move physics to its own thread

This commit is contained in:
Quaternions 2023-10-04 20:04:04 -07:00
parent 8cf66f3446
commit dd61c64ddd
3 changed files with 331 additions and 232 deletions

View File

@ -44,14 +44,65 @@ pub struct GraphicsPipelines{
model: wgpu::RenderPipeline,
}
pub struct GraphicsCamera{
screen_size: glam::UVec2,
fov: glam::Vec2,//slope
//camera angles and such are extrapolated and passed in every time
}
#[inline]
fn perspective_rh(fov_x_slope: f32, fov_y_slope: f32, z_near: f32, z_far: f32) -> glam::Mat4 {
//glam_assert!(z_near > 0.0 && z_far > 0.0);
let r = z_far / (z_near - z_far);
glam::Mat4::from_cols(
glam::Vec4::new(1.0/fov_x_slope, 0.0, 0.0, 0.0),
glam::Vec4::new(0.0, 1.0/fov_y_slope, 0.0, 0.0),
glam::Vec4::new(0.0, 0.0, r, -1.0),
glam::Vec4::new(0.0, 0.0, r * z_near, 0.0),
)
}
impl GraphicsCamera{
pub fn new(screen_size:glam::UVec2,fov_y:f32)->Self{
Self{
screen_size,
fov: glam::vec2(fov_y*(screen_size.x as f32)/(screen_size.y as f32),fov_y),
}
}
pub fn proj(&self)->glam::Mat4{
perspective_rh(self.fov.x, self.fov.y, 0.5, 2000.0)
}
pub fn view(&self,pos:glam::Vec3,angles:glam::Vec2)->glam::Mat4{
//f32 good enough for view matrix
glam::Mat4::from_translation(pos) * glam::Mat4::from_euler(glam::EulerRot::YXZ, angles.x, angles.y, 0f32)
}
pub fn set_screen_size(&mut self,screen_size:glam::UVec2){
self.screen_size=screen_size;
self.fov.x=self.fov.y*(screen_size.x as f32)/(screen_size.y as f32);
}
pub fn to_uniform_data(&self,(pos,angles): (glam::Vec3,glam::Vec2)) -> [f32; 16 * 3 + 4] {
let proj=self.proj();
let proj_inv = proj.inverse();
let view=self.view(pos,angles);
let view_inv = view.inverse();
let mut raw = [0f32; 16 * 3 + 4];
raw[..16].copy_from_slice(&AsRef::<[f32; 16]>::as_ref(&proj)[..]);
raw[16..32].copy_from_slice(&AsRef::<[f32; 16]>::as_ref(&proj_inv)[..]);
raw[32..48].copy_from_slice(&AsRef::<[f32; 16]>::as_ref(&view_inv)[..]);
raw[48..52].copy_from_slice(AsRef::<[f32; 4]>::as_ref(&view.col(3)));
raw
}
}
pub struct GraphicsState{
screen_size: (u32, u32),
pipelines: GraphicsPipelines,
bind_groups: GraphicsBindGroups,
bind_group_layouts: GraphicsBindGroupLayouts,
samplers: GraphicsSamplers,
temp_squid_texture_view: wgpu::TextureView,
camera:GraphicsCamera,
camera_buf: wgpu::Buffer,
temp_squid_texture_view: wgpu::TextureView,
models: Vec<ModelGraphics>,
depth_view: wgpu::TextureView,
staging_belt: wgpu::util::StagingBelt,
@ -66,8 +117,9 @@ impl GraphicsState{
pub struct GlobalState{
start_time: std::time::Instant,
manual_mouse_lock:bool,
mouse:physics::MouseState,
graphics:GraphicsState,
physics:physics::PhysicsState,
physics_thread:worker::Worker<TimedInstruction<InputInstruction>,physics::PhysicsOutputState>,
}
impl GlobalState{
@ -95,77 +147,6 @@ impl GlobalState{
depth_texture.create_view(&wgpu::TextureViewDescriptor::default())
}
fn generate_model_physics(&mut self,indexed_models:&model::IndexedModelInstances){
let mut starts=Vec::new();
let mut spawns=Vec::new();
let mut ordered_checkpoints=Vec::new();
let mut unordered_checkpoints=Vec::new();
for model in &indexed_models.models{
//make aabb and run vertices to get realistic bounds
for model_instance in &model.instances{
if let Some(model_physics)=physics::ModelPhysics::from_model(model,model_instance){
let model_id=self.physics.models.len() as u32;
self.physics.models.push(model_physics);
for attr in &model_instance.temp_indexing{
match attr{
model::TempIndexedAttributes::Start{mode_id}=>starts.push((*mode_id,model_id)),
model::TempIndexedAttributes::Spawn{mode_id,stage_id}=>spawns.push((*mode_id,model_id,*stage_id)),
model::TempIndexedAttributes::OrderedCheckpoint{mode_id,checkpoint_id}=>ordered_checkpoints.push((*mode_id,model_id,*checkpoint_id)),
model::TempIndexedAttributes::UnorderedCheckpoint{mode_id}=>unordered_checkpoints.push((*mode_id,model_id)),
}
}
}
}
}
//I don't wanna write structs for temporary structures
//this code builds ModeDescriptions from the unsorted lists at the top of the function
starts.sort_by_key(|tup|tup.0);
let mut eshmep=std::collections::HashMap::new();
let mut modedatas:Vec<(u32,Vec<(u32,u32)>,Vec<(u32,u32)>,Vec<u32>)>=starts.into_iter().enumerate().map(|(i,tup)|{
eshmep.insert(tup.0,i);
(tup.1,Vec::new(),Vec::new(),Vec::new())
}).collect();
for tup in spawns{
if let Some(mode_id)=eshmep.get(&tup.0){
if let Some(modedata)=modedatas.get_mut(*mode_id){
modedata.1.push((tup.2,tup.1));
}
}
}
for tup in ordered_checkpoints{
if let Some(mode_id)=eshmep.get(&tup.0){
if let Some(modedata)=modedatas.get_mut(*mode_id){
modedata.2.push((tup.2,tup.1));
}
}
}
for tup in unordered_checkpoints{
if let Some(mode_id)=eshmep.get(&tup.0){
if let Some(modedata)=modedatas.get_mut(*mode_id){
modedata.3.push(tup.1);
}
}
}
let num_modes=self.physics.modes.len();
for (mode_id,mode) in eshmep{
self.physics.mode_from_mode_id.insert(mode_id,num_modes+mode);
}
self.physics.modes.append(&mut modedatas.into_iter().map(|mut tup|{
tup.1.sort_by_key(|tup|tup.0);
tup.2.sort_by_key(|tup|tup.0);
let mut eshmep1=std::collections::HashMap::new();
let mut eshmep2=std::collections::HashMap::new();
model::ModeDescription{
start:tup.0,
spawns:tup.1.into_iter().enumerate().map(|(i,tup)|{eshmep1.insert(tup.0,i);tup.1}).collect(),
ordered_checkpoints:tup.2.into_iter().enumerate().map(|(i,tup)|{eshmep2.insert(tup.0,i);tup.1}).collect(),
unordered_checkpoints:tup.3,
spawn_from_stage_id:eshmep1,
ordered_checkpoint_from_checkpoint_id:eshmep2,
}
}).collect());
println!("Physics Objects: {}",self.physics.models.len());
}
fn generate_model_graphics(&mut self,device:&wgpu::Device,queue:&wgpu::Queue,indexed_models:model::IndexedModelInstances){
//generate texture view per texture
@ -408,20 +389,6 @@ fn get_instances_buffer_data(instances:&[ModelGraphicsInstance]) -> Vec<f32> {
raw
}
fn to_uniform_data(camera: &physics::Camera, pos: glam::Vec3) -> [f32; 16 * 3 + 4] {
let proj=camera.proj();
let proj_inv = proj.inverse();
let view=camera.view(pos);
let view_inv = view.inverse();
let mut raw = [0f32; 16 * 3 + 4];
raw[..16].copy_from_slice(&AsRef::<[f32; 16]>::as_ref(&proj)[..]);
raw[16..32].copy_from_slice(&AsRef::<[f32; 16]>::as_ref(&proj_inv)[..]);
raw[32..48].copy_from_slice(&AsRef::<[f32; 16]>::as_ref(&view_inv)[..]);
raw[48..52].copy_from_slice(AsRef::<[f32; 4]>::as_ref(&view.col(3)));
raw
}
impl framework::Example for GlobalState {
fn optional_features() -> wgpu::Features {
wgpu::Features::TEXTURE_COMPRESSION_ASTC
@ -582,25 +549,6 @@ impl framework::Example for GlobalState {
source: wgpu::ShaderSource::Wgsl(Cow::Borrowed(include_str!("shader.wgsl"))),
});
let physics = physics::PhysicsState {
spawn_point:glam::vec3(0.0,50.0,0.0),
body: physics::Body::with_pva(glam::vec3(0.0,50.0,0.0),glam::vec3(0.0,0.0,0.0),glam::vec3(0.0,-100.0,0.0)),
time: 0,
style:physics::StyleModifiers::default(),
grounded: false,
contacts: std::collections::HashMap::new(),
intersects: std::collections::HashMap::new(),
models: Vec::new(),
walk: physics::WalkState::new(),
camera: physics::Camera::from_offset(glam::vec3(0.0,4.5-2.5,0.0),(config.width as f32)/(config.height as f32)),
mouse_interpolation: physics::MouseInterpolationState::new(),
controls: 0,
world:physics::WorldState{},
game:physics::GameMechanicsState::default(),
modes:Vec::new(),
mode_from_mode_id:std::collections::HashMap::new(),
};
//load textures
let device_features = device.features();
@ -795,7 +743,10 @@ impl framework::Example for GlobalState {
multiview: None,
});
let camera_uniforms = to_uniform_data(&physics.camera,physics.body.extrapolated_position(0));
let mut physics = physics::PhysicsState::default();
let camera=GraphicsCamera::new(glam::uvec2(config.width,config.height), 1.0);
let camera_uniforms = camera.to_uniform_data(physics.output().adjust_mouse(&physics.next_mouse));
let camera_buf = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Camera"),
contents: bytemuck::cast_slice(&camera_uniforms),
@ -811,6 +762,7 @@ impl framework::Example for GlobalState {
],
label: Some("Camera"),
});
let skybox_texture_bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor {
layout: &skybox_texture_bind_group_layout,
entries: &[
@ -829,7 +781,6 @@ impl framework::Example for GlobalState {
let depth_view = Self::create_depth_texture(config, device);
let graphics=GraphicsState {
screen_size: (config.width,config.height),
pipelines:GraphicsPipelines{
skybox:sky_pipeline,
model:model_pipeline
@ -838,6 +789,7 @@ impl framework::Example for GlobalState {
camera:camera_bind_group,
skybox_texture:skybox_texture_bind_group,
},
camera,
camera_buf,
models: Vec::new(),
depth_view,
@ -847,20 +799,30 @@ impl framework::Example for GlobalState {
temp_squid_texture_view: squid_texture_view,
};
let mut state=GlobalState{
start_time:Instant::now(),
manual_mouse_lock:false,
graphics,
physics,
};
let indexed_model_instances=model::IndexedModelInstances{
textures:Vec::new(),
models:indexed_models,
spawn_point:glam::Vec3::Y*50.0,
modes:Vec::new(),
};
state.generate_model_physics(&indexed_model_instances);
//how to multithread
//1. build
physics.generate_models(&indexed_model_instances);
//2. move
let physics_thread=physics.into_worker();
//3. forget
let mut state=GlobalState{
start_time:Instant::now(),
manual_mouse_lock:false,
mouse:physics::MouseState::default(),
graphics,
physics_thread,
};
state.generate_model_graphics(&device,&queue,indexed_model_instances);
let args:Vec<String>=std::env::args().collect();
@ -911,18 +873,20 @@ impl framework::Example for GlobalState {
}{
let spawn_point=indexed_model_instances.spawn_point;
//if generate_indexed_models succeeds, clear the previous ones
self.physics.clear();
self.graphics.clear();
self.physics.game.stage_id=0;
self.physics.spawn_point=spawn_point;
self.generate_model_physics(&indexed_model_instances);
self.generate_model_graphics(device,queue,indexed_model_instances);
//manual reset
let time=self.physics.time;
instruction::InstructionConsumer::process_instruction(&mut self.physics, instruction::TimedInstruction{
time,
let mut physics=physics::PhysicsState::default();
physics.game.stage_id=0;
physics.spawn_point=spawn_point;
physics.process_instruction(instruction::TimedInstruction{
time:physics.time,
instruction: PhysicsInstruction::Input(InputInstruction::Reset),
});
physics.generate_models(&indexed_model_instances);
self.physics_thread=physics.into_worker();
self.generate_model_graphics(device,queue,indexed_model_instances);
//manual reset
}else{
println!("No modeldatas were generated");
}
@ -983,7 +947,7 @@ impl framework::Example for GlobalState {
15=>{//Tab
if s{
self.manual_mouse_lock=false;
match window.set_cursor_position(winit::dpi::PhysicalPosition::new(self.graphics.screen_size.0 as f32/2.0, self.graphics.screen_size.1 as f32/2.0)){
match window.set_cursor_position(winit::dpi::PhysicalPosition::new(self.graphics.camera.screen_size.x as f32/2.0, self.graphics.camera.screen_size.y as f32/2.0)){
Ok(())=>(),
Err(e)=>println!("Could not set cursor position: {:?}",e),
}
@ -1012,18 +976,17 @@ impl framework::Example for GlobalState {
},
_ => {println!("scancode {}",keycode);None},
}{
self.physics.run(time);
self.physics.process_instruction(TimedInstruction{
self.physics_thread.send(TimedInstruction{
time,
instruction:PhysicsInstruction::Input(input_instruction),
})
instruction:input_instruction,
}).unwrap();
}
},
winit::event::DeviceEvent::MouseMotion {
delta,//these (f64,f64) are integers on my machine
} => {
if self.manual_mouse_lock{
match window.set_cursor_position(winit::dpi::PhysicalPosition::new(self.graphics.screen_size.0 as f32/2.0, self.graphics.screen_size.1 as f32/2.0)){
match window.set_cursor_position(winit::dpi::PhysicalPosition::new(self.graphics.camera.screen_size.x as f32/2.0, self.graphics.camera.screen_size.y as f32/2.0)){
Ok(())=>(),
Err(e)=>println!("Could not set cursor position: {:?}",e),
}
@ -1031,21 +994,20 @@ impl framework::Example for GlobalState {
//do not step the physics because the mouse polling rate is higher than the physics can run.
//essentially the previous input will be overwritten until a true step runs
//which is fine because they run all the time.
self.physics.process_instruction(TimedInstruction{
self.physics_thread.send(TimedInstruction{
time,
instruction:PhysicsInstruction::Input(InputInstruction::MoveMouse(glam::ivec2(delta.0 as i32,delta.1 as i32))),
})
instruction:InputInstruction::MoveMouse(glam::ivec2(delta.0 as i32,delta.1 as i32)),
}).unwrap();
},
winit::event::DeviceEvent::MouseWheel {
delta,
} => {
println!("mousewheel {:?}",delta);
if false{//self.physics.style.use_scroll{
self.physics.run(time);
self.physics.process_instruction(TimedInstruction{
self.physics_thread.send(TimedInstruction{
time,
instruction:PhysicsInstruction::Input(InputInstruction::Jump(true)),//activates the immediate jump path, but the style modifier prevents controls&CONTROL_JUMP bit from being set to auto jump
})
instruction:InputInstruction::Jump(true),//activates the immediate jump path, but the style modifier prevents controls&CONTROL_JUMP bit from being set to auto jump
}).unwrap();
}
}
_=>(),
@ -1059,8 +1021,7 @@ impl framework::Example for GlobalState {
_queue: &wgpu::Queue,
) {
self.graphics.depth_view = Self::create_depth_texture(config, device);
self.graphics.screen_size = (config.width, config.height);
self.physics.camera.set_fov_aspect(1.0,(config.width as f32)/(config.height as f32));
self.graphics.camera.set_screen_size(glam::uvec2(config.width, config.height));
}
fn render(
@ -1072,13 +1033,16 @@ impl framework::Example for GlobalState {
) {
let time=self.start_time.elapsed().as_nanos() as i64;
self.physics.run(time);
self.physics_thread.send(TimedInstruction{
time,
instruction:InputInstruction::Idle,
}).unwrap();
let mut encoder =
device.create_command_encoder(&wgpu::CommandEncoderDescriptor { label: None });
// update rotation
let camera_uniforms = to_uniform_data(&self.physics.camera,self.physics.body.extrapolated_position(time));
let camera_uniforms = self.graphics.camera.to_uniform_data(self.physics_thread.grab_clone().adjust_mouse(&self.mouse));
self.graphics.staging_belt
.write_buffer(
&mut encoder,

View File

@ -32,7 +32,7 @@ pub enum InputInstruction {
//for interpolation / networking / playback reasons, most playback heads will always want
//to be 1 instruction ahead to generate the next state for interpolation.
}
#[derive(Clone,Debug)]
#[derive(Clone)]
pub struct Body {
position: glam::Vec3,//I64 where 2^32 = 1 u
velocity: glam::Vec3,//I64 where 2^32 = 1 u/s
@ -91,51 +91,35 @@ impl crate::instruction::InstructionConsumer<InputInstruction> for InputState{
}
*/
enum MouseInterpolation {
First,//just checks the last value
Lerp,//lerps between
}
//hey dumbass just use a delta
pub struct MouseInterpolationState {
interpolation: MouseInterpolation,
time0: TIME,
time1: TIME,
mouse0: glam::IVec2,
mouse1: glam::IVec2,
#[derive(Clone)]
pub struct MouseState {
pub pos: glam::IVec2,
pub time: TIME,
}
impl MouseInterpolationState {
pub fn new() -> Self {
impl Default for MouseState{
fn default() -> Self {
Self {
interpolation:MouseInterpolation::First,
time0:0,
time1:1,//ONE NANOSECOND!!!! avoid divide by zero
mouse0:glam::IVec2::ZERO,
mouse1:glam::IVec2::ZERO,
time:0,
pos:glam::IVec2::ZERO,
}
}
pub fn move_mouse(&mut self,time:TIME,delta:glam::IVec2){
self.time0=self.time1;
self.mouse0=self.mouse1;
self.time1=time;
self.mouse1=self.mouse1+delta;
}
pub fn interpolated_position(&self,time:TIME) -> glam::IVec2 {
match self.interpolation {
MouseInterpolation::First => self.mouse0,
MouseInterpolation::Lerp => {
let m0=self.mouse0.as_i64vec2();
let m1=self.mouse1.as_i64vec2();
impl MouseState {
pub fn move_mouse(&mut self,pos:glam::IVec2,time:TIME){
self.time=time;
self.pos=pos;
}
pub fn lerp(&self,target:&MouseState,time:TIME)->glam::IVec2 {
let m0=self.pos.as_i64vec2();
let m1=target.pos.as_i64vec2();
//these are deltas
let t1t=(self.time1-time) as i64;
let tt0=(time-self.time0) as i64;
let dt=(self.time1-self.time0) as i64;
let t1t=(target.time-time) as i64;
let tt0=(time-self.time) as i64;
let dt=(target.time-self.time) as i64;
((m0*t1t+m1*tt0)/dt).as_ivec2()
}
}
}
}
pub enum WalkEnum{
Reached,
@ -156,15 +140,14 @@ impl WalkState {
}
}
// Note: we use the Y=up coordinate space in this example.
pub struct Camera {
#[derive(Clone)]
pub struct PhysicsCamera {
offset: glam::Vec3,
angles: glam::DVec2,//YAW AND THEN PITCH
//punch: glam::Vec3,
//punch_velocity: glam::Vec3,
fov: glam::Vec2,//slope
sensitivity: glam::DVec2,
time: TIME,
mouse:MouseState,
}
#[inline]
@ -176,46 +159,23 @@ fn mat3_from_rotation_y_f64(angle: f64) -> glam::Mat3 {
glam::Vec3::new(sina as f32, 0.0, cosa as f32),
)
}
#[inline]
fn perspective_rh(fov_x_slope: f32, fov_y_slope: f32, z_near: f32, z_far: f32) -> glam::Mat4 {
//glam_assert!(z_near > 0.0 && z_far > 0.0);
let r = z_far / (z_near - z_far);
glam::Mat4::from_cols(
glam::Vec4::new(1.0/fov_x_slope, 0.0, 0.0, 0.0),
glam::Vec4::new(0.0, 1.0/fov_y_slope, 0.0, 0.0),
glam::Vec4::new(0.0, 0.0, r, -1.0),
glam::Vec4::new(0.0, 0.0, r * z_near, 0.0),
)
}
impl Camera {
pub fn from_offset(offset:glam::Vec3,aspect:f32) -> Self {
impl PhysicsCamera {
pub fn from_offset(offset:glam::Vec3) -> Self {
Self{
offset,
angles: glam::DVec2::ZERO,
fov: glam::vec2(aspect,1.0),
sensitivity: glam::dvec2(1.0/16384.0,1.0/16384.0),
time: 0,
mouse:MouseState{pos:glam::IVec2::ZERO,time:-1},//escape initialization hell divide by zero
}
}
fn simulate_move_angles(&self, delta: glam::IVec2) -> glam::DVec2 {
let mut a=self.angles-self.sensitivity*delta.as_dvec2();
pub fn simulate_move_angles(&self, mouse_pos: glam::IVec2) -> glam::DVec2 {
let mut a=self.angles-self.sensitivity*(mouse_pos-self.mouse.pos).as_dvec2();
a.y=a.y.clamp(-std::f64::consts::FRAC_PI_2, std::f64::consts::FRAC_PI_2);
return a
}
fn simulate_move_rotation_y(&self, delta_x: i32) -> glam::Mat3 {
mat3_from_rotation_y_f64(self.angles.x-self.sensitivity.x*(delta_x as f64))
}
pub fn proj(&self)->glam::Mat4{
perspective_rh(self.fov.x, self.fov.y, 0.5, 2000.0)
}
pub fn view(&self,pos:glam::Vec3)->glam::Mat4{
//f32 good enough for view matrix
glam::Mat4::from_translation(pos+self.offset) * glam::Mat4::from_euler(glam::EulerRot::YXZ, self.angles.x as f32, self.angles.y as f32, 0f32)
}
pub fn set_fov_aspect(&mut self,fov:f32,aspect:f32){
self.fov.x=fov*aspect;
self.fov.y=fov;
}
}
pub struct GameMechanicsState{
@ -275,7 +235,7 @@ impl StyleModifiers{
const UP_DIR:glam::Vec3 = glam::Vec3::Y;
fn get_control(&self,control:u32,controls:u32)->bool{
controls&self.controls_mask&control!=0
controls&self.controls_mask&control==control
}
fn get_control_dir(&self,controls:u32)->glam::Vec3{
@ -319,8 +279,8 @@ pub struct PhysicsState{
pub intersects:std::collections::HashMap::<u32,RelativeCollision>,
//pub intersections: Vec<ModelId>,
//camera must exist in state because wormholes modify the camera, also camera punch
pub camera:Camera,
pub mouse_interpolation:MouseInterpolationState,
pub camera:PhysicsCamera,
pub next_mouse:MouseState,//Where is the mouse headed next
pub controls:u32,
pub walk:WalkState,
pub grounded:bool,
@ -333,6 +293,16 @@ pub struct PhysicsState{
//This is not the same as Reset which teleports you to Spawn0
pub spawn_point:glam::Vec3,
}
#[derive(Clone)]
pub struct PhysicsOutputState{
camera:PhysicsCamera,
body:Body,
}
impl PhysicsOutputState{
pub fn adjust_mouse(&self,mouse:&MouseState)->(glam::Vec3,glam::Vec2){
(self.body.extrapolated_position(mouse.time),self.camera.simulate_move_angles(mouse.pos).as_vec2())
}
}
#[derive(Debug,Clone,Copy,Hash,Eq,PartialEq)]
pub enum AabbFace{
@ -554,6 +524,29 @@ impl Body {
}
}
impl Default for PhysicsState{
fn default() -> Self {
Self{
spawn_point:glam::vec3(0.0,50.0,0.0),
body: Body::with_pva(glam::vec3(0.0,50.0,0.0),glam::vec3(0.0,0.0,0.0),glam::vec3(0.0,-100.0,0.0)),
time: 0,
style:StyleModifiers::default(),
grounded: false,
contacts: std::collections::HashMap::new(),
intersects: std::collections::HashMap::new(),
models: Vec::new(),
walk: WalkState::new(),
camera: PhysicsCamera::from_offset(glam::vec3(0.0,4.5-2.5,0.0)),
next_mouse: MouseState::default(),
controls: 0,
world:WorldState{},
game:GameMechanicsState::default(),
modes:Vec::new(),
mode_from_mode_id:std::collections::HashMap::new(),
}
}
}
impl PhysicsState {
pub fn clear(&mut self){
self.models.clear();
@ -561,6 +554,145 @@ impl PhysicsState {
self.contacts.clear();
self.intersects.clear();
}
pub fn into_worker(mut self)->crate::worker::Worker<TimedInstruction<InputInstruction>,PhysicsOutputState>{
let mut last_time=0;
//last_time: this indicates the last time the mouse position was known.
//Only used to generate a MouseState right before mouse movement
//to finalize a long period of no movement and avoid interpolating from a long out-of-date MouseState.
let mut mouse_blocking=true;//waiting for next_mouse to be written
let mut timeline=std::collections::VecDeque::new();
crate::worker::Worker::new(self.output(),move |ins:TimedInstruction<InputInstruction>|{
let run_queue=match &ins.instruction{
InputInstruction::MoveMouse(_)=>{
if !mouse_blocking{
//mouse has not been moving for a while.
//make sure not to interpolate between two distant MouseStates.
//generate a mouse instruction with no movement timestamped at last InputInstruction
//Idle instructions are CRITICAL to keeping this value up to date
//interpolate normally (now that prev mouse pos is up to date)
timeline.push_back(TimedInstruction{
time:last_time,
instruction:InputInstruction::MoveMouse(self.next_mouse.pos),
});
}
mouse_blocking=true;//block physics until the next mouse event or mouse event timeout.
true//empty queue
},
_=>{
if mouse_blocking{
//check if last mouse move is within 50ms
if ins.time-self.next_mouse.time<50_000_000{
last_time=ins.time;
false//do not empty queue
}else{
mouse_blocking=false;
timeline.push_back(TimedInstruction{
time:ins.time,
instruction:InputInstruction::MoveMouse(self.next_mouse.pos),
});
true
}
}else{
last_time=ins.time;
true
}
},
};
timeline.push_back(ins);
if run_queue{
//empty queue
while let Some(instruction)=timeline.pop_front(){
self.run(instruction.time);
self.process_instruction(TimedInstruction{
time:instruction.time,
instruction:PhysicsInstruction::Input(instruction.instruction),
});
}
}
self.output()
})
}
pub fn output(&self)->PhysicsOutputState{
PhysicsOutputState{
body:self.body.clone(),
camera:self.camera.clone(),
}
}
pub fn generate_models(&mut self,indexed_models:&crate::model::IndexedModelInstances){
let mut starts=Vec::new();
let mut spawns=Vec::new();
let mut ordered_checkpoints=Vec::new();
let mut unordered_checkpoints=Vec::new();
for model in &indexed_models.models{
//make aabb and run vertices to get realistic bounds
for model_instance in &model.instances{
if let Some(model_physics)=ModelPhysics::from_model(model,model_instance){
let model_id=self.models.len() as u32;
self.models.push(model_physics);
for attr in &model_instance.temp_indexing{
match attr{
crate::model::TempIndexedAttributes::Start{mode_id}=>starts.push((*mode_id,model_id)),
crate::model::TempIndexedAttributes::Spawn{mode_id,stage_id}=>spawns.push((*mode_id,model_id,*stage_id)),
crate::model::TempIndexedAttributes::OrderedCheckpoint{mode_id,checkpoint_id}=>ordered_checkpoints.push((*mode_id,model_id,*checkpoint_id)),
crate::model::TempIndexedAttributes::UnorderedCheckpoint{mode_id}=>unordered_checkpoints.push((*mode_id,model_id)),
}
}
}
}
}
//I don't wanna write structs for temporary structures
//this code builds ModeDescriptions from the unsorted lists at the top of the function
starts.sort_by_key(|tup|tup.0);
let mut eshmep=std::collections::HashMap::new();
let mut modedatas:Vec<(u32,Vec<(u32,u32)>,Vec<(u32,u32)>,Vec<u32>)>=starts.into_iter().enumerate().map(|(i,tup)|{
eshmep.insert(tup.0,i);
(tup.1,Vec::new(),Vec::new(),Vec::new())
}).collect();
for tup in spawns{
if let Some(mode_id)=eshmep.get(&tup.0){
if let Some(modedata)=modedatas.get_mut(*mode_id){
modedata.1.push((tup.2,tup.1));
}
}
}
for tup in ordered_checkpoints{
if let Some(mode_id)=eshmep.get(&tup.0){
if let Some(modedata)=modedatas.get_mut(*mode_id){
modedata.2.push((tup.2,tup.1));
}
}
}
for tup in unordered_checkpoints{
if let Some(mode_id)=eshmep.get(&tup.0){
if let Some(modedata)=modedatas.get_mut(*mode_id){
modedata.3.push(tup.1);
}
}
}
let num_modes=self.modes.len();
for (mode_id,mode) in eshmep{
self.mode_from_mode_id.insert(mode_id,num_modes+mode);
}
self.modes.append(&mut modedatas.into_iter().map(|mut tup|{
tup.1.sort_by_key(|tup|tup.0);
tup.2.sort_by_key(|tup|tup.0);
let mut eshmep1=std::collections::HashMap::new();
let mut eshmep2=std::collections::HashMap::new();
crate::model::ModeDescription{
start:tup.0,
spawns:tup.1.into_iter().enumerate().map(|(i,tup)|{eshmep1.insert(tup.0,i);tup.1}).collect(),
ordered_checkpoints:tup.2.into_iter().enumerate().map(|(i,tup)|{eshmep2.insert(tup.0,i);tup.1}).collect(),
unordered_checkpoints:tup.3,
spawn_from_stage_id:eshmep1,
ordered_checkpoint_from_checkpoint_id:eshmep2,
}
}).collect());
println!("Physics Objects: {}",self.models.len());
}
pub fn get_mode(&self,mode_id:u32)->Option<&crate::model::ModeDescription>{
if let Some(&mode)=self.mode_from_mode_id.get(&mode_id){
self.modes.get(mode)
@ -1004,6 +1136,7 @@ impl crate::instruction::InstructionEmitter<PhysicsInstruction> for PhysicsState
impl crate::instruction::InstructionConsumer<PhysicsInstruction> for PhysicsState {
fn process_instruction(&mut self, ins:TimedInstruction<PhysicsInstruction>) {
match &ins.instruction {
PhysicsInstruction::Input(InputInstruction::Idle)|
PhysicsInstruction::StrafeTick => (),
PhysicsInstruction::Input(InputInstruction::MoveMouse(_)) => (),
_=>println!("{}|{:?}",ins.time,ins.instruction),
@ -1032,10 +1165,8 @@ impl crate::instruction::InstructionConsumer<PhysicsInstruction> for PhysicsStat
_ => (),
},
}
match &general.booster{
Some(booster)=>self.body.velocity+=booster.velocity,
None=>(),
}
//check ground
self.contacts.insert(c.model,c);
match &general.stage_element{
Some(stage_element)=>{
if stage_element.force||self.game.stage_id<stage_element.stage_id{
@ -1065,11 +1196,16 @@ impl crate::instruction::InstructionConsumer<PhysicsInstruction> for PhysicsStat
},
None=>(),
}
//check ground
self.contacts.insert(c.model,c);
//flatten v
let mut v=self.body.velocity;
self.contact_constrain_velocity(&mut v);
match &general.booster{
Some(booster)=>{
v+=booster.velocity;
self.contact_constrain_velocity(&mut v);
},
None=>(),
}
self.body.velocity=v;
if self.grounded&&self.style.get_control(StyleModifiers::CONTROL_JUMP,self.controls){
self.jump();
@ -1105,7 +1241,7 @@ impl crate::instruction::InstructionConsumer<PhysicsInstruction> for PhysicsStat
}
},
PhysicsInstruction::StrafeTick => {
let camera_mat=self.camera.simulate_move_rotation_y(self.mouse_interpolation.interpolated_position(self.time).x-self.mouse_interpolation.mouse0.x);
let camera_mat=self.camera.simulate_move_rotation_y(self.camera.mouse.lerp(&self.next_mouse,self.time).x);
let control_dir=camera_mat*self.style.get_control_dir(self.controls);
let d=self.body.velocity.dot(control_dir);
if d<self.style.mv {
@ -1129,8 +1265,9 @@ impl crate::instruction::InstructionConsumer<PhysicsInstruction> for PhysicsStat
let mut refresh_walk_target_velocity=true;
match input_instruction{
InputInstruction::MoveMouse(m) => {
self.camera.angles=self.camera.simulate_move_angles(self.mouse_interpolation.mouse1-self.mouse_interpolation.mouse0);
self.mouse_interpolation.move_mouse(self.time,m);
self.camera.angles=self.camera.simulate_move_angles(self.next_mouse.pos);
self.camera.mouse.move_mouse(self.next_mouse.pos,self.next_mouse.time);
self.next_mouse.move_mouse(m,self.time);
},
InputInstruction::MoveForward(s) => self.set_control(StyleModifiers::CONTROL_MOVEFORWARD,s),
InputInstruction::MoveLeft(s) => self.set_control(StyleModifiers::CONTROL_MOVELEFT,s),
@ -1165,7 +1302,7 @@ impl crate::instruction::InstructionConsumer<PhysicsInstruction> for PhysicsStat
if refresh_walk_target{
//calculate walk target velocity
if refresh_walk_target_velocity{
let camera_mat=self.camera.simulate_move_rotation_y(self.mouse_interpolation.interpolated_position(self.time).x-self.mouse_interpolation.mouse0.x);
let camera_mat=self.camera.simulate_move_rotation_y(self.camera.mouse.lerp(&self.next_mouse,self.time).x);
let control_dir=camera_mat*self.style.get_control_dir(self.controls);
self.walk.target_velocity=self.style.walkspeed*control_dir;
}

View File

@ -6,13 +6,13 @@ use parking_lot::Mutex;
//The worker thread publishes the result of its work back to the worker object for every item in the work queue.
//The physics (target use case) knows when it has not changed the body, so not updating the value is also an option.
struct Worker<Task:Send,Value:Clone> {
pub struct Worker<Task:Send,Value:Clone> {
sender: mpsc::Sender<Task>,
value:Arc<Mutex<Value>>,
}
impl<Task:Send+'static,Value:Clone+Send+'static> Worker<Task,Value> {
fn new<F:Fn(Task)->Value+Send+'static>(value:Value,f:F) -> Self {
pub fn new<F:FnMut(Task)->Value+Send+'static>(value:Value,mut f:F) -> Self {
let (sender, receiver) = mpsc::channel::<Task>();
let ret=Self {
sender,
@ -23,8 +23,6 @@ impl<Task:Send+'static,Value:Clone+Send+'static> Worker<Task,Value> {
loop {
match receiver.recv() {
Ok(task) => {
println!("Worker got a task");
// Process the task
let v=f(task);//make sure function is evaluated before lock is acquired
*value.lock()=v;
}
@ -38,11 +36,11 @@ impl<Task:Send+'static,Value:Clone+Send+'static> Worker<Task,Value> {
ret
}
fn send(&self,task:Task)->Result<(), mpsc::SendError<Task>>{
pub fn send(&self,task:Task)->Result<(), mpsc::SendError<Task>>{
self.sender.send(task)
}
fn grab_clone(&self)->Value{
pub fn grab_clone(&self)->Value{
self.value.lock().clone()
}
}