually does is use the above functions to trace a ray in from infinity,
// crawling the closest point along the mesh surface until the ray reaches
// the starting point to discover the final FEV.
//
// The actual collision prediction probably does a single test
// and then immediately returns with 0 FEV transitions on average,
// because of the strict time_limit constraint.
//
// Most of the calculation time is just calculating the starting point
// for the "actual" crawling algorithm below (predict_collision_{in|out}).
fn closest_fev_not_inside(&self,mut infinity_body:Body,start_time:Bound<&Time>)->Option<FEV<MinkowskiMesh<'_>>>{
infinity_body.infinity_dir().and_then(|dir|{
let infinity_fev=self.infinity_fev(-dir,infinity_body.position);
//a line is simpler to solve than a parabola
infinity_body.velocity=dir;
infinity_body.acceleration=vec3::ZERO;
//crawl in from negative infinity along a tangent line to get the closest fev
match infinity_fev.crawl(self,&infinity_body,Bound::Unbounded,start_time){
// This is the expected case.
// We expect to never hit the mesh while setting up for the real crawl
// since the algorithm breaks down on the inside of the mesh.
crate::face_crawler::CrawlResult::Miss(fev)=>Some(fev),
// An exact hit is allowed, it has not crossed the boundary.
crate::face_crawler::CrawlResult::Hit(face,ratio)=>match start_time{
Bound::Included(_)=>ratio.num.is_zero().then(||FEV::Face(face)),
// You are looking for collision events within a range that does not include the start_time.
// The boundary is crossed at exactly start_time, so the range is not met.
// Therefore, the correct return value is None.
Bound::Excluded(_)=>unimplemented!(),
// To infinity and beyond!
Bound::Unbounded=>None,
},
}
})
}
pub fn predict_collision_in(&self,relative_body:&Body,range:impl RangeBounds<Time>)->Option<(MinkowskiFace,GigaTime)>{
let fev=crate::minimum_difference::closest_fev_not_inside(self,relative_body.position)?;
//continue forwards along the body parabola
fev.crawl(self,relative_body,range.start_bound(),range.end_bound()).hit()
self.closest_fev_not_inside(*relative_body,range.start_bound()).and_then(|fev|{
//continue forwards along the body parabola
fev.crawl(self,relative_body,range.start_bound(),range.end_bound()).hit()
})
}
pub fn predict_collision_out(&self,relative_body:&Body,range:impl RangeBounds<Time>)->Option<(MinkowskiFace,GigaTime)>{
let fev=crate::minimum_difference::closest_fev_not_inside(self,relative_body.position)?;
let (lower_bound,upper_bound)=(range.start_bound(),range.end_bound());
// swap and negate bounds to do a time inversion
let (lower_bound,upper_bound)=(upper_bound.map(|&t|-t),lower_bound.map(|&t|-t));
let infinity_body=-relative_body;
//continue backwards along the body parabola
fev.crawl(self,&infinity_body,lower_bound.as_ref(),upper_bound.as_ref()).hit()
//no need to test -time<time_limit because of the first step
.map(|(face,time)|(face,-time))
self.closest_fev_not_inside(infinity_body,lower_bound.as_ref()).and_then(|fev|{
//continue backwards along the body parabola
fev.crawl(self,&infinity_body,lower_bound.as_ref(),upper_bound.as_ref()).hit()
//no need to test -time<time_limit because of the first step
.map(|(face,time)|(face,-time))
})
}
pub fn predict_collision_face_out(&self,relative_body:&Body,range:impl RangeBounds<Time>,contact_face_id:MinkowskiFace)->Option<(MinkowskiDirectedEdge,GigaTime)>{
// TODO: make better
@@ -710,8 +816,20 @@ impl MinkowskiMesh<'_>{
}
best_edge
}
pub fn contains_point(&self,point:Planar64Vec3)->bool{
crate::minimum_difference::contains_point(self,point)
fn infinity_in(&self,infinity_body:Body)->Option<(MinkowskiFace,GigaTime)>{
let infinity_fev=self.infinity_fev(-infinity_body.velocity,infinity_body.position);
// Bound::Included means that the surface of the mesh is included in the mesh
infinity_fev.crawl(self,&infinity_body,Bound::Unbounded,Bound::Included(&infinity_body.time)).hit()
}
pub fn is_point_in_mesh(&self,point:Planar64Vec3)->bool{
let infinity_body=Body::new(point,vec3::Y,vec3::ZERO,Time::ZERO);
//movement must escape the mesh forwards and backwards in time,
//otherwise the point is not inside the mesh
self.infinity_in(infinity_body)
.is_some_and(|_|
self.infinity_in(-infinity_body)
.is_some()
)
}
}
impl MeshQuery for MinkowskiMesh<'_>{
@@ -750,12 +868,6 @@ impl MeshQuery for MinkowskiMesh<'_>{
},
}
}
fn hint_point(&self)->Planar64Vec3{
self.mesh0.transform.vertex.translation-self.mesh1.transform.vertex.translation
}
fn farthest_vert(&self,dir:Planar64Vec3)->MinkowskiVert{
MinkowskiVert::VertVert(self.mesh0.farthest_vert(dir),self.mesh1.farthest_vert(-dir))
}
fn face_edges(&self,face_id:MinkowskiFace)->impl AsRef<[MinkowskiDirectedEdge]>{
match face_id{
MinkowskiFace::VertFace(v0,f1)=>{

View File

@@ -28,6 +28,7 @@ pub enum InternalInstruction{
CollisionStart(Collision,model_physics::GigaTime),
CollisionEnd(Collision,model_physics::GigaTime),
StrafeTick,
// TODO: add GigaTime to ReachWalkTargetVelocity
ReachWalkTargetVelocity,
// Water,
}
@@ -113,11 +114,11 @@ struct ContactMoveState{
}
impl TransientAcceleration{
fn with_target_diff(target_diff:Planar64Vec3,accel:Planar64,time:Time)->Self{
if target_diff==vec3::zero(){
if target_diff==vec3::ZERO{
TransientAcceleration::Reached
}else if accel==Planar64::ZERO{
TransientAcceleration::Unreachable{
acceleration:vec3::zero()
acceleration:vec3::ZERO
}
}else{
//normal friction acceleration is clippedAcceleration.dot(normal)*friction
@@ -140,7 +141,7 @@ impl TransientAcceleration{
}
fn acceleration(&self)->Planar64Vec3{
match self{
TransientAcceleration::Reached=>vec3::zero(),
TransientAcceleration::Reached=>vec3::ZERO,
&TransientAcceleration::Reachable{acceleration,time:_}=>acceleration,
&TransientAcceleration::Unreachable{acceleration}=>acceleration,
}
@@ -443,7 +444,7 @@ impl StyleHelper for StyleModifiers{
fn get_control_dir(&self,controls:Controls)->Planar64Vec3{
//don't get fancy just do it
let mut control_dir:Planar64Vec3=vec3::zero();
let mut control_dir:Planar64Vec3=vec3::ZERO;
//Apply mask after held check so you can require non-allowed keys to be held for some reason
let controls=controls.intersection(self.controls_mask);
if controls.contains(Controls::MoveForward){
@@ -482,7 +483,7 @@ impl StyleHelper for StyleModifiers{
};
let transform=integer::Planar64Affine3::new(
mat3::from_diagonal(self.hitbox.halfsize),
vec3::zero()
vec3::ZERO
);
HitboxMesh::new(mesh,transform)
}
@@ -500,7 +501,7 @@ impl MoveState{
//call this after state.move_state is changed
fn apply_enum(&self,body:&mut Body,touching:&TouchingState,models:&PhysicsModels,hitbox_mesh:&HitboxMesh,style:&StyleModifiers,camera:&PhysicsCamera,input_state:&InputState){
match self{
MoveState::Fly=>body.acceleration=vec3::zero(),
MoveState::Fly=>body.acceleration=vec3::ZERO,
MoveState::Air=>{
//calculate base acceleration
let a=touching.base_acceleration(models,style,camera,input_state);
@@ -614,7 +615,7 @@ impl MoveState{
// TODO: unduplicate this code
match self.get_walk_state(){
// did you stop touching the thing you were walking on?
Some(walk_state)=>if !touching.contains_contact(&walk_state.contact.convex_mesh_id){
Some(walk_state)=>if !touching.contacts.contains_key(&walk_state.contact.convex_mesh_id){
self.set_move_state(MoveState::Air,body,touching,models,hitbox_mesh,style,camera,input_state);
}else{
// stopped touching something else while walking
@@ -729,7 +730,7 @@ struct IntersectModel{
transform:PhysicsMeshTransform,
}
#[derive(Debug,Clone,Copy,Hash)]
#[derive(Debug,Clone,Copy,Eq,Hash,PartialEq)]
pub struct ContactCollision{
convex_mesh_id:ConvexMeshId<ContactModelId>,
face_id:model_physics::MinkowskiFace,
@@ -738,7 +739,7 @@ pub struct ContactCollision{
pub struct IntersectCollision{
convex_mesh_id:ConvexMeshId<IntersectModelId>,
}
#[derive(Debug,Clone,Hash)]
#[derive(Debug,Clone,Eq,Hash,PartialEq)]
pub enum Collision{
Contact(ContactCollision),
Intersect(IntersectCollision),
@@ -753,8 +754,6 @@ impl Collision{
}
#[derive(Clone,Debug,Default)]
struct TouchingState{
// This is kind of jank, it's a ContactCollision
// but split over the Key and Value of the HashMap.
contacts:HashMap<ConvexMeshId<ContactModelId>,model_physics::MinkowskiFace>,
intersects:HashSet<ConvexMeshId<IntersectModelId>>,
}
@@ -775,16 +774,10 @@ impl TouchingState{
fn remove_intersect(&mut self,convex_mesh_id:&ConvexMeshId<IntersectModelId>)->bool{
self.intersects.remove(convex_mesh_id)
}
fn contains_contact(&self,convex_mesh_id:&ConvexMeshId<ContactModelId>)->bool{
self.contacts.contains_key(convex_mesh_id)
}
fn contains_intersect(&self,convex_mesh_id:&ConvexMeshId<IntersectModelId>)->bool{
self.intersects.contains(convex_mesh_id)
}
fn contains(&self,convex_mesh_id:&ConvexMeshId<PhysicsModelId>)->bool{
match convex_mesh_id.model_id{
PhysicsModelId::Contact(contact_model_id)=>self.contains_contact(&convex_mesh_id.map(contact_model_id)),
PhysicsModelId::Intersect(intersect_model_id)=>self.contains_intersect(&convex_mesh_id.map(intersect_model_id)),
PhysicsModelId::Contact(contact_model_id)=>self.contacts.contains_key(&convex_mesh_id.map(contact_model_id)),
PhysicsModelId::Intersect(intersect_model_id)=>self.intersects.contains(&convex_mesh_id.map(intersect_model_id)),
}
}
fn base_acceleration(&self,models:&PhysicsModels,style:&StyleModifiers,camera:&PhysicsCamera,input_state:&InputState)->Planar64Vec3{
@@ -810,7 +803,7 @@ impl TouchingState{
let contacts:Vec<_>=self.contacts.iter().map(|(convex_mesh_id,face_id)|{
let n=contact_normal(models,hitbox_mesh,convex_mesh_id,*face_id);
crate::push_solve::Contact{
position:vec3::zero(),
position:vec3::ZERO,
velocity:n,
normal:n,
}
@@ -821,7 +814,7 @@ impl TouchingState{
let contacts:Vec<_>=self.contacts.iter().map(|(convex_mesh_id,face_id)|{
let n=contact_normal(models,hitbox_mesh,convex_mesh_id,*face_id);
crate::push_solve::Contact{
position:vec3::zero(),
position:vec3::ZERO,
velocity:n,
normal:n,
}
@@ -835,7 +828,7 @@ impl TouchingState{
//detect face slide off
let model_mesh=models.contact_mesh(convex_mesh_id);
let minkowski=model_physics::MinkowskiMesh::minkowski_sum(model_mesh,hitbox_mesh.transformed_mesh());
collector.collect(minkowski.predict_collision_face_out(&relative_body,start_time..collector.time(),*face_id).map(|(_face,time)|{
collector.collect(minkowski.predict_collision_face_out(&relative_body,start_time..=collector.time(),*face_id).map(|(_face,time)|{
TimedInstruction{
time:relative_body.time+time.into(),
instruction:InternalInstruction::CollisionEnd(
@@ -849,7 +842,7 @@ impl TouchingState{
//detect model collision in reverse
let model_mesh=models.intersect_mesh(convex_mesh_id);
let minkowski=model_physics::MinkowskiMesh::minkowski_sum(model_mesh,hitbox_mesh.transformed_mesh());
collector.collect(minkowski.predict_collision_out(&relative_body,start_time..collector.time()).map(|(_face,time)|{
collector.collect(minkowski.predict_collision_out(&relative_body,start_time..=collector.time()).map(|(_face,time)|{
TimedInstruction{
time:relative_body.time+time.into(),
instruction:InternalInstruction::CollisionEnd(
@@ -1196,7 +1189,7 @@ impl<'a> PhysicsContext<'a>{
//JUST POLLING!!! NO MUTATION
let mut collector=instruction::InstructionCollector::new(time_limit);
collector.collect(state.next_move_instruction());
// collector.collect(state.next_move_instruction());
//check for collision ends
state.touching.predict_collision_end(&mut collector,&data.models,&data.hitbox_mesh,&state.body,state.time);
@@ -1214,7 +1207,7 @@ impl<'a> PhysicsContext<'a>{
//no checks are needed because of the time limits.
let model_mesh=data.models.mesh(*convex_mesh_id);
let minkowski=model_physics::MinkowskiMesh::minkowski_sum(model_mesh,data.hitbox_mesh.transformed_mesh());
collector.collect(minkowski.predict_collision_in(relative_body,state.time..collector.time())
collector.collect(minkowski.predict_collision_in(relative_body,state.time..=collector.time())
.map(|(face,dt)|
TimedInstruction{
time:relative_body.time+dt.into(),
@@ -1277,7 +1270,7 @@ fn recalculate_touching(
//no checks are needed because of the time limits.
let model_mesh=models.mesh(convex_mesh_id);
let minkowski=model_physics::MinkowskiMesh::minkowski_sum(model_mesh,hitbox_mesh.transformed_mesh());
if minkowski.contains_point(body.position){
if minkowski.is_point_in_mesh(body.position){
match convex_mesh_id.model_id{
//being inside of contact objects is an invalid physics state
//but the physics isn't advanced enough to do anything about it yet
@@ -1572,7 +1565,7 @@ fn collision_start_contact(
//kill v
//actually you could do this with a booster attribute :thinking:
//it's a little bit different because maybe you want to chain ladders together
set_velocity(body,touching,models,hitbox_mesh,vec3::zero());//model.velocity
set_velocity(body,touching,models,hitbox_mesh,vec3::ZERO);//model.velocity
}
//ladder walkstate
let (gravity,target_velocity)=ladder_things(ladder_settings,&contact,touching,models,hitbox_mesh,style,camera,input_state);
@@ -1743,17 +1736,14 @@ fn collision_end_intersect(
}
fn atomic_internal_instruction(state:&mut PhysicsState,data:&PhysicsData,ins:TimedInstruction<InternalInstruction,Time>){
state.time=ins.time;
let (should_advance_body,goober_time)=match ins.instruction{
match ins.instruction{
// collisions advance the body precisely
InternalInstruction::CollisionStart(_,dt)
|InternalInstruction::CollisionEnd(_,dt)=>(true,Some(dt)),
InternalInstruction::StrafeTick
|InternalInstruction::ReachWalkTargetVelocity=>(true,None),
};
if should_advance_body{
match goober_time{
Some(dt)=>state.body.advance_time_ratio_dt(dt),
None=>state.body.advance_time(state.time),
}
|InternalInstruction::CollisionEnd(_,dt)=>state.body.advance_time_ratio_dt(dt),
// this advances imprecisely
InternalInstruction::ReachWalkTargetVelocity=>state.body.advance_time(state.time),
// strafe tick decides for itself whether to advance the body.
InternalInstruction::StrafeTick=>(),
}
match ins.instruction{
InternalInstruction::CollisionStart(collision,_)=>{
@@ -1799,7 +1789,9 @@ fn atomic_internal_instruction(state:&mut PhysicsState,data:&PhysicsData,ins:Tim
if strafe_settings.activates(controls){
let masked_controls=strafe_settings.mask(controls);
let control_dir=state.style.get_control_dir(masked_controls);
if control_dir!=vec3::zero(){
if control_dir!=vec3::ZERO{
// manually advance time
state.body.advance_time(state.time);
let camera_mat=state.camera.simulate_move_rotation_y(state.input_state.lerp_delta(state.time).x);
if let Some(ticked_velocity)=strafe_settings.tick_velocity(state.body.velocity,(camera_mat*control_dir).with_length(Planar64::ONE).divide().wrap_1()){
//this is wrong but will work ig
@@ -1822,7 +1814,7 @@ fn atomic_internal_instruction(state:&mut PhysicsState,data:&PhysicsData,ins:Tim
//which means that gravity can be fully cancelled
//ignore moving platforms for now
let target=core::mem::replace(&mut walk_state.target,TransientAcceleration::Reached);
set_acceleration(&mut state.body,&state.touching,&data.models,&data.hitbox_mesh,vec3::zero());
set_acceleration(&mut state.body,&state.touching,&data.models,&data.hitbox_mesh,vec3::ZERO);
// check what the target was to see if it was invalid
match target{
//you are not supposed to reach a walk target which is already reached!
@@ -1904,7 +1896,7 @@ fn atomic_input_instruction(state:&mut PhysicsState,data:&PhysicsData,ins:TimedI
},
Instruction::Mode(ModeInstruction::Restart(mode_id))=>{
//teleport to mode start zone
let mut spawn_point=vec3::zero();
let mut spawn_point=vec3::ZERO;
let mode=data.modes.get_mode(mode_id);
if let Some(mode)=mode{
// set style
@@ -1917,7 +1909,7 @@ fn atomic_input_instruction(state:&mut PhysicsState,data:&PhysicsData,ins:TimedI
}
}
set_position(spawn_point,&mut state.move_state,&mut state.body,&mut state.touching,&mut state.run,&mut state.mode_state,mode,&data.models,&data.hitbox_mesh,&data.bvh,&state.style,&state.camera,&state.input_state,state.time);
set_velocity(&mut state.body,&state.touching,&data.models,&data.hitbox_mesh,vec3::zero());
set_velocity(&mut state.body,&state.touching,&data.models,&data.hitbox_mesh,vec3::ZERO);
state.set_move_state(data,MoveState::Air);
b_refresh_walk_target=false;
}
@@ -1967,7 +1959,7 @@ mod test{
use strafesnet_common::integer::{vec3::{self,int as int3},mat3};
use super::*;
fn test_collision_axis_aligned(relative_body:Body,expected_collision_time:Option<Time>){
let h0=HitboxMesh::new(PhysicsMesh::unit_cube(),integer::Planar64Affine3::new(mat3::from_diagonal(int3(5,1,5)>>1),vec3::zero()));
let h0=HitboxMesh::new(PhysicsMesh::unit_cube(),integer::Planar64Affine3::new(mat3::from_diagonal(int3(5,1,5)>>1),vec3::ZERO));
let h1=StyleModifiers::roblox_bhop().calculate_mesh();
let hitbox_mesh=h1.transformed_mesh();
let platform_mesh=h0.transformed_mesh();
@@ -1983,7 +1975,7 @@ mod test{
int3(0,1,0)>>1,
int3(-1,0,5)>>1,
]),
vec3::zero()
vec3::ZERO
),
);
let h1=StyleModifiers::roblox_bhop().calculate_mesh();
@@ -2002,7 +1994,7 @@ mod test{
test_collision(Body::new(
int3(0,5,0),
int3(0,-1,0),
vec3::zero(),
vec3::ZERO,
Time::ZERO
),Some(Time::from_secs(2)));
}
@@ -2011,7 +2003,7 @@ mod test{
test_collision(Body::new(
int3(0,5,0),
int3(0,-1,0)+(vec3::X>>32),
vec3::zero(),
vec3::ZERO,
Time::ZERO
),Some(Time::from_secs(2)));
}
@@ -2020,7 +2012,7 @@ mod test{
test_collision(Body::new(
int3(3,5,0),
int3(0,-1,0),
vec3::zero(),
vec3::ZERO,
Time::ZERO
),Some(Time::from_secs(2)));
}
@@ -2029,7 +2021,7 @@ mod test{
test_collision(Body::new(
int3(0,5,3),
int3(0,-1,0),
vec3::zero(),
vec3::ZERO,
Time::ZERO
),Some(Time::from_secs(2)));
}
@@ -2038,7 +2030,7 @@ mod test{
test_collision(Body::new(
int3(-3,5,0),
int3(0,-1,0),
vec3::zero(),
vec3::ZERO,
Time::ZERO
),Some(Time::from_secs(2)));
}
@@ -2047,7 +2039,7 @@ mod test{
test_collision(Body::new(
int3(0,5,-3),
int3(0,-1,0),
vec3::zero(),
vec3::ZERO,
Time::ZERO
),Some(Time::from_secs(2)));
}
@@ -2164,7 +2156,7 @@ mod test{
test_collision(Body::new(
int3(0,5,0),
int3(1,-64,2)>>6,// /64
vec3::zero(),
vec3::ZERO,
Time::ZERO
),Some(Time::from_secs(2)));
}
@@ -2180,7 +2172,7 @@ mod test{
#[test]
fn already_inside_hit_nothing(){
test_collision(Body::new(
vec3::zero(),
vec3::ZERO,
int3(1,0,0),
int3(0,1,0),
Time::ZERO
@@ -2192,7 +2184,7 @@ mod test{
test_collision_axis_aligned(Body::new(
(int3(0,10,-7)>>1)+vec3::raw_xyz(0,0,1),
int3(0,-1,0),
vec3::zero(),
vec3::ZERO,
Time::ZERO
),Some(Time::from_secs(2)))
}
@@ -2201,7 +2193,7 @@ mod test{
test_collision_axis_aligned(Body::new(
(int3(7,10,0)>>1)+vec3::raw_xyz(-1,0,0),
int3(0,-1,0),
vec3::zero(),
vec3::ZERO,
Time::ZERO
),Some(Time::from_secs(2)))
}
@@ -2210,7 +2202,7 @@ mod test{
test_collision_axis_aligned(Body::new(
(int3(0,10,7)>>1)+vec3::raw_xyz(0,0,-1),
int3(0,-1,0),
vec3::zero(),
vec3::ZERO,
Time::ZERO
),Some(Time::from_secs(2)))
}
@@ -2219,7 +2211,7 @@ mod test{
test_collision_axis_aligned(Body::new(
(int3(-7,10,0)>>1)+vec3::raw_xyz(1,0,0),
int3(0,-1,0),
vec3::zero(),
vec3::ZERO,
Time::ZERO
),Some(Time::from_secs(2)))
}
@@ -2229,7 +2221,7 @@ mod test{
test_collision_axis_aligned(Body::new(
int3(0,10,-7)>>1,
int3(0,-1,0),
vec3::zero(),
vec3::ZERO,
Time::ZERO
),None)
}
@@ -2238,7 +2230,7 @@ mod test{
test_collision_axis_aligned(Body::new(
int3(7,10,0)>>1,
int3(0,-1,0),
vec3::zero(),
vec3::ZERO,
Time::ZERO
),None)
}
@@ -2247,7 +2239,7 @@ mod test{
test_collision_axis_aligned(Body::new(
int3(0,10,7)>>1,
int3(0,-1,0),
vec3::zero(),
vec3::ZERO,
Time::ZERO
),None)
}
@@ -2256,7 +2248,7 @@ mod test{
test_collision_axis_aligned(Body::new(
int3(-7,10,0)>>1,
int3(0,-1,0),
vec3::zero(),
vec3::ZERO,
Time::ZERO
),None)
}
@@ -2266,7 +2258,7 @@ mod test{
test_collision_axis_aligned(Body::new(
(int3(0,10,-7)>>1)-vec3::raw_xyz(0,0,1),
int3(0,-1,0),
vec3::zero(),
vec3::ZERO,
Time::ZERO
),None)
}
@@ -2275,7 +2267,7 @@ mod test{
test_collision_axis_aligned(Body::new(
(int3(7,10,0)>>1)-vec3::raw_xyz(-1,0,0),
int3(0,-1,0),
vec3::zero(),
vec3::ZERO,
Time::ZERO
),None)
}
@@ -2284,7 +2276,7 @@ mod test{
test_collision_axis_aligned(Body::new(
(int3(0,10,7)>>1)-vec3::raw_xyz(0,0,-1),
int3(0,-1,0),
vec3::zero(),
vec3::ZERO,
Time::ZERO
),None)
}
@@ -2293,7 +2285,7 @@ mod test{
test_collision_axis_aligned(Body::new(
(int3(-7,10,0)>>1)-vec3::raw_xyz(1,0,0),
int3(0,-1,0),
vec3::zero(),
vec3::ZERO,
Time::ZERO
),None)
}

View File

@@ -39,18 +39,20 @@ impl Contact{
//note that this is horrible with fixed point arithmetic
fn solve1(c0:&Contact)->Option<Ratio<Vector3<Fixed<3,96>>,Fixed<2,64>>>{
const EPSILON:Fixed<2,64>=Fixed::from_bits(Fixed::<2,64>::ONE.to_bits().shr(10));
let det=c0.normal.dot(c0.velocity);
if det.abs()==Fixed::ZERO{
if det.abs()<EPSILON{
return None;
}
let d0=c0.normal.dot(c0.position);
Some(c0.normal*d0/det)
}
fn solve2(c0:&Contact,c1:&Contact)->Option<Ratio<Vector3<Fixed<5,160>>,Fixed<4,128>>>{
const EPSILON:Fixed<4,128>=Fixed::from_bits(Fixed::<4,128>::ONE.to_bits().shr(10));
let u0_u1=c0.velocity.cross(c1.velocity);
let n0_n1=c0.normal.cross(c1.normal);
let det=u0_u1.dot(n0_n1);
if det.abs()==Fixed::ZERO{
if det.abs()<EPSILON{
return None;
}
let d0=c0.normal.dot(c0.position);
@@ -58,9 +60,10 @@ fn solve2(c0:&Contact,c1:&Contact)->Option<Ratio<Vector3<Fixed<5,160>>,Fixed<4,1
Some((c1.normal.cross(u0_u1)*d0+u0_u1.cross(c0.normal)*d1)/det)
}
fn solve3(c0:&Contact,c1:&Contact,c2:&Contact)->Option<Ratio<Vector3<Fixed<4,128>>,Fixed<3,96>>>{
const EPSILON:Fixed<3,96>=Fixed::from_bits(Fixed::<3,96>::ONE.to_bits().shr(10));
let n0_n1=c0.normal.cross(c1.normal);
let det=c2.normal.dot(n0_n1);
if det.abs()==Fixed::ZERO{
if det.abs()<EPSILON{
return None;
}
let d0=c0.normal.dot(c0.position);
@@ -146,7 +149,7 @@ fn is_space_enclosed_4(
}
const fn get_push_ray_0(point:Planar64Vec3)->Ray{
Ray{origin:point,direction:vec3::zero()}
Ray{origin:point,direction:vec3::ZERO}
}
fn get_push_ray_1(point:Planar64Vec3,c0:&Contact)->Option<Ray>{
//wrap for speed
@@ -318,13 +321,13 @@ mod tests{
fn test_push_solve(){
let contacts=vec![
Contact{
position:vec3::zero(),
position:vec3::ZERO,
velocity:vec3::Y,
normal:vec3::Y,
}
];
assert_eq!(
vec3::zero(),
vec3::ZERO,
push_solve(&contacts,vec3::NEG_Y)
);
}

View File

@@ -77,7 +77,7 @@ fn simultaneous_collision(){
Time::ZERO,
);
let mut physics=PhysicsState::new_with_body(body);
physics.style_mut().gravity=vec3::zero();
physics.style_mut().gravity=vec3::ZERO;
let mut phys_iter=PhysicsContext::iter_internal(&mut physics,&physics_data,Time::from_secs(2))
.filter(|ins|!matches!(ins.instruction,InternalInstruction::StrafeTick));
// the order that they hit does matter, but we aren't currently worrying about that.
@@ -101,12 +101,14 @@ fn bug_3(){
Time::ZERO,
);
let mut physics=PhysicsState::new_with_body(body);
physics.style_mut().gravity=vec3::zero();
physics.style_mut().gravity=vec3::ZERO;
let mut phys_iter=PhysicsContext::iter_internal(&mut physics,&physics_data,Time::from_secs(3))
.filter(|ins|!matches!(ins.instruction,InternalInstruction::StrafeTick));
// touch side of part at 0,0,0
assert_eq!(phys_iter.next().unwrap().time,Time::from_secs(1));
// touch top of part at 5,-5,0
// EXPECTED: touch top of part at 5,-5,0
// OBSERVED: CollisionEnd part at 0,0,0; clip through part at 5,-5,0
assert_eq!(phys_iter.next().unwrap().time,Time::from_secs(2));
assert_eq!(phys_iter.next().unwrap().time,Time::from_secs(2));
assert!(phys_iter.next().is_none());
let body=physics.body();

View File

@@ -210,7 +210,7 @@ pub fn faces_to_mesh(faces:Vec<Vec<integer::Planar64Vec3>>)->model::Mesh{
let color=mb.acquire_color_id(glam::Vec4::ONE);
let tex=mb.acquire_tex_id(glam::Vec2::ZERO);
// normals are ignored by physics
let normal=mb.acquire_normal_id(integer::vec3::zero());
let normal=mb.acquire_normal_id(integer::vec3::ZERO);
let polygon_list=faces.into_iter().map(|face|{
face.into_iter().map(|pos|{

View File

@@ -105,7 +105,7 @@ pub fn convert<'a>(
water:Some(attr::IntersectingWater{
viscosity:integer::Planar64::ONE,
density:integer::Planar64::ONE,
velocity:integer::vec3::zero(),
velocity:integer::vec3::ZERO,
}),
},
general:attr::GeneralAttributes::default(),
@@ -295,7 +295,7 @@ pub fn convert<'a>(
attributes,
transform:integer::Planar64Affine3::new(
integer::mat3::identity(),
integer::vec3::zero(),
integer::vec3::ZERO,
),
color:glam::Vec4::ONE,
});

View File

@@ -319,7 +319,7 @@ impl WalkSettings{
self.accelerate.accel.min((-gravity.y*friction).clamp_1())
}
pub fn get_walk_target_velocity(&self,control_dir:Planar64Vec3,normal:Planar64Vec3)->Planar64Vec3{
if control_dir==crate::integer::vec3::zero(){
if control_dir==crate::integer::vec3::ZERO{
return control_dir;
}
let nn=normal.length_squared();
@@ -329,13 +329,13 @@ impl WalkSettings{
let dd=d*d;
if dd<nnmm{
let cr=normal.cross(control_dir);
if cr==crate::integer::vec3::zero(){
crate::integer::vec3::zero()
if cr==crate::integer::vec3::ZERO_2{
crate::integer::vec3::ZERO
}else{
(cr.cross(normal)*self.accelerate.topspeed/((nn*(nnmm-dd)).sqrt())).divide().clamp_1()
}
}else{
crate::integer::vec3::zero()
crate::integer::vec3::ZERO
}
}
pub fn is_slope_walkable(&self,normal:Planar64Vec3,up:Planar64Vec3)->bool{
@@ -360,7 +360,7 @@ impl LadderSettings{
self.accelerate.accel
}
pub fn get_ladder_target_velocity(&self,mut control_dir:Planar64Vec3,normal:Planar64Vec3)->Planar64Vec3{
if control_dir==crate::integer::vec3::zero(){
if control_dir==crate::integer::vec3::ZERO{
return control_dir;
}
let nn=normal.length_squared();
@@ -382,13 +382,13 @@ impl LadderSettings{
//- fix the underlying issue
if dd<nnmm{
let cr=normal.cross(control_dir);
if cr==crate::integer::vec3::zero(){
crate::integer::vec3::zero()
if cr==crate::integer::vec3::ZERO_2{
crate::integer::vec3::ZERO
}else{
(cr.cross(normal)*self.accelerate.topspeed/((nn*(nnmm-dd)).sqrt())).divide().clamp_1()
}
}else{
crate::integer::vec3::zero()
crate::integer::vec3::ZERO
}
}
}

View File

@@ -561,6 +561,12 @@ pub mod vec3{
pub use linear_ops::types::Vector3;
pub const MIN:Planar64Vec3=Planar64Vec3::new([Planar64::MIN;3]);
pub const MAX:Planar64Vec3=Planar64Vec3::new([Planar64::MAX;3]);
pub const ZERO:Planar64Vec3=Planar64Vec3::new([Planar64::ZERO;3]);
pub const ZERO_2:Vector3<Fixed::<2,64>>=Vector3::new([Fixed::<2,64>::ZERO;3]);
pub const ZERO_3:Vector3<Fixed::<3,96>>=Vector3::new([Fixed::<3,96>::ZERO;3]);
pub const ZERO_4:Vector3<Fixed::<4,128>>=Vector3::new([Fixed::<4,128>::ZERO;3]);
pub const ZERO_5:Vector3<Fixed::<5,160>>=Vector3::new([Fixed::<5,160>::ZERO;3]);
pub const ZERO_6:Vector3<Fixed::<6,192>>=Vector3::new([Fixed::<6,192>::ZERO;3]);
pub const X:Planar64Vec3=Planar64Vec3::new([Planar64::ONE,Planar64::ZERO,Planar64::ZERO]);
pub const Y:Planar64Vec3=Planar64Vec3::new([Planar64::ZERO,Planar64::ONE,Planar64::ZERO]);
pub const Z:Planar64Vec3=Planar64Vec3::new([Planar64::ZERO,Planar64::ZERO,Planar64::ONE]);
@@ -569,10 +575,6 @@ pub mod vec3{
pub const NEG_Y:Planar64Vec3=Planar64Vec3::new([Planar64::ZERO,Planar64::NEG_ONE,Planar64::ZERO]);
pub const NEG_Z:Planar64Vec3=Planar64Vec3::new([Planar64::ZERO,Planar64::ZERO,Planar64::NEG_ONE]);
pub const NEG_ONE:Planar64Vec3=Planar64Vec3::new([Planar64::NEG_ONE,Planar64::NEG_ONE,Planar64::NEG_ONE]);
// TODO: use #![feature(generic_const_items)] when stabilized https://github.com/rust-lang/rust/issues/113521
pub const fn zero<const N:usize,const F:usize>()->Vector3<Fixed<N,F>>{
Vector3::new([Fixed::ZERO;3])
}
#[inline]
pub const fn int(x:i32,y:i32,z:i32)->Planar64Vec3{
Planar64Vec3::new([Planar64::raw((x as i64)<<32),Planar64::raw((y as i64)<<32),Planar64::raw((z as i64)<<32)])
@@ -661,7 +663,7 @@ pub struct Planar64Affine3{
pub translation:Planar64Vec3,
}
impl Planar64Affine3{
pub const IDENTITY:Self=Self::new(mat3::identity(),vec3::zero());
pub const IDENTITY:Self=Self::new(mat3::identity(),vec3::ZERO);
#[inline]
pub const fn new(matrix3:Planar64Mat3,translation:Planar64Vec3)->Self{
Self{matrix3,translation}

View File

@@ -70,34 +70,6 @@ impl<const N:usize,const F:usize> Fixed<N,F>{
pub const fn midpoint(self,other:Self)->Self{
Self::from_bits(self.bits.midpoint(other.bits))
}
#[inline]
pub const fn min(self,other:Self)->Self{
Self::from_bits(self.bits.min(other.bits))
}
#[inline]
pub const fn max(self,other:Self)->Self{
Self::from_bits(self.bits.max(other.bits))
}
/// return the result of self*sign(other)
#[inline]
pub const fn mul_sign<const N1:usize,const F1:usize>(self,other:Fixed<N1,F1>)->Self{
if other.is_negative(){
Self::from_bits(self.bits.neg())
}else if other.is_zero(){
Fixed::ZERO
}else{
self
}
}
/// return the result of self/sign(other) (divide by zero does not change the sign)
#[inline]
pub const fn div_sign<const N1:usize,const F1:usize>(self,other:Fixed<N1,F1>)->Self{
if other.is_negative(){
Self::from_bits(self.bits.neg())
}else{
self
}
}
}
impl<const F:usize> Fixed<1,F>{
/// My old code called this function everywhere so let's provide it

View File

@@ -251,7 +251,7 @@ fn get_attributes(name:&str,can_collide:bool,velocity:Planar64Vec3,model_id:mode
}
}
//need some way to skip this
if allow_booster&&velocity!=vec3::zero(){
if allow_booster&&velocity!=vec3::ZERO{
general.booster=Some(attr::Booster::Velocity(velocity));
}
Ok(match force_can_collide{

View File

@@ -250,7 +250,7 @@ pub fn convert(
// generate a unit cube as default physics
let pos_list=CUBE_DEFAULT_VERTICES.map(|pos|mb.acquire_pos_id(pos>>1));
let tex=mb.acquire_tex_id(glam::Vec2::ZERO);
let normal=mb.acquire_normal_id(vec3::zero());
let normal=mb.acquire_normal_id(vec3::ZERO);
let color=mb.acquire_color_id(glam::Vec4::ONE);
let polygon_group=PolygonGroup::PolygonList(PolygonList::new(CUBE_DEFAULT_POLYS.map(|poly|poly.map(|[pos_id,_]|
mb.acquire_vertex_id(IndexedVertex{pos:pos_list[pos_id as usize],tex,normal,color})