fixed wide

This commit is contained in:
Quaternions 2025-01-08 19:07:13 -08:00
parent ff5d954cfb
commit ca8035cdfc
2 changed files with 76 additions and 62 deletions

View File

@ -768,7 +768,7 @@ impl TouchingState{
let contacts=self.contacts.iter().map(|contact|{
let n=contact_normal(models,hitbox_mesh,contact);
crate::push_solve::Contact{
position:Planar64Vec3::ZERO,
position:vec3::ZERO,
velocity:n,
normal:n,
}
@ -782,7 +782,7 @@ impl TouchingState{
let contacts=self.contacts.iter().map(|contact|{
let n=contact_normal(models,hitbox_mesh,contact);
crate::push_solve::Contact{
position:Planar64Vec3::ZERO,
position:vec3::ZERO,
velocity:n,
normal:n,
}

View File

@ -1,22 +1,32 @@
use strafesnet_common::integer::{Planar64,Planar64Vec3};
use strafesnet_common::integer::{self,vec3::{self,Vector3},Fixed,Planar64,Planar64Vec3,Ratio};
// This algorithm is based on Lua code
// written by Trey Reynolds in 2021
// 1/2^10
const EPSILON:Planar64=Planar64::raw(1<<(32-10));
// EPSILON=1/2^10
// A stack-allocated variable-size list that holds up to 4 elements
// Direct references are used instead of indices i0, i1, i2, i3
type Conts<'a>=arrayvec::ArrayVec<&'a Contact,4>;
// hack to allow comparing ratios to zero
const RATIO_ZERO:Ratio<Fixed<1,32>,Fixed<1,32>>=Ratio::new(Fixed::ZERO,Fixed::EPSILON);
struct Ray{
origin:Planar64Vec3,
direction:Planar64Vec3,
}
impl Ray{
fn extrapolate(&self,t:Planar64)->Planar64Vec3{
self.origin+self.direction*t
fn extrapolate<Num,Den,N1,T1>(&self,t:Ratio<Num,Den>)->Planar64Vec3
where
Num:Copy,
Den:Copy,
Num:core::ops::Mul<Planar64,Output=N1>,
Planar64:core::ops::Mul<Den,Output=N1>,
N1:integer::Divide<Den,Output=T1>,
T1:integer::Fix<Planar64>,
{
self.origin+self.direction.map(|elem|(t*elem).divide().fix())
}
}
@ -34,39 +44,42 @@ impl Contact{
normal:self.normal,
}
}
fn relative_dot(&self,direction:Planar64Vec3)->Planar64{
fn relative_dot(&self,direction:Planar64Vec3)->Fixed<2,64>{
(direction-self.velocity).dot(self.normal)
}
/// Calculate the time of intersection. (previously get_touch_time)
fn solve(&self,ray:&Ray)->Planar64{
fn solve(&self,ray:&Ray)->Ratio<Fixed<2,64>,Fixed<2,64>>{
(self.position-ray.origin).dot(self.normal)/(ray.direction-self.velocity).dot(self.normal)
}
}
//note that this is horrible with fixed point arithmetic
fn solve1(c0:&Contact)->Option<Planar64Vec3>{
fn solve1(c0:&Contact)->Option<Ratio<Vector3<Fixed<3,96>>,Fixed<2,64>>>{
const EPSILON:Fixed<2,64>=Fixed::from_bits(Fixed::<2,64>::ONE.to_bits().shr(10));
let det=c0.normal.dot(c0.velocity);
if det.get().abs()<EPSILON.get(){
if det.abs()<EPSILON{
return None;
}
let d0=c0.normal.dot(c0.position);
Some(c0.normal*d0/det)
}
fn solve2(c0:&Contact,c1:&Contact)->Option<Planar64Vec3>{
fn solve2(c0:&Contact,c1:&Contact)->Option<Ratio<Vector3<Fixed<5,160>>,Fixed<4,128>>>{
const EPSILON:Fixed<4,128>=Fixed::from_bits(Fixed::<4,128>::ONE.to_bits().shr(10));
let u0_u1=c0.velocity.cross(c1.velocity);
let n0_n1=c0.normal.cross(c1.normal);
let det=u0_u1.dot(n0_n1);
if det.get().abs()<EPSILON.get(){
if det.abs()<EPSILON{
return None;
}
let d0=c0.normal.dot(c0.position);
let d1=c1.normal.dot(c1.position);
Some((c1.normal.cross(u0_u1)*d0+u0_u1.cross(c0.normal)*d1)/det)
}
fn solve3(c0:&Contact,c1:&Contact,c2:&Contact)->Option<Planar64Vec3>{
fn solve3(c0:&Contact,c1:&Contact,c2:&Contact)->Option<Ratio<Vector3<Fixed<4,128>>,Fixed<3,96>>>{
const EPSILON:Fixed<3,96>=Fixed::from_bits(Fixed::<3,96>::ONE.to_bits().shr(10));
let n0_n1=c0.normal.cross(c1.normal);
let det=c2.normal.dot(n0_n1);
if det.get().abs()<EPSILON.get(){
if det.abs()<EPSILON{
return None;
}
let d0=c0.normal.dot(c0.position);
@ -75,55 +88,55 @@ fn solve3(c0:&Contact,c1:&Contact,c2:&Contact)->Option<Planar64Vec3>{
Some((c1.normal.cross(c2.normal)*d0+c2.normal.cross(c0.normal)*d1+c0.normal.cross(c1.normal)*d2)/det)
}
fn decompose1(point:Planar64Vec3,u0:Planar64Vec3)->Option<Planar64>{
fn decompose1(point:Planar64Vec3,u0:Planar64Vec3)->Option<[Ratio<Fixed<2,64>,Fixed<2,64>>;1]>{
let det=u0.dot(u0);
if det==Planar64::ZERO{
if det==Fixed::ZERO{
return None;
}
let s0=u0.dot(point)/det;
Some(s0)
Some([s0])
}
fn decompose2(point:Planar64Vec3,u0:Planar64Vec3,u1:Planar64Vec3)->Option<(Planar64,Planar64)>{
fn decompose2(point:Planar64Vec3,u0:Planar64Vec3,u1:Planar64Vec3)->Option<[Ratio<Fixed<4,128>,Fixed<4,128>>;2]>{
let u0_u1=u0.cross(u1);
let det=u0_u1.dot(u0_u1);
if det==Planar64::ZERO{
if det==Fixed::ZERO{
return None;
}
let s0=u0_u1.dot(point.cross(u1))/det;
let s1=u0_u1.dot(u0.cross(point))/det;
Some((s0,s1))
Some([s0,s1])
}
fn decompose3(point:Planar64Vec3,u0:Planar64Vec3,u1:Planar64Vec3,u2:Planar64Vec3)->Option<(Planar64,Planar64,Planar64)>{
fn decompose3(point:Planar64Vec3,u0:Planar64Vec3,u1:Planar64Vec3,u2:Planar64Vec3)->Option<[Ratio<Fixed<3,96>,Fixed<3,96>>;3]>{
let det=u0.cross(u1).dot(u2);
if det==Planar64::ZERO{
if det==Fixed::ZERO{
return None;
}
let s0=point.cross(u1).dot(u2)/det;
let s1=u0.cross(point).dot(u2)/det;
let s2=u0.cross(u1).dot(point)/det;
Some((s0,s1,s2))
Some([s0,s1,s2])
}
fn is_space_enclosed_2(
a:Planar64Vec3,
b:Planar64Vec3,
)->bool{
a.cross(b)==Planar64Vec3::ZERO
&&a.dot(b)<Planar64::ZERO
a.cross(b)==Vector3::new([Fixed::ZERO;3])
&&a.dot(b).is_negative()
}
fn is_space_enclosed_3(
a:Planar64Vec3,
b:Planar64Vec3,
c:Planar64Vec3
)->bool{
a.cross(b).dot(c)==Planar64::ZERO
a.cross(b).dot(c)==Fixed::ZERO
&&{
let det_abac=a.cross(b).dot(a.cross(c));
let det_abbc=a.cross(b).dot(b.cross(c));
let det_acbc=a.cross(c).dot(b.cross(c));
return det_abac*det_abbc<=Planar64::ZERO
&& det_abbc*det_acbc<=Planar64::ZERO
&&-det_acbc*det_abac<=Planar64::ZERO
return!( det_abac*det_abbc).is_positive()
&&!( det_abbc*det_acbc).is_positive()
&&!(-det_acbc*det_abac).is_positive()
||is_space_enclosed_2(a,b)
||is_space_enclosed_2(a,c)
||is_space_enclosed_2(b,c)
@ -139,12 +152,12 @@ fn is_space_enclosed_4(
let det_abd=a.cross(b).dot(d);
let det_acd=a.cross(c).dot(d);
let det_bcd=b.cross(c).dot(d);
return det_abc*det_abd<Planar64::ZERO
&&-det_abc*det_acd<Planar64::ZERO
&& det_abd*det_acd<Planar64::ZERO
&& det_abc*det_bcd<Planar64::ZERO
&&-det_abd*det_bcd<Planar64::ZERO
&& det_acd*det_bcd<Planar64::ZERO
return( det_abc*det_abd).is_negative()
&&(-det_abc*det_acd).is_negative()
&&( det_abd*det_acd).is_negative()
&&( det_abc*det_bcd).is_negative()
&&(-det_abd*det_bcd).is_negative()
&&( det_acd*det_bcd).is_negative()
||is_space_enclosed_3(a,b,c)
||is_space_enclosed_3(a,b,d)
||is_space_enclosed_3(a,c,d)
@ -152,42 +165,42 @@ fn is_space_enclosed_4(
}
const fn get_push_ray_0(point:Planar64Vec3)->Option<Ray>{
Some(Ray{origin:point,direction:Planar64Vec3::ZERO})
Some(Ray{origin:point,direction:vec3::ZERO})
}
fn get_push_ray_1(point:Planar64Vec3,c0:&Contact)->Option<Ray>{
let direction=solve1(c0)?;
let s0=decompose1(direction,c0.velocity)?;
if s0<Planar64::ZERO{
let direction=solve1(c0)?.divide().fix_1();
let [s0]=decompose1(direction,c0.velocity)?;
if s0.lt_ratio(RATIO_ZERO){
return None;
}
let origin=point+solve1(
&c0.relative_to(point),
)?;
)?.divide().fix_1();
Some(Ray{origin,direction})
}
fn get_push_ray_2(point:Planar64Vec3,c0:&Contact,c1:&Contact)->Option<Ray>{
let direction=solve2(c0,c1)?;
let (s0,s1)=decompose2(direction,c0.velocity,c1.velocity)?;
if s0<Planar64::ZERO||s1<Planar64::ZERO{
let direction=solve2(c0,c1)?.divide().fix_1();
let [s0,s1]=decompose2(direction,c0.velocity,c1.velocity)?;
if s0.lt_ratio(RATIO_ZERO)||s1.lt_ratio(RATIO_ZERO){
return None;
}
let origin=point+solve2(
&c0.relative_to(point),
&c1.relative_to(point),
)?;
)?.divide().fix_1();
Some(Ray{origin,direction})
}
fn get_push_ray_3(point:Planar64Vec3,c0:&Contact,c1:&Contact,c2:&Contact)->Option<Ray>{
let direction=solve3(c0,c1,c2)?;
let (s0,s1,s2)=decompose3(direction,c0.velocity,c1.velocity,c2.velocity)?;
if s0<Planar64::ZERO||s1<Planar64::ZERO||s2<Planar64::ZERO{
let direction=solve3(c0,c1,c2)?.divide().fix_1();
let [s0,s1,s2]=decompose3(direction,c0.velocity,c1.velocity,c2.velocity)?;
if s0.lt_ratio(RATIO_ZERO)||s1.lt_ratio(RATIO_ZERO)||s2.lt_ratio(RATIO_ZERO){
return None;
}
let origin=point+solve3(
&c0.relative_to(point),
&c1.relative_to(point),
&c2.relative_to(point),
)?;
)?.divide().fix_1();
Some(Ray{origin,direction})
}
@ -209,7 +222,7 @@ fn get_best_push_ray_and_conts_2<'a>(point:Planar64Vec3,c0:&'a Contact,c1:&'a Co
return Some((ray,Conts::from_iter([c0,c1])));
}
if let Some(ray)=get_push_ray_1(point,c0){
if Planar64::ZERO<=c1.relative_dot(ray.direction){
if !c1.relative_dot(ray.direction).is_negative(){
return Some((ray,Conts::from_iter([c0])));
}
}
@ -223,18 +236,18 @@ fn get_best_push_ray_and_conts_3<'a>(point:Planar64Vec3,c0:&'a Contact,c1:&'a Co
return Some((ray,Conts::from_iter([c0,c1,c2])));
}
if let Some(ray)=get_push_ray_2(point,c0,c1){
if Planar64::ZERO<=c2.relative_dot(ray.direction){
if !c2.relative_dot(ray.direction).is_negative(){
return Some((ray,Conts::from_iter([c0,c1])));
}
}
if let Some(ray)=get_push_ray_2(point,c0,c2){
if Planar64::ZERO<=c1.relative_dot(ray.direction){
if !c1.relative_dot(ray.direction).is_negative(){
return Some((ray,Conts::from_iter([c0,c2])));
}
}
if let Some(ray)=get_push_ray_1(point,c0){
if Planar64::ZERO<=c1.relative_dot(ray.direction)
&&Planar64::ZERO<=c2.relative_dot(ray.direction){
if !c1.relative_dot(ray.direction).is_negative()
&&!c2.relative_dot(ray.direction).is_negative(){
return Some((ray,Conts::from_iter([c0])));
}
}
@ -279,17 +292,18 @@ fn get_best_push_ray_and_conts<'a>(
}
}
fn get_first_touch<'a>(contacts:&'a Vec<Contact>,ray:&Ray,conts:&Conts)->Option<(Planar64,&'a Contact)>{
fn get_first_touch<'a>(contacts:&'a Vec<Contact>,ray:&Ray,conts:&Conts)->Option<(Ratio<Fixed<2,64>,Fixed<2,64>>,&'a Contact)>{
contacts.iter()
.filter(|&contact|
!conts.iter().any(|&c|std::ptr::eq(c,contact))
&&contact.relative_dot(ray.direction)< -EPSILON
&&contact.relative_dot(ray.direction).is_negative()
)
.map(|contact|(contact.solve(ray),contact))
.min_by_key(|&(t,_)|t)
}
pub fn push_solve(contacts:&Vec<Contact>,point:Planar64Vec3)->Option<Planar64Vec3>{
const ZERO:Ratio<Fixed<1,32>,Fixed<1,32>>=Ratio::new(Fixed::ZERO,Fixed::EPSILON);
let (mut ray,mut conts)=get_best_push_ray_and_conts_0(point)?;
loop{
let (next_t,next_cont)=match get_first_touch(contacts,&ray,&conts){
@ -297,7 +311,7 @@ pub fn push_solve(contacts:&Vec<Contact>,point:Planar64Vec3)->Option<Planar64Vec
None=>return Some(ray.origin),
};
if Planar64::ZERO<=next_t{
if ZERO.le_ratio(next_t){
return Some(ray.origin);
}
@ -326,14 +340,14 @@ mod tests{
fn test_push_solve(){
let contacts=vec![
Contact{
position:Planar64Vec3::ZERO,
velocity:Planar64Vec3::Y,
normal:Planar64Vec3::Y,
position:vec3::ZERO,
velocity:vec3::Y,
normal:vec3::Y,
}
];
assert_eq!(
Some(Planar64Vec3::ZERO),
push_solve(&contacts,Planar64Vec3::NEG_Y)
Some(vec3::ZERO),
push_solve(&contacts,vec3::NEG_Y)
);
}
}