Merge branch 'fixed_wide_vectors'

This commit is contained in:
Quaternions 2025-01-02 19:53:56 -08:00
commit e04a4bdf15
38 changed files with 3282 additions and 0 deletions

19
lib/README.md Normal file
View File

@ -0,0 +1,19 @@
Vectors: Fixed Size, Fixed Point, Wide
======================================
## These exist separately in the Rust ecosystem, but not together.
#### License
<sup>
Licensed under either of <a href="LICENSE-APACHE">Apache License, Version
2.0</a> or <a href="LICENSE-MIT">MIT license</a> at your option.
</sup>
<br>
<sub>
Unless you explicitly state otherwise, any contribution intentionally submitted
for inclusion in this crate by you, as defined in the Apache-2.0 license, shall
be dual licensed as above, without any additional terms or conditions.
</sub>

1
lib/fixed_wide/.gitignore vendored Normal file
View File

@ -0,0 +1 @@
/target

35
lib/fixed_wide/Cargo.lock generated Normal file
View File

@ -0,0 +1,35 @@
# This file is automatically @generated by Cargo.
# It is not intended for manual editing.
version = 3
[[package]]
name = "arrayvec"
version = "0.7.6"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7c02d123df017efcdfbd739ef81735b36c5ba83ec3c59c80a9d7ecc718f92e50"
[[package]]
name = "bnum"
version = "0.12.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "50202def95bf36cb7d1d7a7962cea1c36a3f8ad42425e5d2b71d7acb8041b5b8"
[[package]]
name = "fixed_wide"
version = "0.1.1"
dependencies = [
"arrayvec",
"bnum",
"paste",
"ratio_ops",
]
[[package]]
name = "paste"
version = "1.0.15"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "57c0d7b74b563b49d38dae00a0c37d4d6de9b432382b2892f0574ddcae73fd0a"
[[package]]
name = "ratio_ops"
version = "0.1.0"

20
lib/fixed_wide/Cargo.toml Normal file
View File

@ -0,0 +1,20 @@
[package]
name = "fixed_wide"
version = "0.1.1"
edition = "2021"
repository = "https://git.itzana.me/StrafesNET/fixed_wide_vectors"
license = "MIT OR Apache-2.0"
description = "Fixed point numbers with optional widening Mul operator."
authors = ["Rhys Lloyd <krakow20@gmail.com>"]
[features]
default=[]
deferred-division=["dep:ratio_ops"]
wide-mul=[]
zeroes=["dep:arrayvec"]
[dependencies]
bnum = "0.12.0"
arrayvec = { version = "0.7.6", optional = true }
paste = "1.0.15"
ratio_ops = { version = "0.1.0", path = "../ratio_ops", registry = "strafesnet", optional = true }

View File

@ -0,0 +1,176 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS

View File

@ -0,0 +1,23 @@
Permission is hereby granted, free of charge, to any
person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the
Software without restriction, including without
limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software
is furnished to do so, subject to the following
conditions:
The above copyright notice and this permission notice
shall be included in all copies or substantial portions
of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

848
lib/fixed_wide/src/fixed.rs Normal file
View File

@ -0,0 +1,848 @@
use bnum::{BInt,cast::As};
#[derive(Clone,Copy,Debug,Default,Hash)]
/// A Fixed point number for which multiply operations widen the bits in the output. (when the wide-mul feature is enabled)
/// N is the number of u64s to use
/// F is the number of fractional bits (always N*32 lol)
pub struct Fixed<const N:usize,const F:usize>{
pub(crate)bits:BInt<{N}>,
}
impl<const N:usize,const F:usize> Fixed<N,F>{
pub const MAX:Self=Self::from_bits(BInt::<N>::MAX);
pub const MIN:Self=Self::from_bits(BInt::<N>::MIN);
pub const ZERO:Self=Self::from_bits(BInt::<N>::ZERO);
pub const EPSILON:Self=Self::from_bits(BInt::<N>::ONE);
pub const NEG_EPSILON:Self=Self::from_bits(BInt::<N>::NEG_ONE);
pub const ONE:Self=Self::from_bits(BInt::<N>::ONE.shl(F as u32));
pub const TWO:Self=Self::from_bits(BInt::<N>::TWO.shl(F as u32));
pub const HALF:Self=Self::from_bits(BInt::<N>::ONE.shl(F as u32-1));
pub const NEG_ONE:Self=Self::from_bits(BInt::<N>::NEG_ONE.shl(F as u32));
pub const NEG_TWO:Self=Self::from_bits(BInt::<N>::NEG_TWO.shl(F as u32));
pub const NEG_HALF:Self=Self::from_bits(BInt::<N>::NEG_ONE.shl(F as u32-1));
}
impl<const N:usize,const F:usize> Fixed<N,F>{
#[inline]
pub const fn from_bits(bits:BInt::<N>)->Self{
Self{
bits,
}
}
#[inline]
pub const fn to_bits(self)->BInt<N>{
self.bits
}
#[inline]
pub const fn raw_digit(value:i64)->Self{
let mut digits=[0u64;N];
digits[0]=value.abs() as u64;
//sign bit
digits[N-1]|=(value&i64::MIN) as u64;
Self::from_bits(BInt::from_bits(bnum::BUint::from_digits(digits)))
}
#[inline]
pub const fn is_zero(self)->bool{
self.bits.is_zero()
}
#[inline]
pub const fn is_negative(self)->bool{
self.bits.is_negative()
}
#[inline]
pub const fn is_positive(self)->bool{
self.bits.is_positive()
}
#[inline]
pub const fn abs(self)->Self{
Self::from_bits(self.bits.abs())
}
}
impl<const F:usize> Fixed<1,F>{
/// My old code called this function everywhere so let's provide it
#[inline]
pub const fn raw(value:i64)->Self{
Self::from_bits(BInt::from_bits(bnum::BUint::from_digit(value as u64)))
}
#[inline]
pub const fn to_raw(self)->i64{
let &[digit]=self.to_bits().to_bits().digits();
digit as i64
}
}
macro_rules! impl_from {
($($from:ty),*)=>{
$(
impl<const N:usize,const F:usize> From<$from> for Fixed<N,F>{
#[inline]
fn from(value:$from)->Self{
Self::from_bits(BInt::<{N}>::from(value)<<F as u32)
}
}
)*
};
}
impl_from!(
u8,u16,u32,u64,u128,usize,
i8,i16,i32,i64,i128,isize
);
impl<const N:usize,const F:usize> PartialEq for Fixed<N,F>{
#[inline]
fn eq(&self,other:&Self)->bool{
self.bits.eq(&other.bits)
}
}
impl<const N:usize,const F:usize,T> PartialEq<T> for Fixed<N,F>
where
T:Copy,
BInt::<N>:From<T>,
{
#[inline]
fn eq(&self,&other:&T)->bool{
self.bits.eq(&other.into())
}
}
impl<const N:usize,const F:usize> Eq for Fixed<N,F>{}
impl<const N:usize,const F:usize> PartialOrd for Fixed<N,F>{
#[inline]
fn partial_cmp(&self,other:&Self)->Option<std::cmp::Ordering>{
self.bits.partial_cmp(&other.bits)
}
}
impl<const N:usize,const F:usize,T> PartialOrd<T> for Fixed<N,F>
where
T:Copy,
BInt::<N>:From<T>,
{
#[inline]
fn partial_cmp(&self,&other:&T)->Option<std::cmp::Ordering>{
self.bits.partial_cmp(&other.into())
}
}
impl<const N:usize,const F:usize> Ord for Fixed<N,F>{
#[inline]
fn cmp(&self,other:&Self)->std::cmp::Ordering{
self.bits.cmp(&other.bits)
}
}
impl<const N:usize,const F:usize> std::ops::Neg for Fixed<N,F>{
type Output=Self;
#[inline]
fn neg(self)->Self{
Self::from_bits(self.bits.neg())
}
}
impl<const N:usize,const F:usize> std::iter::Sum for Fixed<N,F>{
#[inline]
fn sum<I:Iterator<Item=Self>>(iter:I)->Self{
let mut sum=Self::ZERO;
for elem in iter{
sum+=elem;
}
sum
}
}
const fn signed_shift(lhs:u64,rhs:i32)->u64{
if rhs.is_negative(){
lhs>>-rhs
}else{
lhs<<rhs
}
}
macro_rules! impl_into_float {
( $output: ty, $unsigned:ty, $exponent_bits:expr, $mantissa_bits:expr ) => {
impl<const N:usize,const F:usize> Into<$output> for Fixed<N,F>{
#[inline]
fn into(self)->$output{
const DIGIT_SHIFT:u32=6;//Log2[64]
// SBBB BBBB
// 1001 1110 0000 0000
let sign=if self.bits.is_negative(){(1 as $unsigned)<<(<$unsigned>::BITS-1)}else{0};
let unsigned=self.bits.unsigned_abs();
let most_significant_bit=unsigned.bits();
let exp=if unsigned.is_zero(){
0
}else{
let msb=most_significant_bit as $unsigned;
let _127=((1 as $unsigned)<<($exponent_bits-1))-1;
let msb_offset=msb+_127-1-F as $unsigned;
msb_offset<<($mantissa_bits-1)
};
let digits=unsigned.digits();
let digit_index=most_significant_bit.saturating_sub(1)>>DIGIT_SHIFT;
let digit=digits[digit_index as usize];
//How many bits does the mantissa take from this digit
let take_bits=most_significant_bit-(digit_index<<DIGIT_SHIFT);
let rest_of_mantissa=$mantissa_bits as i32-(take_bits as i32);
let mut unmasked_mant=signed_shift(digit,rest_of_mantissa) as $unsigned;
if 0<rest_of_mantissa&&digit_index!=0{
//take the next digit down and shove some of its bits onto the bottom of the mantissa
let digit=digits[digit_index as usize-1];
let take_bits=most_significant_bit-((digit_index-1)<<DIGIT_SHIFT);
let rest_of_mantissa=$mantissa_bits as i32-(take_bits as i32);
let unmasked_mant2=signed_shift(digit,rest_of_mantissa) as $unsigned;
unmasked_mant|=unmasked_mant2;
}
let mant=unmasked_mant&((1 as $unsigned)<<($mantissa_bits-1))-1;
let bits=sign|exp|mant;
<$output>::from_bits(bits)
}
}
}
}
impl_into_float!(f32,u32,8,24);
impl_into_float!(f64,u64,11,53);
#[inline]
fn integer_decode_f32(f: f32) -> (u64, i16, bool) {
let bits: u32 = f.to_bits();
let sign: bool = bits & (1<<31) != 0;
let mut exponent: i16 = ((bits >> 23) & 0xff) as i16;
let mantissa = if exponent == 0 {
(bits & 0x7fffff) << 1
} else {
(bits & 0x7fffff) | 0x800000
};
// Exponent bias + mantissa shift
exponent -= 127 + 23;
(mantissa as u64, exponent, sign)
}
#[inline]
fn integer_decode_f64(f: f64) -> (u64, i16, bool) {
let bits: u64 = f.to_bits();
let sign: bool = bits & (1u64<<63) != 0;
let mut exponent: i16 = ((bits >> 52) & 0x7ff) as i16;
let mantissa = if exponent == 0 {
(bits & 0xfffffffffffff) << 1
} else {
(bits & 0xfffffffffffff) | 0x10000000000000
};
// Exponent bias + mantissa shift
exponent -= 1023 + 52;
(mantissa, exponent, sign)
}
#[derive(Debug,Eq,PartialEq)]
pub enum FixedFromFloatError{
Nan,
Infinite,
Overflow,
Underflow,
}
impl FixedFromFloatError{
pub fn underflow_to_zero<const N:usize,const F:usize>(self)->Result<Fixed<N,F>,Self>{
match self{
FixedFromFloatError::Underflow=>Ok(Fixed::ZERO),
_=>Err(self),
}
}
}
macro_rules! impl_from_float {
( $decode:ident, $input: ty, $mantissa_bits:expr ) => {
impl<const N:usize,const F:usize> TryFrom<$input> for Fixed<N,F>{
type Error=FixedFromFloatError;
#[inline]
fn try_from(value:$input)->Result<Self,Self::Error>{
const DIGIT_SHIFT:u32=6;
match value.classify(){
std::num::FpCategory::Nan=>Err(FixedFromFloatError::Nan),
std::num::FpCategory::Infinite=>Err(FixedFromFloatError::Infinite),
std::num::FpCategory::Zero=>Ok(Self::ZERO),
std::num::FpCategory::Subnormal
|std::num::FpCategory::Normal
=>{
let (m,e,s)=$decode(value);
let mut digits=[0u64;N];
let most_significant_bit=e as i32+$mantissa_bits as i32+F as i32;
if most_significant_bit<0{
return Err(FixedFromFloatError::Underflow);
}
let digit_index=most_significant_bit>>DIGIT_SHIFT;
let digit=digits.get_mut(digit_index as usize).ok_or(FixedFromFloatError::Overflow)?;
let take_bits=most_significant_bit-(digit_index<<DIGIT_SHIFT);
let rest_of_mantissa=-($mantissa_bits as i32-(take_bits as i32));
*digit=signed_shift(m,rest_of_mantissa);
if rest_of_mantissa<0&&digit_index!=0{
//we don't care if some float bits are partially truncated
if let Some(digit)=digits.get_mut((digit_index-1) as usize){
let take_bits=most_significant_bit-((digit_index-1)<<DIGIT_SHIFT);
let rest_of_mantissa=-($mantissa_bits as i32-(take_bits as i32));
*digit=signed_shift(m,rest_of_mantissa);
}
}
let bits=BInt::from_bits(bnum::BUint::from_digits(digits));
Ok(if s{
Self::from_bits(bits.overflowing_neg().0)
}else{
Self::from_bits(bits)
})
},
}
}
}
}
}
impl_from_float!(integer_decode_f32,f32,24);
impl_from_float!(integer_decode_f64,f64,53);
impl<const N:usize,const F:usize> core::fmt::Display for Fixed<N,F>{
#[inline]
fn fmt(&self,f:&mut core::fmt::Formatter)->Result<(),core::fmt::Error>{
let float:f32=(*self).into();
core::write!(f,"{:.3}",float)
}
}
macro_rules! impl_additive_operator {
( $struct: ident, $trait: ident, $method: ident, $output: ty ) => {
impl<const N:usize,const F:usize> $struct<N,F>{
#[inline]
pub const fn $method(self, other: Self) -> Self {
Self::from_bits(self.bits.$method(other.bits))
}
}
impl<const N:usize,const F:usize> core::ops::$trait for $struct<N,F>{
type Output = $output;
#[inline]
fn $method(self, other: Self) -> Self::Output {
self.$method(other)
}
}
impl<const N:usize,const F:usize,U> core::ops::$trait<U> for $struct<N,F>
where
BInt::<N>:From<U>,
{
type Output = $output;
#[inline]
fn $method(self, other: U) -> Self::Output {
Self::from_bits(self.bits.$method(BInt::<N>::from(other).shl(F as u32)))
}
}
};
}
macro_rules! impl_additive_assign_operator {
( $struct: ident, $trait: ident, $method: ident ) => {
impl<const N:usize,const F:usize> core::ops::$trait for $struct<N,F>{
#[inline]
fn $method(&mut self, other: Self) {
self.bits.$method(other.bits);
}
}
impl<const N:usize,const F:usize,U> core::ops::$trait<U> for $struct<N,F>
where
BInt::<N>:From<U>,
{
#[inline]
fn $method(&mut self, other: U) {
self.bits.$method(BInt::<N>::from(other).shl(F as u32));
}
}
};
}
// Impl arithmetic pperators
impl_additive_assign_operator!( Fixed, AddAssign, add_assign );
impl_additive_operator!( Fixed, Add, add, Self );
impl_additive_assign_operator!( Fixed, SubAssign, sub_assign );
impl_additive_operator!( Fixed, Sub, sub, Self );
impl_additive_assign_operator!( Fixed, RemAssign, rem_assign );
impl_additive_operator!( Fixed, Rem, rem, Self );
// Impl bitwise operators
impl_additive_assign_operator!( Fixed, BitAndAssign, bitand_assign );
impl_additive_operator!( Fixed, BitAnd, bitand, Self );
impl_additive_assign_operator!( Fixed, BitOrAssign, bitor_assign );
impl_additive_operator!( Fixed, BitOr, bitor, Self );
impl_additive_assign_operator!( Fixed, BitXorAssign, bitxor_assign );
impl_additive_operator!( Fixed, BitXor, bitxor, Self );
// non-wide operators. The result is the same width as the inputs.
// This macro is not used in the default configuration.
#[allow(unused_macros)]
macro_rules! impl_multiplicative_operator_not_const_generic {
( ($struct: ident, $trait: ident, $method: ident, $output: ty ), $width:expr ) => {
impl<const F:usize> core::ops::$trait for $struct<$width,F>{
type Output = $output;
#[inline]
fn $method(self, other: Self) -> Self::Output {
paste::item!{
self.[<fixed_ $method>](other)
}
}
}
};
}
macro_rules! impl_multiplicative_assign_operator_not_const_generic {
( ($struct: ident, $trait: ident, $method: ident, $non_assign_method: ident ), $width:expr ) => {
impl<const F:usize> core::ops::$trait for $struct<$width,F>{
#[inline]
fn $method(&mut self, other: Self) {
paste::item!{
*self=self.[<fixed_ $non_assign_method>](other);
}
}
}
};
}
macro_rules! impl_multiply_operator_not_const_generic {
( ($struct: ident, $trait: ident, $method: ident, $output: ty ), $width:expr ) => {
impl<const F:usize> $struct<$width,F>{
paste::item!{
#[inline]
pub fn [<fixed_ $method>](self, rhs: Self) -> Self {
let (low,high)=self.bits.unsigned_abs().widening_mul(rhs.bits.unsigned_abs());
let out:BInt::<{$width*2}>=unsafe{core::mem::transmute([low,high])};
if self.is_negative()==rhs.is_negative(){
Self::from_bits(out.shr(F as u32).as_())
}else{
-Self::from_bits(out.shr(F as u32).as_())
}
}
}
}
#[cfg(not(feature="wide-mul"))]
impl_multiplicative_operator_not_const_generic!(($struct, $trait, $method, $output ), $width);
#[cfg(feature="deferred-division")]
impl ratio_ops::ratio::Divide<i64> for Fixed<$width,{$width*32}>{
type Output=Self;
#[inline]
fn divide(self, other: i64)->Self::Output{
Self::from_bits(self.bits.div_euclid(BInt::from(other)))
}
}
}
}
macro_rules! impl_divide_operator_not_const_generic {
( ($struct: ident, $trait: ident, $method: ident, $output: ty ), $width:expr ) => {
impl<const F:usize> $struct<$width,F>{
paste::item!{
#[inline]
pub fn [<fixed_ $method>](self,other:Self)->Self{
//this only needs to be $width+F as u32/64+1 but MUH CONST GENERICS!!!!!
let lhs=self.bits.as_::<BInt::<{$width*2}>>().shl(F as u32);
let rhs=other.bits.as_::<BInt::<{$width*2}>>();
Self::from_bits(lhs.div_euclid(rhs).as_())
}
}
}
#[cfg(all(not(feature="wide-mul"),not(feature="deferred-division")))]
impl_multiplicative_operator_not_const_generic!(($struct, $trait, $method, $output ), $width);
#[cfg(all(not(feature="wide-mul"),feature="deferred-division"))]
impl<const F:usize> ratio_ops::ratio::Divide for $struct<$width,F>{
type Output = $output;
#[inline]
fn divide(self, other: Self) -> Self::Output {
paste::item!{
self.[<fixed_ $method>](other)
}
}
}
};
}
macro_rules! impl_multiplicative_operator {
( $struct: ident, $trait: ident, $method: ident, $inner_method: ident, $output: ty ) => {
impl<const N:usize,const F:usize,U> core::ops::$trait<U> for $struct<N,F>
where
BInt::<N>:From<U>+core::ops::$trait,
{
type Output = $output;
#[inline]
fn $method(self,other:U)->Self::Output{
Self::from_bits(self.bits.$inner_method(BInt::<N>::from(other)))
}
}
};
}
macro_rules! impl_multiplicative_assign_operator {
( $struct: ident, $trait: ident, $method: ident, $not_assign_method: ident ) => {
impl<const N:usize,const F:usize,U> core::ops::$trait<U> for $struct<N,F>
where
BInt::<N>:From<U>+core::ops::$trait,
{
#[inline]
fn $method(&mut self,other:U){
self.bits=self.bits.$not_assign_method(BInt::<N>::from(other));
}
}
};
}
macro_rules! macro_repeated{
(
$macro:ident,
$any:tt,
$($repeated:tt),*
)=>{
$(
$macro!($any, $repeated);
)*
};
}
macro_rules! macro_16 {
( $macro: ident, $any:tt ) => {
macro_repeated!($macro,$any,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16);
}
}
macro_16!( impl_multiplicative_assign_operator_not_const_generic, (Fixed, MulAssign, mul_assign, mul) );
macro_16!( impl_multiply_operator_not_const_generic, (Fixed, Mul, mul, Self) );
macro_16!( impl_multiplicative_assign_operator_not_const_generic, (Fixed, DivAssign, div_assign, div) );
macro_16!( impl_divide_operator_not_const_generic, (Fixed, Div, div, Self) );
impl_multiplicative_assign_operator!( Fixed, MulAssign, mul_assign, mul );
impl_multiplicative_operator!( Fixed, Mul, mul, mul, Self );
impl_multiplicative_assign_operator!( Fixed, DivAssign, div_assign, div_euclid );
impl_multiplicative_operator!( Fixed, Div, div, div_euclid, Self );
#[cfg(feature="deferred-division")]
impl<const LHS_N:usize,const LHS_F:usize,const RHS_N:usize,const RHS_F:usize> core::ops::Div<Fixed<RHS_N,RHS_F>> for Fixed<LHS_N,LHS_F>{
type Output=ratio_ops::ratio::Ratio<Fixed<LHS_N,LHS_F>,Fixed<RHS_N,RHS_F>>;
#[inline]
fn div(self, other: Fixed<RHS_N,RHS_F>)->Self::Output{
ratio_ops::ratio::Ratio::new(self,other)
}
}
#[cfg(feature="deferred-division")]
impl<const N:usize,const F:usize> ratio_ops::ratio::Parity for Fixed<N,F>{
fn parity(&self)->bool{
self.is_negative()
}
}
macro_rules! impl_shift_operator {
( $struct: ident, $trait: ident, $method: ident, $output: ty ) => {
impl<const N:usize,const F:usize> core::ops::$trait<u32> for $struct<N,F>{
type Output = $output;
#[inline]
fn $method(self, other: u32) -> Self::Output {
Self::from_bits(self.bits.$method(other))
}
}
};
}
macro_rules! impl_shift_assign_operator {
( $struct: ident, $trait: ident, $method: ident ) => {
impl<const N:usize,const F:usize> core::ops::$trait<u32> for $struct<N,F>{
#[inline]
fn $method(&mut self, other: u32) {
self.bits.$method(other);
}
}
};
}
impl_shift_assign_operator!( Fixed, ShlAssign, shl_assign );
impl_shift_operator!( Fixed, Shl, shl, Self );
impl_shift_assign_operator!( Fixed, ShrAssign, shr_assign );
impl_shift_operator!( Fixed, Shr, shr, Self );
// wide operators. The result width is the sum of the input widths, i.e. none of the multiplication
#[allow(unused_macros)]
macro_rules! impl_wide_operators{
($lhs:expr,$rhs:expr)=>{
impl core::ops::Mul<Fixed<$rhs,{$rhs*32}>> for Fixed<$lhs,{$lhs*32}>{
type Output=Fixed<{$lhs+$rhs},{($lhs+$rhs)*32}>;
#[inline]
fn mul(self, other: Fixed<$rhs,{$rhs*32}>)->Self::Output{
paste::item!{
self.[<wide_mul_ $lhs _ $rhs>](other)
}
}
}
#[cfg(not(feature="deferred-division"))]
impl core::ops::Div<Fixed<$rhs,{$rhs*32}>> for Fixed<$lhs,{$lhs*32}>{
type Output=Fixed<{$lhs+$rhs},{($lhs+$rhs)*32}>;
#[inline]
fn div(self, other: Fixed<$rhs,{$rhs*32}>)->Self::Output{
paste::item!{
self.[<wide_div_ $lhs _ $rhs>](other)
}
}
}
#[cfg(feature="deferred-division")]
impl ratio_ops::ratio::Divide<Fixed<$rhs,{$rhs*32}>> for Fixed<$lhs,{$lhs*32}>{
type Output=Fixed<{$lhs+$rhs},{($lhs+$rhs)*32}>;
#[inline]
fn divide(self, other: Fixed<$rhs,{$rhs*32}>)->Self::Output{
paste::item!{
self.[<wide_div_ $lhs _ $rhs>](other)
}
}
}
}
}
// WIDE MUL: multiply into a wider type
// let a = I32F32::ONE;
// let b:I64F64 = a.wide_mul(a);
macro_rules! impl_wide_not_const_generic{
(
(),
($lhs:expr,$rhs:expr)
)=>{
impl Fixed<$lhs,{$lhs*32}>
{
paste::item!{
#[inline]
pub fn [<wide_mul_ $lhs _ $rhs>](self,rhs:Fixed<$rhs,{$rhs*32}>)->Fixed<{$lhs+$rhs},{($lhs+$rhs)*32}>{
let lhs=self.bits.as_::<BInt<{$lhs+$rhs}>>();
let rhs=rhs.bits.as_::<BInt<{$lhs+$rhs}>>();
Fixed::from_bits(lhs*rhs)
}
/// This operation cannot represent the fraction exactly,
/// but it shapes the output to have precision for the
/// largest and smallest possible fractions.
#[inline]
pub fn [<wide_div_ $lhs _ $rhs>](self,rhs:Fixed<$rhs,{$rhs*32}>)->Fixed<{$lhs+$rhs},{($lhs+$rhs)*32}>{
// (lhs/2^LHS_FRAC)/(rhs/2^RHS_FRAC)
let lhs=self.bits.as_::<BInt<{$lhs+$rhs}>>().shl($rhs*64);
let rhs=rhs.bits.as_::<BInt<{$lhs+$rhs}>>();
Fixed::from_bits(lhs/rhs)
}
}
}
#[cfg(feature="wide-mul")]
impl_wide_operators!($lhs,$rhs);
};
}
macro_rules! impl_wide_same_size_not_const_generic{
(
(),
$width:expr
)=>{
impl Fixed<$width,{$width*32}>
{
paste::item!{
#[inline]
pub fn [<wide_mul_ $width _ $width>](self,rhs:Fixed<$width,{$width*32}>)->Fixed<{$width*2},{$width*2*32}>{
let (low,high)=self.bits.unsigned_abs().widening_mul(rhs.bits.unsigned_abs());
let out:BInt::<{$width*2}>=unsafe{core::mem::transmute([low,high])};
if self.is_negative()==rhs.is_negative(){
Fixed::from_bits(out)
}else{
// Normal neg is the cheapest negation operation
// And the inputs cannot reach the point where it matters
Fixed::from_bits(out.neg())
}
}
/// This operation cannot represent the fraction exactly,
/// but it shapes the output to have precision for the
/// largest and smallest possible fractions.
#[inline]
pub fn [<wide_div_ $width _ $width>](self,rhs:Fixed<$width,{$width*32}>)->Fixed<{$width*2},{$width*2*32}>{
// (lhs/2^LHS_FRAC)/(rhs/2^RHS_FRAC)
let lhs=self.bits.as_::<BInt<{$width*2}>>().shl($width*64);
let rhs=rhs.bits.as_::<BInt<{$width*2}>>();
Fixed::from_bits(lhs/rhs)
}
}
}
#[cfg(feature="wide-mul")]
impl_wide_operators!($width,$width);
};
}
//const generics sidestepped wahoo
macro_repeated!(
impl_wide_not_const_generic,(),
(2,1),(3,1),(4,1),(5,1),(6,1),(7,1),(8,1),(9,1),(10,1),(11,1),(12,1),(13,1),(14,1),(15,1),
(1,2), (3,2),(4,2),(5,2),(6,2),(7,2),(8,2),(9,2),(10,2),(11,2),(12,2),(13,2),(14,2),
(1,3),(2,3), (4,3),(5,3),(6,3),(7,3),(8,3),(9,3),(10,3),(11,3),(12,3),(13,3),
(1,4),(2,4),(3,4), (5,4),(6,4),(7,4),(8,4),(9,4),(10,4),(11,4),(12,4),
(1,5),(2,5),(3,5),(4,5), (6,5),(7,5),(8,5),(9,5),(10,5),(11,5),
(1,6),(2,6),(3,6),(4,6),(5,6), (7,6),(8,6),(9,6),(10,6),
(1,7),(2,7),(3,7),(4,7),(5,7),(6,7), (8,7),(9,7),
(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8), (9,8),
(1,9),(2,9),(3,9),(4,9),(5,9),(6,9),(7,9),
(1,10),(2,10),(3,10),(4,10),(5,10),(6,10),
(1,11),(2,11),(3,11),(4,11),(5,11),
(1,12),(2,12),(3,12),(4,12),
(1,13),(2,13),(3,13),
(1,14),(2,14),
(1,15)
);
macro_repeated!(
impl_wide_same_size_not_const_generic,(),
1,2,3,4,5,6,7,8
);
pub trait Fix<Out>{
fn fix(self)->Out;
}
macro_rules! impl_fix_rhs_lt_lhs_not_const_generic{
(
(),
($lhs:expr,$rhs:expr)
)=>{
impl Fixed<$lhs,{$lhs*32}>
{
paste::item!{
#[inline]
pub fn [<fix_ $rhs>](self)->Fixed<$rhs,{$rhs*32}>{
Fixed::from_bits(bnum::cast::As::as_::<BInt::<$rhs>>(self.bits.shr(($lhs-$rhs)*32)))
}
}
}
impl Fix<Fixed<$rhs,{$rhs*32}>> for Fixed<$lhs,{$lhs*32}>{
fn fix(self)->Fixed<$rhs,{$rhs*32}>{
paste::item!{
self.[<fix_ $rhs>]()
}
}
}
}
}
macro_rules! impl_fix_lhs_lt_rhs_not_const_generic{
(
(),
($lhs:expr,$rhs:expr)
)=>{
impl Fixed<$lhs,{$lhs*32}>
{
paste::item!{
#[inline]
pub fn [<fix_ $rhs>](self)->Fixed<$rhs,{$rhs*32}>{
Fixed::from_bits(bnum::cast::As::as_::<BInt::<$rhs>>(self.bits).shl(($rhs-$lhs)*32))
}
}
}
impl Fix<Fixed<$rhs,{$rhs*32}>> for Fixed<$lhs,{$lhs*32}>{
fn fix(self)->Fixed<$rhs,{$rhs*32}>{
paste::item!{
self.[<fix_ $rhs>]()
}
}
}
}
}
macro_rules! impl_fix_lhs_eq_rhs_not_const_generic{
(
(),
($lhs:expr,$rhs:expr)
)=>{
impl Fixed<$lhs,{$lhs*32}>
{
paste::item!{
#[inline]
pub fn [<fix_ $rhs>](self)->Fixed<$rhs,{$rhs*32}>{
self
}
}
}
impl Fix<Fixed<$rhs,{$rhs*32}>> for Fixed<$lhs,{$lhs*32}>{
fn fix(self)->Fixed<$rhs,{$rhs*32}>{
paste::item!{
self.[<fix_ $rhs>]()
}
}
}
}
}
// I LOVE NOT BEING ABLE TO USE CONST GENERICS
macro_repeated!(
impl_fix_rhs_lt_lhs_not_const_generic,(),
(2,1),(3,1),(4,1),(5,1),(6,1),(7,1),(8,1),(9,1),(10,1),(11,1),(12,1),(13,1),(14,1),(15,1),(16,1),(17,1),
(3,2),(4,2),(5,2),(6,2),(7,2),(8,2),(9,2),(10,2),(11,2),(12,2),(13,2),(14,2),(15,2),(16,2),
(4,3),(5,3),(6,3),(7,3),(8,3),(9,3),(10,3),(11,3),(12,3),(13,3),(14,3),(15,3),(16,3),
(5,4),(6,4),(7,4),(8,4),(9,4),(10,4),(11,4),(12,4),(13,4),(14,4),(15,4),(16,4),
(6,5),(7,5),(8,5),(9,5),(10,5),(11,5),(12,5),(13,5),(14,5),(15,5),(16,5),
(7,6),(8,6),(9,6),(10,6),(11,6),(12,6),(13,6),(14,6),(15,6),(16,6),
(8,7),(9,7),(10,7),(11,7),(12,7),(13,7),(14,7),(15,7),(16,7),
(9,8),(10,8),(11,8),(12,8),(13,8),(14,8),(15,8),(16,8),
(10,9),(11,9),(12,9),(13,9),(14,9),(15,9),(16,9),
(11,10),(12,10),(13,10),(14,10),(15,10),(16,10),
(12,11),(13,11),(14,11),(15,11),(16,11),
(13,12),(14,12),(15,12),(16,12),
(14,13),(15,13),(16,13),
(15,14),(16,14),
(16,15)
);
macro_repeated!(
impl_fix_lhs_lt_rhs_not_const_generic,(),
(1,2),
(1,3),(2,3),
(1,4),(2,4),(3,4),
(1,5),(2,5),(3,5),(4,5),
(1,6),(2,6),(3,6),(4,6),(5,6),
(1,7),(2,7),(3,7),(4,7),(5,7),(6,7),
(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8),
(1,9),(2,9),(3,9),(4,9),(5,9),(6,9),(7,9),(8,9),
(1,10),(2,10),(3,10),(4,10),(5,10),(6,10),(7,10),(8,10),(9,10),
(1,11),(2,11),(3,11),(4,11),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11),
(1,12),(2,12),(3,12),(4,12),(5,12),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12),
(1,13),(2,13),(3,13),(4,13),(5,13),(6,13),(7,13),(8,13),(9,13),(10,13),(11,13),(12,13),
(1,14),(2,14),(3,14),(4,14),(5,14),(6,14),(7,14),(8,14),(9,14),(10,14),(11,14),(12,14),(13,14),
(1,15),(2,15),(3,15),(4,15),(5,15),(6,15),(7,15),(8,15),(9,15),(10,15),(11,15),(12,15),(13,15),(14,15),
(1,16),(2,16),(3,16),(4,16),(5,16),(6,16),(7,16),(8,16),(9,16),(10,16),(11,16),(12,16),(13,16),(14,16),(15,16)
);
macro_repeated!(
impl_fix_lhs_eq_rhs_not_const_generic,(),
(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),(7,7),(8,8),(9,9),(10,10),(11,11),(12,12),(13,13),(14,14),(15,15),(16,16)
);
macro_rules! impl_not_const_generic{
($n:expr,$_2n:expr)=>{
impl Fixed<$n,{$n*32}>{
paste::item!{
#[inline]
pub fn sqrt_unchecked(self)->Self{
//1<<max_shift must be the minimum power of two which when squared is greater than self
//calculating max_shift:
//1. count "used" bits to the left of the decimal, not including the sign bit (so -1)
//2. divide by 2 via >>1 (sqrt-ish)
//3. add on fractional offset
//Voila
let used_bits=self.bits.bits() as i32-1-($n*32) as i32;
let max_shift=((used_bits>>1)+($n*32) as i32) as u32;
let mut result=Self::ZERO;
//resize self to match the wide mul output
let wide_self=self.[<fix_ $_2n>]();
//descend down the bits and check if flipping each bit would push the square over the input value
for shift in (0..=max_shift).rev(){
let new_result={
let mut bits=result.to_bits().to_bits();
bits.set_bit(shift,true);
Self::from_bits(BInt::from_bits(bits))
};
if new_result.[<wide_mul_ $n _ $n>](new_result)<=wide_self{
result=new_result;
}
}
result
}
}
#[inline]
pub fn sqrt(self)->Self{
if self<Self::ZERO{
panic!("Square root less than zero")
}else{
self.sqrt_unchecked()
}
}
#[inline]
pub fn sqrt_checked(self)->Option<Self>{
if self<Self::ZERO{
None
}else{
Some(self.sqrt_unchecked())
}
}
}
}
}
impl_not_const_generic!(1,2);
impl_not_const_generic!(2,4);
impl_not_const_generic!(3,6);
impl_not_const_generic!(4,8);
impl_not_const_generic!(5,10);
impl_not_const_generic!(6,12);
impl_not_const_generic!(7,14);
impl_not_const_generic!(8,16);

View File

@ -0,0 +1,8 @@
pub mod fixed;
pub mod types;
#[cfg(feature="zeroes")]
pub mod zeroes;
#[cfg(test)]
mod tests;

218
lib/fixed_wide/src/tests.rs Normal file
View File

@ -0,0 +1,218 @@
use crate::types::I32F32;
use crate::types::I256F256;
#[test]
fn you_can_add_numbers(){
let a=I256F256::from((3i128*2).pow(4));
assert_eq!(a+a,I256F256::from((3i128*2).pow(4)*2));
}
#[test]
fn to_f32(){
let a=I256F256::from(1)>>2;
let f:f32=a.into();
assert_eq!(f,0.25f32);
let f:f32=(-a).into();
assert_eq!(f,-0.25f32);
let a=I256F256::from(0);
let f:f32=(-a).into();
assert_eq!(f,0f32);
let a=I256F256::from(237946589723468975i64)<<16;
let f:f32=a.into();
assert_eq!(f,237946589723468975f32*2.0f32.powi(16));
}
#[test]
fn to_f64(){
let a=I256F256::from(1)>>2;
let f:f64=a.into();
assert_eq!(f,0.25f64);
let f:f64=(-a).into();
assert_eq!(f,-0.25f64);
let a=I256F256::from(0);
let f:f64=(-a).into();
assert_eq!(f,0f64);
let a=I256F256::from(237946589723468975i64)<<16;
let f:f64=a.into();
assert_eq!(f,237946589723468975f64*2.0f64.powi(16));
}
#[test]
fn from_f32(){
let a=I256F256::from(1)>>2;
let b:Result<I256F256,_>=0.25f32.try_into();
assert_eq!(b,Ok(a));
let a=I256F256::from(-1)>>2;
let b:Result<I256F256,_>=(-0.25f32).try_into();
assert_eq!(b,Ok(a));
let a=I256F256::from(0);
let b:Result<I256F256,_>=0.try_into();
assert_eq!(b,Ok(a));
let a=I256F256::from(0b101011110101001010101010000000000000000000000000000i64)<<16;
let b:Result<I256F256,_>=(0b101011110101001010101010000000000000000000000000000u64 as f32*2.0f32.powi(16)).try_into();
assert_eq!(b,Ok(a));
//I32F32::MAX into f32 is truncated into this value
let a=I32F32::raw(0b111111111111111111111111000000000000000000000000000000000000000i64);
let b:Result<I32F32,_>=Into::<f32>::into(I32F32::MAX).try_into();
assert_eq!(b,Ok(a));
//I32F32::MIN hits a special case since it's not representable as a positive signed integer
//TODO: don't return an overflow because this is technically possible
let a=I32F32::MIN;
let b:Result<I32F32,_>=Into::<f32>::into(I32F32::MIN).try_into();
assert_eq!(b,Err(crate::fixed::FixedFromFloatError::Overflow));
//16 is within the 24 bits of float precision
let b:Result<I32F32,_>=Into::<f32>::into(-I32F32::MIN.fix_2()).try_into();
assert_eq!(b,Err(crate::fixed::FixedFromFloatError::Overflow));
let b:Result<I32F32,_>=f32::MIN_POSITIVE.try_into();
assert_eq!(b,Err(crate::fixed::FixedFromFloatError::Underflow));
//test many cases
for i in 0..64{
let a=crate::fixed::Fixed::<2,64>::raw_digit(0b111111111111111111111111000000000000000000000000000000000000000i64)<<i;
let f:f32=a.into();
let b:Result<crate::fixed::Fixed<2,64>,_>=f.try_into();
assert_eq!(b,Ok(a));
}
}
#[test]
fn from_f64(){
let a=I256F256::from(1)>>2;
let b:Result<I256F256,_>=0.25f64.try_into();
assert_eq!(b,Ok(a));
let a=I256F256::from(-1)>>2;
let b:Result<I256F256,_>=(-0.25f64).try_into();
assert_eq!(b,Ok(a));
let a=I256F256::from(0);
let b:Result<I256F256,_>=0.try_into();
assert_eq!(b,Ok(a));
let a=I256F256::from(0b101011110101001010101010000000000000000000000000000i64)<<16;
let b:Result<I256F256,_>=(0b101011110101001010101010000000000000000000000000000u64 as f64*2.0f64.powi(16)).try_into();
assert_eq!(b,Ok(a));
}
#[test]
fn you_can_shr_numbers(){
let a=I32F32::from(4);
assert_eq!(a>>1,I32F32::from(2));
}
#[test]
fn test_wide_mul(){
let a=I32F32::ONE;
let aa=a.wide_mul_1_1(a);
assert_eq!(aa,crate::types::I64F64::ONE);
}
#[test]
fn test_wide_div(){
let a=I32F32::ONE*4;
let b=I32F32::ONE*2;
let wide_a=a.wide_mul_1_1(I32F32::ONE);
let wide_b=b.wide_mul_1_1(I32F32::ONE);
let ab=a.wide_div_1_1(b);
assert_eq!(ab,crate::types::I64F64::ONE*2);
let wab=wide_a.wide_div_2_1(b);
assert_eq!(wab,crate::fixed::Fixed::<3,96>::ONE*2);
let awb=a.wide_div_1_2(wide_b);
assert_eq!(awb,crate::fixed::Fixed::<3,96>::ONE*2);
}
#[test]
fn test_wide_mul_repeated() {
let a=I32F32::from(2);
let b=I32F32::from(3);
let w1=a.wide_mul_1_1(b);
let w2=w1.wide_mul_2_2(w1);
let w3=w2.wide_mul_4_4(w2);
assert_eq!(w3,I256F256::from((3i128*2).pow(4)));
}
#[test]
fn test_bint(){
let a=I32F32::ONE;
assert_eq!(a*2,I32F32::from(2));
}
#[test]
fn test_fix(){
assert_eq!(I32F32::ONE.fix_8(),I256F256::ONE);
assert_eq!(I32F32::ONE,I256F256::ONE.fix_1());
assert_eq!(I32F32::NEG_ONE.fix_8(),I256F256::NEG_ONE);
assert_eq!(I32F32::NEG_ONE,I256F256::NEG_ONE.fix_1());
}
#[test]
fn test_sqrt(){
let a=I32F32::ONE*4;
assert_eq!(a.sqrt(),I32F32::from(2));
}
#[test]
fn test_sqrt_zero(){
let a=I32F32::ZERO;
assert_eq!(a.sqrt(),I32F32::ZERO);
}
#[test]
fn test_sqrt_low(){
let a=I32F32::HALF;
let b=a.fixed_mul(a);
assert_eq!(b.sqrt(),a);
}
fn find_equiv_sqrt_via_f64(n:I32F32)->I32F32{
//GIMME THEM BITS BOY
let &[bits]=n.to_bits().to_bits().digits();
let ibits=bits as i64;
let f=(ibits as f64)/((1u64<<32) as f64);
let f_ans=f.sqrt();
let i=(f_ans*((1u64<<32) as f64)) as i64;
let r=I32F32::from_bits(bnum::BInt::<1>::from(i));
//mimic the behaviour of the algorithm,
//return the result if it truncates to the exact answer
if (r+I32F32::EPSILON).wide_mul_1_1(r+I32F32::EPSILON)==n.wide_mul_1_1(I32F32::ONE){
return r+I32F32::EPSILON;
}
if (r-I32F32::EPSILON).wide_mul_1_1(r-I32F32::EPSILON)==n.wide_mul_1_1(I32F32::ONE){
return r-I32F32::EPSILON;
}
return r;
}
fn test_exact(n:I32F32){
assert_eq!(n.sqrt(),find_equiv_sqrt_via_f64(n));
}
#[test]
fn test_sqrt_exact(){
//43
for i in 0..((i64::MAX as f32).ln() as u32){
let n=I32F32::from_bits(bnum::BInt::<1>::from((i as f32).exp() as i64));
test_exact(n);
}
}
#[test]
fn test_sqrt_max(){
let a=I32F32::MAX;
test_exact(a);
}
#[test]
#[cfg(all(feature="zeroes",not(feature="deferred-division")))]
fn test_zeroes_normal(){
// (x-1)*(x+1)
// x^2-1
let zeroes=I32F32::zeroes2(I32F32::NEG_ONE,I32F32::ZERO,I32F32::ONE);
assert_eq!(zeroes,arrayvec::ArrayVec::from_iter([I32F32::NEG_ONE,I32F32::ONE]));
let zeroes=I32F32::zeroes2(I32F32::NEG_ONE*3,I32F32::ONE*2,I32F32::ONE);
assert_eq!(zeroes,arrayvec::ArrayVec::from_iter([I32F32::NEG_ONE*3,I32F32::ONE]));
}
#[test]
#[cfg(all(feature="zeroes",feature="deferred-division"))]
fn test_zeroes_deferred_division(){
// (x-1)*(x+1)
// x^2-1
let zeroes=I32F32::zeroes2(I32F32::NEG_ONE,I32F32::ZERO,I32F32::ONE);
assert_eq!(
zeroes,
arrayvec::ArrayVec::from_iter([
ratio_ops::ratio::Ratio::new(I32F32::ONE*2,I32F32::NEG_ONE*2),
ratio_ops::ratio::Ratio::new(I32F32::ONE*2,I32F32::ONE*2),
])
);
}

View File

@ -0,0 +1,4 @@
pub type I32F32=crate::fixed::Fixed<1,32>;
pub type I64F64=crate::fixed::Fixed<2,64>;
pub type I128F128=crate::fixed::Fixed<4,128>;
pub type I256F256=crate::fixed::Fixed<8,256>;

View File

@ -0,0 +1,53 @@
use crate::fixed::Fixed;
use arrayvec::ArrayVec;
use std::cmp::Ordering;
macro_rules! impl_zeroes{
($n:expr)=>{
impl Fixed<$n,{$n*32}>{
#[inline]
pub fn zeroes2(a0:Self,a1:Self,a2:Self)->ArrayVec<<Self as core::ops::Div>::Output,2>{
let a2pos=match a2.cmp(&Self::ZERO){
Ordering::Greater=>true,
Ordering::Equal=>return ArrayVec::from_iter(Self::zeroes1(a0,a1).into_iter()),
Ordering::Less=>false,
};
let radicand=a1*a1-a2*a0*4;
match radicand.cmp(&<Self as core::ops::Mul>::Output::ZERO){
Ordering::Greater=>{
paste::item!{
let planar_radicand=radicand.sqrt().[<fix_ $n>]();
}
//sort roots ascending and avoid taking the difference of large numbers
let zeroes=match (a2pos,Self::ZERO<a1){
(true, true )=>[(-a1-planar_radicand)/(a2*2),(a0*2)/(-a1-planar_radicand)],
(true, false)=>[(a0*2)/(-a1+planar_radicand),(-a1+planar_radicand)/(a2*2)],
(false,true )=>[(a0*2)/(-a1-planar_radicand),(-a1-planar_radicand)/(a2*2)],
(false,false)=>[(-a1+planar_radicand)/(a2*2),(a0*2)/(-a1+planar_radicand)],
};
ArrayVec::from_iter(zeroes)
},
Ordering::Equal=>ArrayVec::from_iter([(a1)/(a2*-2)]),
Ordering::Less=>ArrayVec::new_const(),
}
}
#[inline]
pub fn zeroes1(a0:Self,a1:Self)->ArrayVec<<Self as core::ops::Div>::Output,1>{
if a1==Self::ZERO{
ArrayVec::new_const()
}else{
ArrayVec::from_iter([(-a0)/(a1)])
}
}
}
};
}
impl_zeroes!(1);
impl_zeroes!(2);
impl_zeroes!(3);
impl_zeroes!(4);
//sqrt doubles twice!
//impl_zeroes!(5);
//impl_zeroes!(6);
//impl_zeroes!(7);
//impl_zeroes!(8);

1
lib/linear_ops/.gitignore vendored Normal file
View File

@ -0,0 +1 @@
/target

36
lib/linear_ops/Cargo.lock generated Normal file
View File

@ -0,0 +1,36 @@
# This file is automatically @generated by Cargo.
# It is not intended for manual editing.
version = 3
[[package]]
name = "bnum"
version = "0.12.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "50202def95bf36cb7d1d7a7962cea1c36a3f8ad42425e5d2b71d7acb8041b5b8"
[[package]]
name = "fixed_wide"
version = "0.1.1"
dependencies = [
"bnum",
"paste",
]
[[package]]
name = "linear_ops"
version = "0.1.0"
dependencies = [
"fixed_wide",
"paste",
"ratio_ops",
]
[[package]]
name = "paste"
version = "1.0.15"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "57c0d7b74b563b49d38dae00a0c37d4d6de9b432382b2892f0574ddcae73fd0a"
[[package]]
name = "ratio_ops"
version = "0.1.0"

22
lib/linear_ops/Cargo.toml Normal file
View File

@ -0,0 +1,22 @@
[package]
name = "linear_ops"
version = "0.1.0"
edition = "2021"
repository = "https://git.itzana.me/StrafesNET/fixed_wide_vectors"
license = "MIT OR Apache-2.0"
description = "Vector/Matrix operations using trait bounds."
authors = ["Rhys Lloyd <krakow20@gmail.com>"]
[features]
default=["named-fields","fixed-wide"]
named-fields=[]
fixed-wide=["dep:fixed_wide","dep:paste"]
deferred-division=["dep:ratio_ops"]
[dependencies]
ratio_ops = { version = "0.1.0", path = "../ratio_ops", registry = "strafesnet", optional = true }
fixed_wide = { version = "0.1.0", path = "../fixed_wide", registry = "strafesnet", optional = true }
paste = { version = "1.0.15", optional = true }
[dev-dependencies]
fixed_wide = { version = "0.1.0", path = "../fixed_wide", registry = "strafesnet", features = ["wide-mul"] }

View File

@ -0,0 +1,176 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS

View File

@ -0,0 +1,23 @@
Permission is hereby granted, free of charge, to any
person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the
Software without restriction, including without
limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software
is furnished to do so, subject to the following
conditions:
The above copyright notice and this permission notice
shall be included in all copies or substantial portions
of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

10
lib/linear_ops/src/lib.rs Normal file
View File

@ -0,0 +1,10 @@
mod macros;
pub mod types;
pub mod vector;
pub mod matrix;
#[cfg(feature="named-fields")]
mod named;
#[cfg(test)]
mod tests;

View File

@ -0,0 +1 @@

View File

@ -0,0 +1,79 @@
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_fixed_wide_vector_not_const_generic {
(
(),
$n:expr
) => {
impl<const N:usize> Vector<N,fixed_wide::fixed::Fixed<$n,{$n*32}>>{
#[inline]
pub fn length(self)-><fixed_wide::fixed::Fixed::<$n,{$n*32}> as core::ops::Mul>::Output{
self.length_squared().sqrt_unchecked()
}
#[inline]
pub fn with_length<U,V>(self,length:U)-><Vector<N,V> as core::ops::Div<<fixed_wide::fixed::Fixed::<$n,{$n*32}> as core::ops::Mul>::Output>>::Output
where
fixed_wide::fixed::Fixed<$n,{$n*32}>:core::ops::Mul<U,Output=V>,
U:Copy,
V:core::ops::Div<<fixed_wide::fixed::Fixed::<$n,{$n*32}> as core::ops::Mul>::Output>,
{
self*length/self.length()
}
}
};
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! macro_4 {
( $macro: ident, $any:tt ) => {
$crate::macro_repeated!($macro,$any,1,2,3,4);
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_fixed_wide_vector {
() => {
$crate::macro_4!(impl_fixed_wide_vector_not_const_generic,());
// I LOVE NOT BEING ABLE TO USE CONST GENERICS
$crate::macro_repeated!(
impl_fix_not_const_generic,(),
(1,1),(2,1),(3,1),(4,1),(5,1),(6,1),(7,1),(8,1),(9,1),(10,1),(11,1),(12,1),(13,1),(14,1),(15,1),(16,1),
(1,2),(2,2),(3,2),(4,2),(5,2),(6,2),(7,2),(8,2),(9,2),(10,2),(11,2),(12,2),(13,2),(14,2),(15,2),(16,2),
(1,3),(2,3),(3,3),(4,3),(5,3),(6,3),(7,3),(8,3),(9,3),(10,3),(11,3),(12,3),(13,3),(14,3),(15,3),(16,3),
(1,4),(2,4),(3,4),(4,4),(5,4),(6,4),(7,4),(8,4),(9,4),(10,4),(11,4),(12,4),(13,4),(14,4),(15,4),(16,4),
(1,5),(2,5),(3,5),(4,5),(5,5),(6,5),(7,5),(8,5),(9,5),(10,5),(11,5),(12,5),(13,5),(14,5),(15,5),(16,5),
(1,6),(2,6),(3,6),(4,6),(5,6),(6,6),(7,6),(8,6),(9,6),(10,6),(11,6),(12,6),(13,6),(14,6),(15,6),(16,6),
(1,7),(2,7),(3,7),(4,7),(5,7),(6,7),(7,7),(8,7),(9,7),(10,7),(11,7),(12,7),(13,7),(14,7),(15,7),(16,7),
(1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8),(8,8),(9,8),(10,8),(11,8),(12,8),(13,8),(14,8),(15,8),(16,8),
(1,9),(2,9),(3,9),(4,9),(5,9),(6,9),(7,9),(8,9),(9,9),(10,9),(11,9),(12,9),(13,9),(14,9),(15,9),(16,9),
(1,10),(2,10),(3,10),(4,10),(5,10),(6,10),(7,10),(8,10),(9,10),(10,10),(11,10),(12,10),(13,10),(14,10),(15,10),(16,10),
(1,11),(2,11),(3,11),(4,11),(5,11),(6,11),(7,11),(8,11),(9,11),(10,11),(11,11),(12,11),(13,11),(14,11),(15,11),(16,11),
(1,12),(2,12),(3,12),(4,12),(5,12),(6,12),(7,12),(8,12),(9,12),(10,12),(11,12),(12,12),(13,12),(14,12),(15,12),(16,12),
(1,13),(2,13),(3,13),(4,13),(5,13),(6,13),(7,13),(8,13),(9,13),(10,13),(11,13),(12,13),(13,13),(14,13),(15,13),(16,13),
(1,14),(2,14),(3,14),(4,14),(5,14),(6,14),(7,14),(8,14),(9,14),(10,14),(11,14),(12,14),(13,14),(14,14),(15,14),(16,14),
(1,15),(2,15),(3,15),(4,15),(5,15),(6,15),(7,15),(8,15),(9,15),(10,15),(11,15),(12,15),(13,15),(14,15),(15,15),(16,15),
(1,16),(2,16),(3,16),(4,16),(5,16),(6,16),(7,16),(8,16),(9,16),(10,16),(11,16),(12,16),(13,16),(14,16),(15,16),(16,16)
);
};
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_fix_not_const_generic{
(
(),
($lhs:expr,$rhs:expr)
)=>{
impl<const N:usize> Vector<N,fixed_wide::fixed::Fixed<$lhs,{$lhs*32}>>
{
paste::item!{
#[inline]
pub fn [<fix_ $rhs>](self)->Vector<N,fixed_wide::fixed::Fixed<$rhs,{$rhs*32}>>{
self.map(|t|t.[<fix_ $rhs>]())
}
}
}
}
}

View File

@ -0,0 +1,272 @@
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix {
() => {
impl<const X:usize,const Y:usize,T> Matrix<X,Y,T>{
#[inline(always)]
pub const fn new(array:[[T;Y];X])->Self{
Self{array}
}
#[inline(always)]
pub fn to_array(self)->[[T;Y];X]{
self.array
}
#[inline]
pub fn from_cols(cols:[Vector<Y,T>;X])->Self
{
Matrix::new(
cols.map(|col|col.array),
)
}
#[inline]
pub fn map<F,U>(self,f:F)->Matrix<X,Y,U>
where
F:Fn(T)->U
{
Matrix::new(
self.array.map(|inner|inner.map(&f)),
)
}
#[inline]
pub fn transpose(self)->Matrix<Y,X,T>{
//how did I think of this
let mut array_of_iterators=self.array.map(|axis|axis.into_iter());
Matrix::new(
core::array::from_fn(|_|
array_of_iterators.each_mut().map(|iter|
iter.next().unwrap()
)
)
)
}
#[inline]
// old (list of rows) MatY<VecX>.MatX<VecZ> = MatY<VecZ>
// new (list of columns) MatX<VecY>.MatZ<VecX> = MatZ<VecY>
pub fn dot<const Z:usize,U,V>(self,rhs:Matrix<Z,X,U>)->Matrix<Z,Y,V>
where
T:core::ops::Mul<U,Output=V>+Copy,
V:core::iter::Sum,
U:Copy,
{
let mut array_of_iterators=self.array.map(|axis|axis.into_iter().cycle());
Matrix{
array:rhs.array.map(|rhs_axis|
core::array::from_fn(|_|
array_of_iterators
.iter_mut()
.zip(rhs_axis.iter())
.map(|(lhs_iter,&rhs_value)|
lhs_iter.next().unwrap()*rhs_value
).sum()
)
)
}
}
#[inline]
// MatX<VecY>.VecY = VecX
pub fn transform_vector<U,V>(self,rhs:Vector<X,U>)->Vector<Y,V>
where
T:core::ops::Mul<U,Output=V>,
V:core::iter::Sum,
U:Copy,
{
let mut array_of_iterators=self.array.map(|axis|axis.into_iter());
Vector::new(
core::array::from_fn(|_|
array_of_iterators
.iter_mut()
.zip(rhs.array.iter())
.map(|(lhs_iter,&rhs_value)|
lhs_iter.next().unwrap()*rhs_value
).sum()
)
)
}
}
impl<const X:usize,const Y:usize,T> Matrix<X,Y,T>
where
T:Copy
{
#[inline(always)]
pub const fn from_value(value:T)->Self{
Self::new([[value;Y];X])
}
}
impl<const X:usize,const Y:usize,T:Default> Default for Matrix<X,Y,T>{
#[inline]
fn default()->Self{
Self::new(
core::array::from_fn(|_|core::array::from_fn(|_|Default::default()))
)
}
}
impl<const X:usize,const Y:usize,T:core::fmt::Display> core::fmt::Display for Matrix<X,Y,T>{
#[inline]
fn fmt(&self,f:&mut core::fmt::Formatter)->Result<(),core::fmt::Error>{
for col in &self.array[0..X]{
core::write!(f,"\n")?;
for elem in &col[0..Y-1]{
core::write!(f,"{}, ",elem)?;
}
// assume we will be using matrices of size 1x1 or greater
core::write!(f,"{}",col.last().unwrap())?;
}
Ok(())
}
}
impl<const X:usize,const Y:usize,const Z:usize,T,U,V> core::ops::Mul<Matrix<Z,X,U>> for Matrix<X,Y,T>
where
T:core::ops::Mul<U,Output=V>+Copy,
V:core::iter::Sum,
U:Copy,
{
type Output=Matrix<Z,Y,V>;
#[inline]
fn mul(self,rhs:Matrix<Z,X,U>)->Self::Output{
self.dot(rhs)
}
}
impl<const X:usize,const Y:usize,T,U,V> core::ops::Mul<Vector<X,U>> for Matrix<X,Y,T>
where
T:core::ops::Mul<U,Output=V>,
V:core::iter::Sum,
U:Copy,
{
type Output=Vector<Y,V>;
#[inline]
fn mul(self,rhs:Vector<X,U>)->Self::Output{
self.transform_vector(rhs)
}
}
#[cfg(feature="deferred-division")]
$crate::impl_matrix_deferred_division!();
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix_deferred_division {
() => {
impl<const X:usize,const Y:usize,T:ratio_ops::ratio::Divide<U,Output=V>,U:Copy,V> ratio_ops::ratio::Divide<U> for Matrix<X,Y,T>{
type Output=Matrix<X,Y,V>;
#[inline]
fn divide(self,rhs:U)->Self::Output{
self.map(|t|t.divide(rhs))
}
}
impl<const X:usize,const Y:usize,T,U> core::ops::Div<U> for Matrix<X,Y,T>{
type Output=ratio_ops::ratio::Ratio<Matrix<X,Y,T>,U>;
#[inline]
fn div(self,rhs:U)->Self::Output{
ratio_ops::ratio::Ratio::new(self,rhs)
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix_extend {
( $x: expr, $y: expr ) => {
impl<T> Matrix<$x,$y,T>{
#[inline]
pub fn extend_column(self,value:Vector<$y,T>)->Matrix<{$x+1},$y,T>{
let mut iter=self.array.into_iter().chain(core::iter::once(value.array));
Matrix::new(
core::array::from_fn(|_|iter.next().unwrap()),
)
}
#[inline]
pub fn extend_row(self,value:Vector<$x,T>)->Matrix<$x,{$y+1},T>{
let mut iter_rows=value.array.into_iter();
Matrix::new(
self.array.map(|axis|{
let mut elements_iter=axis.into_iter().chain(core::iter::once(iter_rows.next().unwrap()));
core::array::from_fn(|_|elements_iter.next().unwrap())
})
)
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix_named_fields_shape {
(
($struct_outer:ident, $size_outer: expr),
($size_inner: expr)
) => {
impl<T> core::ops::Deref for Matrix<$size_outer,$size_inner,T>{
type Target=$struct_outer<Vector<$size_inner,T>>;
#[inline]
fn deref(&self)->&Self::Target{
unsafe{core::mem::transmute(&self.array)}
}
}
impl<T> core::ops::DerefMut for Matrix<$size_outer,$size_inner,T>{
#[inline]
fn deref_mut(&mut self)->&mut Self::Target{
unsafe{core::mem::transmute(&mut self.array)}
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix_named_fields_shape_shim {
(
($($vector_info:tt),+),
$matrix_info:tt
) => {
$crate::macro_repeated!(impl_matrix_named_fields_shape,$matrix_info,$($vector_info),+);
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix_named_fields {
(
($($matrix_info:tt),+),
$vector_infos:tt
) => {
$crate::macro_repeated!(impl_matrix_named_fields_shape_shim,$vector_infos,$($matrix_info),+);
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix_3x3 {
()=>{
impl<T,T2,T3> Matrix<3,3,T>
where
//cross
T:core::ops::Mul<T,Output=T2>+Copy,
T2:core::ops::Sub,
//dot
T:core::ops::Mul<<T2 as core::ops::Sub>::Output,Output=T3>,
T3:core::iter::Sum,
{
pub fn det(self)->T3{
self.x_axis.dot(self.y_axis.cross(self.z_axis))
}
}
impl<T,T2> Matrix<3,3,T>
where
T:core::ops::Mul<T,Output=T2>+Copy,
T2:core::ops::Sub,
{
pub fn adjugate(self)->Matrix<3,3,<T2 as core::ops::Sub>::Output>{
Matrix::new([
[self.y_axis.y*self.z_axis.z-self.y_axis.z*self.z_axis.y,self.x_axis.z*self.z_axis.y-self.x_axis.y*self.z_axis.z,self.x_axis.y*self.y_axis.z-self.x_axis.z*self.y_axis.y],
[self.y_axis.z*self.z_axis.x-self.y_axis.x*self.z_axis.z,self.x_axis.x*self.z_axis.z-self.x_axis.z*self.z_axis.x,self.x_axis.z*self.y_axis.x-self.x_axis.x*self.y_axis.z],
[self.y_axis.x*self.z_axis.y-self.y_axis.y*self.z_axis.x,self.x_axis.y*self.z_axis.x-self.x_axis.x*self.z_axis.y,self.x_axis.x*self.y_axis.y-self.x_axis.y*self.y_axis.x],
])
}
}
}
}

View File

@ -0,0 +1,20 @@
pub mod common;
pub mod vector;
pub mod matrix;
#[cfg(feature="fixed-wide")]
pub mod fixed_wide;
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! macro_repeated{
(
$macro:ident,
$any:tt,
$($repeated:tt),*
)=>{
$(
$crate::$macro!($any, $repeated);
)*
};
}

View File

@ -0,0 +1,357 @@
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector {
() => {
impl<const N:usize,T> Vector<N,T>{
#[inline(always)]
pub const fn new(array:[T;N])->Self{
Self{array}
}
#[inline(always)]
pub fn to_array(self)->[T;N]{
self.array
}
#[inline]
pub fn map<F,U>(self,f:F)->Vector<N,U>
where
F:Fn(T)->U
{
Vector::new(
self.array.map(f)
)
}
#[inline]
pub fn map_zip<F,U,V>(self,other:Vector<N,U>,f:F)->Vector<N,V>
where
F:Fn((T,U))->V,
{
let mut iter=self.array.into_iter().zip(other.array);
Vector::new(
core::array::from_fn(|_|f(iter.next().unwrap())),
)
}
}
impl<const N:usize,T:Copy> Vector<N,T>{
#[inline(always)]
pub const fn from_value(value:T)->Self{
Self::new([value;N])
}
}
impl<const N:usize,T:Default> Default for Vector<N,T>{
#[inline]
fn default()->Self{
Self::new(
core::array::from_fn(|_|Default::default())
)
}
}
impl<const N:usize,T:core::fmt::Display> core::fmt::Display for Vector<N,T>{
#[inline]
fn fmt(&self,f:&mut core::fmt::Formatter)->Result<(),core::fmt::Error>{
for elem in &self.array[0..N-1]{
core::write!(f,"{}, ",elem)?;
}
// assume we will be using vectors of length 1 or greater
core::write!(f,"{}",self.array.last().unwrap())
}
}
impl<const N:usize,T:Ord> Vector<N,T>{
#[inline]
pub fn min(self,rhs:Self)->Self{
self.map_zip(rhs,|(a,b)|a.min(b))
}
#[inline]
pub fn max(self,rhs:Self)->Self{
self.map_zip(rhs,|(a,b)|a.max(b))
}
#[inline]
pub fn cmp(self,rhs:Self)->Vector<N,core::cmp::Ordering>{
self.map_zip(rhs,|(a,b)|a.cmp(&b))
}
#[inline]
pub fn lt(self,rhs:Self)->Vector<N,bool>{
self.map_zip(rhs,|(a,b)|a.lt(&b))
}
#[inline]
pub fn gt(self,rhs:Self)->Vector<N,bool>{
self.map_zip(rhs,|(a,b)|a.gt(&b))
}
#[inline]
pub fn ge(self,rhs:Self)->Vector<N,bool>{
self.map_zip(rhs,|(a,b)|a.ge(&b))
}
#[inline]
pub fn le(self,rhs:Self)->Vector<N,bool>{
self.map_zip(rhs,|(a,b)|a.le(&b))
}
}
impl<const N:usize> Vector<N,bool>{
#[inline]
pub fn all(&self)->bool{
self.array==[true;N]
}
#[inline]
pub fn any(&self)->bool{
self.array!=[false;N]
}
}
impl<const N:usize,T:core::ops::Neg<Output=V>,V> core::ops::Neg for Vector<N,T>{
type Output=Vector<N,V>;
#[inline]
fn neg(self)->Self::Output{
Vector::new(
self.array.map(|t|-t)
)
}
}
impl<const N:usize,T> Vector<N,T>
{
#[inline]
pub fn dot<U,V>(self,rhs:Vector<N,U>)->V
where
T:core::ops::Mul<U,Output=V>,
V:core::iter::Sum,
{
self.array.into_iter().zip(rhs.array).map(|(a,b)|a*b).sum()
}
}
impl<const N:usize,T,V> Vector<N,T>
where
T:core::ops::Mul<Output=V>+Copy,
V:core::iter::Sum,
{
#[inline]
pub fn length_squared(self)->V{
self.array.into_iter().map(|t|t*t).sum()
}
}
// Impl arithmetic operators
$crate::impl_vector_assign_operator!(AddAssign, add_assign );
$crate::impl_vector_operator!(Add, add );
$crate::impl_vector_assign_operator!(SubAssign, sub_assign );
$crate::impl_vector_operator!(Sub, sub );
$crate::impl_vector_assign_operator!(RemAssign, rem_assign );
$crate::impl_vector_operator!(Rem, rem );
// mul and div are special, usually you multiply by a scalar
// and implementing both vec*vec and vec*scalar is conflicting implementations Q_Q
$crate::impl_vector_assign_operator_scalar!(MulAssign, mul_assign );
$crate::impl_vector_operator_scalar!(Mul, mul );
$crate::impl_vector_assign_operator_scalar!(DivAssign, div_assign );
#[cfg(not(feature="deferred-division"))]
$crate::impl_vector_operator_scalar!(Div, div );
#[cfg(feature="deferred-division")]
$crate::impl_vector_deferred_division!();
// Impl bitwise operators
$crate::impl_vector_assign_operator!(BitAndAssign, bitand_assign );
$crate::impl_vector_operator!(BitAnd, bitand );
$crate::impl_vector_assign_operator!(BitOrAssign, bitor_assign );
$crate::impl_vector_operator!(BitOr, bitor );
$crate::impl_vector_assign_operator!(BitXorAssign, bitxor_assign );
$crate::impl_vector_operator!(BitXor, bitxor );
// Impl shift operators
$crate::impl_vector_shift_assign_operator!(ShlAssign, shl_assign);
$crate::impl_vector_shift_operator!(Shl, shl);
$crate::impl_vector_shift_assign_operator!(ShrAssign, shr_assign);
$crate::impl_vector_shift_operator!(Shr, shr);
// dedicated methods for this type
#[cfg(feature="fixed-wide")]
$crate::impl_fixed_wide_vector!();
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_deferred_division {
() => {
impl<const N:usize,T:ratio_ops::ratio::Divide<U,Output=V>,U:Copy,V> ratio_ops::ratio::Divide<U> for Vector<N,T>{
type Output=Vector<N,V>;
#[inline]
fn divide(self,rhs:U)->Self::Output{
self.map(|t|t.divide(rhs))
}
}
impl<const N:usize,T,U> core::ops::Div<U> for Vector<N,T>{
type Output=ratio_ops::ratio::Ratio<Vector<N,T>,U>;
#[inline]
fn div(self,rhs:U)->Self::Output{
ratio_ops::ratio::Ratio::new(self,rhs)
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_operator_scalar {
($trait: ident, $method: ident ) => {
impl<const N:usize,T:core::ops::$trait<U,Output=V>,U:Copy,V> core::ops::$trait<U> for Vector<N,T>{
type Output=Vector<N,V>;
#[inline]
fn $method(self,rhs:U)->Self::Output{
self.map(|t|t.$method(rhs))
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_operator {
($trait: ident, $method: ident ) => {
impl<const N:usize,T:core::ops::$trait<U,Output=V>,U,V> core::ops::$trait<Vector<N,U>> for Vector<N,T>{
type Output=Vector<N,V>;
#[inline]
fn $method(self,rhs:Vector<N,U>)->Self::Output{
self.map_zip(rhs,|(a,b)|a.$method(b))
}
}
impl<const N:usize,T:core::ops::$trait<i64,Output=T>> core::ops::$trait<i64> for Vector<N,T>{
type Output=Self;
#[inline]
fn $method(self,rhs:i64)->Self::Output{
self.map(|t|t.$method(rhs))
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_assign_operator_scalar {
($trait: ident, $method: ident ) => {
impl<const N:usize,T:core::ops::$trait<U>,U:Copy> core::ops::$trait<U> for Vector<N,T>{
#[inline]
fn $method(&mut self,rhs:U){
self.array.iter_mut()
.for_each(|t|t.$method(rhs))
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_assign_operator {
($trait: ident, $method: ident ) => {
impl<const N:usize,T:core::ops::$trait<U>,U> core::ops::$trait<Vector<N,U>> for Vector<N,T>{
#[inline]
fn $method(&mut self,rhs:Vector<N,U>){
self.array.iter_mut().zip(rhs.array)
.for_each(|(a,b)|a.$method(b))
}
}
impl<const N:usize,T:core::ops::$trait<i64>> core::ops::$trait<i64> for Vector<N,T>{
#[inline]
fn $method(&mut self,rhs:i64){
self.array.iter_mut()
.for_each(|t|t.$method(rhs))
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_shift_operator {
($trait: ident, $method: ident ) => {
impl<const N:usize,T:core::ops::$trait<U,Output=V>,U,V> core::ops::$trait<Vector<N,U>> for Vector<N,T>{
type Output=Vector<N,V>;
#[inline]
fn $method(self,rhs:Vector<N,U>)->Self::Output{
self.map_zip(rhs,|(a,b)|a.$method(b))
}
}
impl<const N:usize,T:core::ops::$trait<u32,Output=V>,V> core::ops::$trait<u32> for Vector<N,T>{
type Output=Vector<N,V>;
#[inline]
fn $method(self,rhs:u32)->Self::Output{
self.map(|t|t.$method(rhs))
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_shift_assign_operator {
($trait: ident, $method: ident ) => {
impl<const N:usize,T:core::ops::$trait<U>,U> core::ops::$trait<Vector<N,U>> for Vector<N,T>{
#[inline]
fn $method(&mut self,rhs:Vector<N,U>){
self.array.iter_mut().zip(rhs.array)
.for_each(|(a,b)|a.$method(b))
}
}
impl<const N:usize,T:core::ops::$trait<u32>> core::ops::$trait<u32> for Vector<N,T>{
#[inline]
fn $method(&mut self,rhs:u32){
self.array.iter_mut()
.for_each(|t|t.$method(rhs))
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_extend {
( $size: expr ) => {
impl<T> Vector<$size,T>{
#[inline]
pub fn extend(self,value:T)->Vector<{$size+1},T>{
let mut iter=self.array.into_iter().chain(core::iter::once(value));
Vector::new(
core::array::from_fn(|_|iter.next().unwrap()),
)
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_named_fields {
( $struct:ident, $size: expr ) => {
impl<T> core::ops::Deref for Vector<$size,T>{
type Target=$struct<T>;
#[inline]
fn deref(&self)->&Self::Target{
unsafe{core::mem::transmute(&self.array)}
}
}
impl<T> core::ops::DerefMut for Vector<$size,T>{
#[inline]
fn deref_mut(&mut self)->&mut Self::Target{
unsafe{core::mem::transmute(&mut self.array)}
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_vector_3 {
()=>{
impl<T> Vector<3,T>
{
#[inline]
pub fn cross<U,V>(self,rhs:Vector<3,U>)->Vector<3,<V as core::ops::Sub>::Output>
where
T:core::ops::Mul<U,Output=V>+Copy,
U:Copy,
V:core::ops::Sub,
{
Vector::new([
self.y*rhs.z-self.z*rhs.y,
self.z*rhs.x-self.x*rhs.z,
self.x*rhs.y-self.y*rhs.x,
])
}
}
}
}

View File

@ -0,0 +1,17 @@
use crate::vector::Vector;
#[derive(Clone,Copy,Debug,Hash,Eq,PartialEq)]
pub struct Matrix<const X:usize,const Y:usize,T>{
pub(crate) array:[[T;Y];X],
}
crate::impl_matrix!();
crate::impl_matrix_extend!(2,2);
crate::impl_matrix_extend!(2,3);
crate::impl_matrix_extend!(3,2);
crate::impl_matrix_extend!(3,3);
//Special case 3x3 matrix operations because I cba to write macros for the arbitrary cases
#[cfg(feature="named-fields")]
crate::impl_matrix_3x3!();

View File

@ -0,0 +1,59 @@
use crate::vector::Vector;
use crate::matrix::Matrix;
#[repr(C)]
pub struct Vector2<T> {
pub x: T,
pub y: T,
}
#[repr(C)]
pub struct Vector3<T> {
pub x: T,
pub y: T,
pub z: T,
}
#[repr(C)]
pub struct Vector4<T> {
pub x: T,
pub y: T,
pub z: T,
pub w: T,
}
crate::impl_vector_named_fields!(Vector2, 2);
crate::impl_vector_named_fields!(Vector3, 3);
crate::impl_vector_named_fields!(Vector4, 4);
#[repr(C)]
pub struct Matrix2<T> {
pub x_axis: T,
pub y_axis: T,
}
#[repr(C)]
pub struct Matrix3<T> {
pub x_axis: T,
pub y_axis: T,
pub z_axis: T,
}
#[repr(C)]
pub struct Matrix4<T> {
pub x_axis: T,
pub y_axis: T,
pub z_axis: T,
pub w_axis: T,
}
crate::impl_matrix_named_fields!(
//outer struct
(
(Matrix2, 2),
(Matrix3, 3),
(Matrix4, 4)
),
//inner struct
(
(2),
(3),
(4)
)
);

View File

@ -0,0 +1,96 @@
use crate::types::{Matrix3,Matrix3x2,Matrix3x4,Matrix4x2,Vector3};
type Planar64=fixed_wide::types::I32F32;
type Planar64Wide1=fixed_wide::types::I64F64;
//type Planar64Wide2=fixed_wide::types::I128F128;
type Planar64Wide3=fixed_wide::types::I256F256;
#[test]
fn wide_vec3(){
let v=Vector3::from_value(Planar64::from(3));
let v1=v*v.x;
let v2=v1*v1.y;
let v3=v2*v2.z;
assert_eq!(v3.array,Vector3::from_value(Planar64Wide3::from(3i128.pow(8))).array);
}
#[test]
fn wide_vec3_dot(){
let v=Vector3::from_value(Planar64::from(3));
let v1=v*v.x;
let v2=v1*v1.y;
let v3=v2.dot(v2);
assert_eq!(v3,Planar64Wide3::from(3i128.pow(8)*3));
}
#[test]
fn wide_vec3_length_squared(){
let v=Vector3::from_value(Planar64::from(3));
let v1=v*v.x;
let v2=v1*v1.y;
let v3=v2.length_squared();
assert_eq!(v3,Planar64Wide3::from(3i128.pow(8)*3));
}
#[test]
fn wide_matrix_dot(){
let lhs=Matrix3x4::new([
[Planar64::from(1),Planar64::from(2),Planar64::from(3),Planar64::from(4)],
[Planar64::from(5),Planar64::from(6),Planar64::from(7),Planar64::from(8)],
[Planar64::from(9),Planar64::from(10),Planar64::from(11),Planar64::from(12)],
]).transpose();
let rhs=Matrix4x2::new([
[Planar64::from(1),Planar64::from(2)],
[Planar64::from(3),Planar64::from(4)],
[Planar64::from(5),Planar64::from(6)],
[Planar64::from(7),Planar64::from(8)],
]).transpose();
// Mat3<Vec4>.dot(Mat4<Vec2>) -> Mat3<Vec2>
let m_dot=lhs*rhs;
//In[1]:= {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}} . {{1, 2}, {3, 4}, {5, 6}, {7, 8}}
//Out[1]= {{50, 60}, {114, 140}, {178, 220}}
assert_eq!(
m_dot.array,
Matrix3x2::new([
[Planar64Wide1::from(50),Planar64Wide1::from(60)],
[Planar64Wide1::from(114),Planar64Wide1::from(140)],
[Planar64Wide1::from(178),Planar64Wide1::from(220)],
]).transpose().array
);
}
#[test]
#[cfg(feature="named-fields")]
fn wide_matrix_det(){
let m=Matrix3::new([
[Planar64::from(1),Planar64::from(2),Planar64::from(3)],
[Planar64::from(4),Planar64::from(5),Planar64::from(7)],
[Planar64::from(6),Planar64::from(8),Planar64::from(9)],
]);
// In[2]:= Det[{{1, 2, 3}, {4, 5, 7}, {6, 8, 9}}]
// Out[2]= 7
assert_eq!(m.det(),fixed_wide::fixed::Fixed::<3,96>::from(7));
}
#[test]
#[cfg(feature="named-fields")]
fn wide_matrix_adjugate(){
let m=Matrix3::new([
[Planar64::from(1),Planar64::from(2),Planar64::from(3)],
[Planar64::from(4),Planar64::from(5),Planar64::from(7)],
[Planar64::from(6),Planar64::from(8),Planar64::from(9)],
]);
// In[6]:= Adjugate[{{1, 2, 3}, {4, 5, 7}, {6, 8, 9}}]
// Out[6]= {{-11, 6, -1}, {6, -9, 5}, {2, 4, -3}}
assert_eq!(
m.adjugate().array,
Matrix3::new([
[Planar64Wide1::from(-11),Planar64Wide1::from(6),Planar64Wide1::from(-1)],
[Planar64Wide1::from(6),Planar64Wide1::from(-9),Planar64Wide1::from(5)],
[Planar64Wide1::from(2),Planar64Wide1::from(4),Planar64Wide1::from(-3)],
]).array
);
}

View File

@ -0,0 +1,6 @@
mod tests;
#[cfg(feature="named-fields")]
mod named;
mod fixed_wide;

View File

@ -0,0 +1,30 @@
use crate::types::{Vector3,Matrix3};
#[test]
fn test_vector(){
let mut v=Vector3::new([1,2,3]);
assert_eq!(v.x,1);
assert_eq!(v.y,2);
assert_eq!(v.z,3);
v.x=5;
assert_eq!(v.x,5);
v.y*=v.x;
assert_eq!(v.y,10);
}
#[test]
fn test_matrix(){
let mut v=Matrix3::from_value(2);
assert_eq!(v.x_axis.x,2);
assert_eq!(v.y_axis.y,2);
assert_eq!(v.z_axis.z,2);
v.x_axis.x=5;
assert_eq!(v.x_axis.x,5);
v.y_axis.z*=v.x_axis.x;
assert_eq!(v.y_axis.z,10);
}

View File

@ -0,0 +1,59 @@
use crate::types::{Vector2,Vector3,Matrix3x4,Matrix4x2,Matrix3x2,Matrix2x3};
#[test]
fn test_bool(){
assert_eq!(Vector3::new([false,false,false]).any(),false);
assert_eq!(Vector3::new([false,false,true]).any(),true);
assert_eq!(Vector3::new([false,false,true]).all(),false);
assert_eq!(Vector3::new([true,true,true]).all(),true);
}
#[test]
fn test_length_squared(){
assert_eq!(Vector3::new([1,2,3]).length_squared(),14);
}
#[test]
fn test_arithmetic(){
let a=Vector3::new([1,2,3]);
assert_eq!((a+a*2).array,Vector3::new([1*3,2*3,3*3]).array);
}
#[test]
fn matrix_transform_vector(){
let m=Matrix2x3::new([
[1,2,3],
[4,5,6],
]).transpose();
let v=Vector3::new([1,2,3]);
let transformed=m*v;
assert_eq!(transformed.array,Vector2::new([14,32]).array);
}
#[test]
fn matrix_dot(){
// All this code was written row major and I converted the lib to colum major
let rhs=Matrix4x2::new([
[ 1.0, 2.0],
[ 3.0, 4.0],
[ 5.0, 6.0],
[ 7.0, 8.0],
]).transpose(); // | | |
let lhs=Matrix3x4::new([ // | | |
[1.0, 2.0, 3.0, 4.0],// [ 50.0, 60.0],
[5.0, 6.0, 7.0, 8.0],// [114.0,140.0],
[9.0,10.0,11.0,12.0],// [178.0,220.0],
]).transpose();
// Mat3<Vec4>.dot(Mat4<Vec2>) -> Mat3<Vec2>
let m_dot=lhs*rhs;
//In[1]:= {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}} . {{1, 2}, {3, 4}, {5, 6}, {7, 8}}
//Out[1]= {{50, 60}, {114, 140}, {178, 220}}
assert_eq!(
m_dot.array,
Matrix3x2::new([
[50.0,60.0],
[114.0,140.0],
[178.0,220.0],
]).transpose().array
);
}

View File

@ -0,0 +1,18 @@
use crate::vector::Vector;
use crate::matrix::Matrix;
pub type Vector2<T>=Vector<2,T>;
pub type Vector3<T>=Vector<3,T>;
pub type Vector4<T>=Vector<4,T>;
pub type Matrix2<T>=Matrix<2,2,T>;
pub type Matrix2x3<T>=Matrix<2,3,T>;
pub type Matrix2x4<T>=Matrix<2,4,T>;
pub type Matrix3x2<T>=Matrix<3,2,T>;
pub type Matrix3<T>=Matrix<3,3,T>;
pub type Matrix3x4<T>=Matrix<3,4,T>;
pub type Matrix4x2<T>=Matrix<4,2,T>;
pub type Matrix4x3<T>=Matrix<4,3,T>;
pub type Matrix4<T>=Matrix<4,4,T>;

View File

@ -0,0 +1,19 @@
/// An array-backed vector type. Named fields are made accessible via the Deref/DerefMut traits which are implmented for 2-4 dimensions.
/// let mut v = Vector::new([1.0,2.0,3.0]);
/// v.x += v.z;
/// println!("v.x={}",v.x);
#[derive(Clone,Copy,Debug,Hash,Eq,PartialEq)]
pub struct Vector<const N:usize,T>{
pub(crate) array:[T;N],
}
crate::impl_vector!();
// Needs const generics for generic case
crate::impl_vector_extend!(2);
crate::impl_vector_extend!(3);
//cross product
#[cfg(feature="named-fields")]
crate::impl_vector_3!();

1
lib/ratio_ops/.gitignore vendored Normal file
View File

@ -0,0 +1 @@
/target

7
lib/ratio_ops/Cargo.lock generated Normal file
View File

@ -0,0 +1,7 @@
# This file is automatically @generated by Cargo.
# It is not intended for manual editing.
version = 3
[[package]]
name = "ratio_ops"
version = "0.1.0"

10
lib/ratio_ops/Cargo.toml Normal file
View File

@ -0,0 +1,10 @@
[package]
name = "ratio_ops"
version = "0.1.0"
edition = "2021"
repository = "https://git.itzana.me/StrafesNET/fixed_wide_vectors"
license = "MIT OR Apache-2.0"
description = "Ratio operations using trait bounds for avoiding division like the plague."
authors = ["Rhys Lloyd <krakow20@gmail.com>"]
[dependencies]

View File

@ -0,0 +1,176 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS

23
lib/ratio_ops/LICENSE-MIT Normal file
View File

@ -0,0 +1,23 @@
Permission is hereby granted, free of charge, to any
person obtaining a copy of this software and associated
documentation files (the "Software"), to deal in the
Software without restriction, including without
limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software
is furnished to do so, subject to the following
conditions:
The above copyright notice and this permission notice
shall be included in all copies or substantial portions
of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

4
lib/ratio_ops/src/lib.rs Normal file
View File

@ -0,0 +1,4 @@
pub mod ratio;
#[cfg(test)]
mod tests;

297
lib/ratio_ops/src/ratio.rs Normal file
View File

@ -0,0 +1,297 @@
#[derive(Clone,Copy,Debug,Hash)]
pub struct Ratio<Num,Den>{
pub num:Num,
pub den:Den,
}
impl<Num,Den> Ratio<Num,Den>{
#[inline(always)]
pub const fn new(num:Num,den:Den)->Self{
Self{num,den}
}
}
/// The actual divide implementation, Div is replaced with a Ratio constructor
pub trait Divide<Rhs=Self>{
type Output;
fn divide(self,rhs:Rhs)->Self::Output;
}
impl<Num,Den> Ratio<Num,Den>
where
Num:Divide<Den>,
{
#[inline]
pub fn divide(self)-><Num as Divide<Den>>::Output{
self.num.divide(self.den)
}
}
//take care to use the ratio methods to avoid nested ratios
impl<LhsNum,LhsDen> Ratio<LhsNum,LhsDen>{
#[inline]
pub fn mul_ratio<RhsNum,RhsDen>(self,rhs:Ratio<RhsNum,RhsDen>)->Ratio<<LhsNum as core::ops::Mul<RhsNum>>::Output,<LhsDen as core::ops::Mul<RhsDen>>::Output>
where
LhsNum:core::ops::Mul<RhsNum>,
LhsDen:core::ops::Mul<RhsDen>,
{
Ratio::new(self.num*rhs.num,self.den*rhs.den)
}
#[inline]
pub fn div_ratio<RhsNum,RhsDen>(self,rhs:Ratio<RhsNum,RhsDen>)->Ratio<<LhsNum as core::ops::Mul<RhsDen>>::Output,<LhsDen as core::ops::Mul<RhsNum>>::Output>
where
LhsNum:core::ops::Mul<RhsDen>,
LhsDen:core::ops::Mul<RhsNum>,
{
Ratio::new(self.num*rhs.den,self.den*rhs.num)
}
}
macro_rules! impl_ratio_method {
($trait:ident, $method:ident, $ratio_method:ident) => {
impl<LhsNum,LhsDen> Ratio<LhsNum,LhsDen>{
#[inline]
pub fn $ratio_method<RhsNum,RhsDen,LhsCrossMul,RhsCrossMul>(self,rhs:Ratio<RhsNum,RhsDen>)->Ratio<<LhsCrossMul as core::ops::$trait<RhsCrossMul>>::Output,<LhsDen as core::ops::Mul<RhsDen>>::Output>
where
LhsNum:core::ops::Mul<RhsDen,Output=LhsCrossMul>,
LhsDen:core::ops::Mul<RhsNum,Output=RhsCrossMul>,
LhsDen:core::ops::Mul<RhsDen>,
LhsDen:Copy,
RhsDen:Copy,
LhsCrossMul:core::ops::$trait<RhsCrossMul>,
{
Ratio::new((self.num*rhs.den).$method(self.den*rhs.num),self.den*rhs.den)
}
}
};
}
impl_ratio_method!(Add,add,add_ratio);
impl_ratio_method!(Sub,sub,sub_ratio);
impl_ratio_method!(Rem,rem,rem_ratio);
/// Comparing two ratios needs to know the parity of the denominators
/// For signed integers this can be implemented with is_negative()
pub trait Parity{
fn parity(&self)->bool;
}
macro_rules! impl_parity_unsigned{
($($type:ty),*)=>{
$(
impl Parity for $type{
fn parity(&self)->bool{
false
}
}
)*
};
}
macro_rules! impl_parity_signed{
($($type:ty),*)=>{
$(
impl Parity for $type{
fn parity(&self)->bool{
self.is_negative()
}
}
)*
};
}
macro_rules! impl_parity_float{
($($type:ty),*)=>{
$(
impl Parity for $type{
fn parity(&self)->bool{
self.is_sign_negative()
}
}
)*
};
}
impl_parity_unsigned!(u8,u16,u32,u64,u128,usize);
impl_parity_signed!(i8,i16,i32,i64,i128,isize);
impl_parity_float!(f32,f64);
macro_rules! impl_ratio_ord_method{
($method:ident, $ratio_method:ident, $output:ty)=>{
impl<LhsNum,LhsDen:Parity> Ratio<LhsNum,LhsDen>{
#[inline]
pub fn $ratio_method<RhsNum,RhsDen:Parity,T>(self,rhs:Ratio<RhsNum,RhsDen>)->$output
where
LhsNum:core::ops::Mul<RhsDen,Output=T>,
LhsDen:core::ops::Mul<RhsNum,Output=T>,
T:Ord,
{
match self.den.parity()^rhs.den.parity(){
true=>(self.den*rhs.num).$method(&(self.num*rhs.den)),
false=>(self.num*rhs.den).$method(&(self.den*rhs.num)),
}
}
}
}
}
//PartialEq
impl_ratio_ord_method!(eq,eq_ratio,bool);
//PartialOrd
impl_ratio_ord_method!(lt,lt_ratio,bool);
impl_ratio_ord_method!(gt,gt_ratio,bool);
impl_ratio_ord_method!(le,le_ratio,bool);
impl_ratio_ord_method!(ge,ge_ratio,bool);
impl_ratio_ord_method!(partial_cmp,partial_cmp_ratio,Option<core::cmp::Ordering>);
//Ord
impl_ratio_ord_method!(cmp,cmp_ratio,core::cmp::Ordering);
/* generic rhs mul is not possible!
impl<Lhs,RhsNum,RhsDen> core::ops::Mul<Ratio<RhsNum,RhsDen>> for Lhs
where
Lhs:core::ops::Mul<RhsNum>,
{
type Output=Ratio<<Lhs as core::ops::Mul<RhsNum>>::Output,RhsDen>;
#[inline]
fn mul(self,rhs:Ratio<RhsNum,RhsDen>)->Self::Output{
Ratio::new(self*rhs.num,rhs.den)
}
}
*/
//operators
impl<LhsNum,LhsDen> core::ops::Neg for Ratio<LhsNum,LhsDen>
where
LhsNum:core::ops::Neg,
{
type Output=Ratio<<LhsNum as core::ops::Neg>::Output,LhsDen>;
#[inline]
fn neg(self)->Self::Output{
Ratio::new(-self.num,self.den)
}
}
impl<LhsNum,LhsDen,Rhs> core::ops::Mul<Rhs> for Ratio<LhsNum,LhsDen>
where
LhsNum:core::ops::Mul<Rhs>,
{
type Output=Ratio<<LhsNum as core::ops::Mul<Rhs>>::Output,LhsDen>;
#[inline]
fn mul(self,rhs:Rhs)->Self::Output{
Ratio::new(self.num*rhs,self.den)
}
}
impl<LhsNum,LhsDen,Rhs> core::ops::Div<Rhs> for Ratio<LhsNum,LhsDen>
where
LhsDen:core::ops::Mul<Rhs>,
{
type Output=Ratio<LhsNum,<LhsDen as core::ops::Mul<Rhs>>::Output>;
#[inline]
fn div(self,rhs:Rhs)->Self::Output{
Ratio::new(self.num,self.den*rhs)
}
}
macro_rules! impl_ratio_operator {
($trait:ident, $method:ident) => {
impl<LhsNum,LhsDen,Rhs,Intermediate> core::ops::$trait<Rhs> for Ratio<LhsNum,LhsDen>
where
LhsNum:core::ops::$trait<Intermediate>,
LhsDen:Copy,
Rhs:core::ops::Mul<LhsDen,Output=Intermediate>,
{
type Output=Ratio<<LhsNum as core::ops::$trait<Intermediate>>::Output,LhsDen>;
#[inline]
fn $method(self,rhs:Rhs)->Self::Output{
Ratio::new(self.num.$method(rhs*self.den),self.den)
}
}
};
}
impl_ratio_operator!(Add,add);
impl_ratio_operator!(Sub,sub);
impl_ratio_operator!(Rem,rem);
//assign operators
impl<LhsNum,LhsDen,Rhs> core::ops::MulAssign<Rhs> for Ratio<LhsNum,LhsDen>
where
LhsNum:core::ops::MulAssign<Rhs>,
{
#[inline]
fn mul_assign(&mut self,rhs:Rhs){
self.num*=rhs;
}
}
impl<LhsNum,LhsDen,Rhs> core::ops::DivAssign<Rhs> for Ratio<LhsNum,LhsDen>
where
LhsDen:core::ops::MulAssign<Rhs>,
{
#[inline]
fn div_assign(&mut self,rhs:Rhs){
self.den*=rhs;
}
}
macro_rules! impl_ratio_assign_operator {
($trait:ident, $method:ident) => {
impl<LhsNum,LhsDen,Rhs> core::ops::$trait<Rhs> for Ratio<LhsNum,LhsDen>
where
LhsNum:core::ops::$trait,
LhsDen:Copy,
Rhs:core::ops::Mul<LhsDen,Output=LhsNum>,
{
#[inline]
fn $method(&mut self,rhs:Rhs){
self.num.$method(rhs*self.den)
}
}
};
}
impl_ratio_assign_operator!(AddAssign,add_assign);
impl_ratio_assign_operator!(SubAssign,sub_assign);
impl_ratio_assign_operator!(RemAssign,rem_assign);
// Only implement PartialEq<Self>
// Rust's operators aren't actually that good
impl<LhsNum,LhsDen,RhsNum,RhsDen,T,U> PartialEq<Ratio<RhsNum,RhsDen>> for Ratio<LhsNum,LhsDen>
where
LhsNum:Copy,
LhsDen:Copy,
RhsNum:Copy,
RhsDen:Copy,
LhsNum:core::ops::Mul<RhsDen,Output=T>,
RhsNum:core::ops::Mul<LhsDen,Output=U>,
T:PartialEq<U>,
{
#[inline]
fn eq(&self,other:&Ratio<RhsNum,RhsDen>)->bool{
(self.num*other.den).eq(&(other.num*self.den))
}
}
impl<Num,Den> Eq for Ratio<Num,Den> where Self:PartialEq{}
impl<LhsNum,LhsDen,RhsNum,RhsDen,T,U> PartialOrd<Ratio<RhsNum,RhsDen>> for Ratio<LhsNum,LhsDen>
where
LhsNum:Copy,
LhsDen:Copy,
RhsNum:Copy,
RhsDen:Copy,
LhsNum:core::ops::Mul<RhsDen,Output=T>,
RhsNum:core::ops::Mul<LhsDen,Output=U>,
T:PartialOrd<U>,
{
#[inline]
fn partial_cmp(&self,other:&Ratio<RhsNum,RhsDen>)->Option<core::cmp::Ordering>{
(self.num*other.den).partial_cmp(&(other.num*self.den))
}
}
impl<Num,Den,T> Ord for Ratio<Num,Den>
where
Num:Copy,
Den:Copy,
Num:core::ops::Mul<Den,Output=T>,
T:Ord,
{
#[inline]
fn cmp(&self,other:&Self)->std::cmp::Ordering{
(self.num*other.den).cmp(&(other.num*self.den))
}
}

View File

@ -0,0 +1,58 @@
use crate::ratio::Ratio;
macro_rules! test_op{
($ratio_op:ident,$op:ident,$a:expr,$b:expr,$c:expr,$d:expr)=>{
assert_eq!(
Ratio::new($a,$b).$ratio_op(Ratio::new($c,$d)),
(($a as f32)/($b as f32)).$op(&(($c as f32)/($d as f32)))
);
};
}
macro_rules! test_many_ops{
($ratio_op:ident,$op:ident)=>{
test_op!($ratio_op,$op,1,2,3,4);
test_op!($ratio_op,$op,1,2,-3,4);
test_op!($ratio_op,$op,-1,2,-3,4);
test_op!($ratio_op,$op,-1,-2,-3,4);
test_op!($ratio_op,$op,2,1,6,3);
test_op!($ratio_op,$op,-2,1,6,3);
test_op!($ratio_op,$op,2,-1,-6,3);
test_op!($ratio_op,$op,2,1,6,-3);
};
}
#[test]
fn test_lt(){
test_many_ops!(lt_ratio,lt);
}
#[test]
fn test_gt(){
test_many_ops!(gt_ratio,gt);
}
#[test]
fn test_le(){
test_many_ops!(le_ratio,le);
}
#[test]
fn test_ge(){
test_many_ops!(ge_ratio,ge);
}
#[test]
fn test_eq(){
test_many_ops!(eq_ratio,eq);
}
#[test]
fn test_partial_cmp(){
test_many_ops!(partial_cmp_ratio,partial_cmp);
}
// #[test]
// fn test_cmp(){
// test_many_ops!(cmp_ratio,cmp);
// }