strafe-project/src/graphics.rs

1010 lines
34 KiB
Rust
Raw Normal View History

use std::borrow::Cow;
use wgpu::{util::DeviceExt,AstcBlock,AstcChannel};
use crate::model_graphics::{GraphicsVertex,GraphicsModelColor4,GraphicsModelInstance,GraphicsModelSingleTexture,IndexedGraphicsModelSingleTexture,IndexedGroupFixedTexture};
#[derive(Clone)]
pub struct GraphicsModelUpdate{
transform:Option<glam::Mat4>,
color:Option<glam::Vec4>,
}
struct Entity{
index_count:u32,
index_buf:wgpu::Buffer,
}
fn create_entities<T:bytemuck::Pod>(device:&wgpu::Device,entities:&Vec<Vec<T>>)->Vec<Entity>{
entities.iter().map(|indices|{
let index_buf=device.create_buffer_init(&wgpu::util::BufferInitDescriptor{
label:Some("Index"),
contents:bytemuck::cast_slice(indices),
usage:wgpu::BufferUsages::INDEX,
});
Entity{
index_buf,
index_count:indices.len() as u32,
}
}).collect()
}
struct GraphicsModel{
entities:Vec<Entity>,
model_buf:wgpu::Buffer,
vertex_buf:wgpu::Buffer,
bind_group:wgpu::BindGroup,
index_format:wgpu::IndexFormat,
instances:Vec<GraphicsModelInstance>,
}
pub struct GraphicsSamplers{
repeat: wgpu::Sampler,
}
pub struct GraphicsBindGroupLayouts{
model: wgpu::BindGroupLayout,
}
pub struct GraphicsBindGroups {
camera: wgpu::BindGroup,
skybox_texture: wgpu::BindGroup,
}
pub struct GraphicsPipelines{
skybox: wgpu::RenderPipeline,
model: wgpu::RenderPipeline,
}
pub struct GraphicsCamera{
screen_size: glam::UVec2,
fov: glam::Vec2,//slope
//camera angles and such are extrapolated and passed in every time
}
#[inline]
fn perspective_rh(fov_x_slope: f32, fov_y_slope: f32, z_near: f32, z_far: f32) -> glam::Mat4 {
//glam_assert!(z_near > 0.0 && z_far > 0.0);
let r = z_far / (z_near - z_far);
glam::Mat4::from_cols(
glam::Vec4::new(1.0/fov_x_slope, 0.0, 0.0, 0.0),
glam::Vec4::new(0.0, 1.0/fov_y_slope, 0.0, 0.0),
glam::Vec4::new(0.0, 0.0, r, -1.0),
glam::Vec4::new(0.0, 0.0, r * z_near, 0.0),
)
}
impl GraphicsCamera{
pub fn proj(&self)->glam::Mat4{
perspective_rh(self.fov.x, self.fov.y, 0.5, 2000.0)
}
pub fn world(&self,pos:glam::Vec3,angles:glam::Vec2)->glam::Mat4{
//f32 good enough for view matrix
glam::Mat4::from_translation(pos) * glam::Mat4::from_euler(glam::EulerRot::YXZ, angles.x, angles.y, 0f32)
}
pub fn to_uniform_data(&self,(pos,angles): (glam::Vec3,glam::Vec2)) -> [f32; 16 * 4] {
let proj=self.proj();
let proj_inv = proj.inverse();
let view_inv=self.world(pos,angles);
let view=view_inv.inverse();
let mut raw = [0f32; 16 * 4];
raw[..16].copy_from_slice(&AsRef::<[f32; 16]>::as_ref(&proj)[..]);
raw[16..32].copy_from_slice(&AsRef::<[f32; 16]>::as_ref(&proj_inv)[..]);
raw[32..48].copy_from_slice(&AsRef::<[f32; 16]>::as_ref(&view)[..]);
raw[48..64].copy_from_slice(&AsRef::<[f32; 16]>::as_ref(&view_inv)[..]);
raw
}
}
impl std::default::Default for GraphicsCamera{
fn default()->Self{
Self{
screen_size:glam::UVec2::ONE,
fov:glam::Vec2::ONE,
}
}
}
pub struct GraphicsState{
pipelines: GraphicsPipelines,
bind_groups: GraphicsBindGroups,
bind_group_layouts: GraphicsBindGroupLayouts,
samplers: GraphicsSamplers,
camera:GraphicsCamera,
camera_buf: wgpu::Buffer,
temp_squid_texture_view: wgpu::TextureView,
models: Vec<GraphicsModel>,
depth_view: wgpu::TextureView,
staging_belt: wgpu::util::StagingBelt,
}
impl GraphicsState{
const DEPTH_FORMAT: wgpu::TextureFormat=wgpu::TextureFormat::Depth24Plus;
fn create_depth_texture(
config: &wgpu::SurfaceConfiguration,
device: &wgpu::Device,
) -> wgpu::TextureView {
let depth_texture=device.create_texture(&wgpu::TextureDescriptor {
size: wgpu::Extent3d {
width: config.width,
height: config.height,
depth_or_array_layers: 1,
},
mip_level_count: 1,
sample_count: 1,
dimension: wgpu::TextureDimension::D2,
format: Self::DEPTH_FORMAT,
usage: wgpu::TextureUsages::RENDER_ATTACHMENT,
label: None,
view_formats: &[],
});
depth_texture.create_view(&wgpu::TextureViewDescriptor::default())
}
pub fn clear(&mut self){
self.models.clear();
}
pub fn load_user_settings(&mut self,user_settings:&crate::settings::UserSettings){
self.camera.fov=user_settings.calculate_fov(1.0,&self.camera.screen_size).as_vec2();
}
pub fn generate_models(&mut self,device:&wgpu::Device,queue:&wgpu::Queue,indexed_models:crate::model::IndexedModelInstances){
//generate texture view per texture
//idk how to do this gooder lol
let mut double_map=std::collections::HashMap::<u32,u32>::new();
let mut texture_loading_threads=Vec::new();
let num_textures=indexed_models.textures.len();
for (i,texture_id) in indexed_models.textures.into_iter().enumerate(){
2024-01-18 13:05:54 -08:00
let path=std::path::PathBuf::from(format!("textures/{}.dds",texture_id));
if let Ok(mut file) = std::fs::File::open(path.clone()){
double_map.insert(i as u32, texture_loading_threads.len() as u32);
texture_loading_threads.push((texture_id,std::thread::spawn(move ||{
ddsfile::Dds::read(&mut file).unwrap()
})));
2024-01-18 13:05:54 -08:00
}else{
//println!("missing texture path={:?}",path);
}
}
let texture_views:Vec<wgpu::TextureView>=texture_loading_threads.into_iter().map(|(texture_id,thread)|{
let image=thread.join().unwrap();
let (mut width,mut height)=(image.get_width(),image.get_height());
let format=match image.header10.unwrap().dxgi_format{
ddsfile::DxgiFormat::R8G8B8A8_UNorm_sRGB => wgpu::TextureFormat::Rgba8UnormSrgb,
ddsfile::DxgiFormat::BC7_UNorm_sRGB => {
//floor(w,4), should be ceil(w,4)
width=width/4*4;
height=height/4*4;
wgpu::TextureFormat::Bc7RgbaUnormSrgb
},
other=>panic!("unsupported format {:?}",other),
};
let size = wgpu::Extent3d {
width,
height,
depth_or_array_layers: 1,
};
let layer_size = wgpu::Extent3d {
depth_or_array_layers: 1,
..size
};
let max_mips = layer_size.max_mips(wgpu::TextureDimension::D2);
let texture = device.create_texture_with_data(
queue,
&wgpu::TextureDescriptor {
size,
mip_level_count: max_mips,
sample_count: 1,
dimension: wgpu::TextureDimension::D2,
format,
usage: wgpu::TextureUsages::TEXTURE_BINDING | wgpu::TextureUsages::COPY_DST,
label: Some(format!("Texture{}",texture_id).as_str()),
view_formats: &[],
},
&image.data,
);
texture.create_view(&wgpu::TextureViewDescriptor {
label: Some(format!("Texture{} View",texture_id).as_str()),
dimension: Some(wgpu::TextureViewDimension::D2),
..wgpu::TextureViewDescriptor::default()
})
}).collect();
//split groups with different textures into separate models
//the models received here are supposed to be tightly packed, i.e. no code needs to check if two models are using the same groups.
let indexed_models_len=indexed_models.models.len();
let mut unique_texture_models=Vec::with_capacity(indexed_models_len);
for model in indexed_models.models.into_iter(){
//convert ModelInstance into GraphicsModelInstance
let instances:Vec<GraphicsModelInstance>=model.instances.into_iter().filter_map(|instance|{
if instance.color.w==0.0{
None
}else{
Some(GraphicsModelInstance{
transform: instance.transform.into(),
normal_transform: Into::<glam::Mat3>::into(instance.transform.matrix3).inverse().transpose(),
color:GraphicsModelColor4::from(instance.color),
})
}
}).collect();
//skip pushing a model if all instances are invisible
if instances.len()==0{
continue;
}
//check each group, if it's using a new texture then make a new clone of the model
let id=unique_texture_models.len();
let mut unique_textures=Vec::new();
for group in model.groups.into_iter(){
//ignore zero copy optimization for now
let texture_index=if let Some(texture_index)=unique_textures.iter().position(|&texture|texture==group.texture){
texture_index
}else{
//create new texture_index
let texture_index=unique_textures.len();
unique_textures.push(group.texture);
unique_texture_models.push(IndexedGraphicsModelSingleTexture{
unique_pos:model.unique_pos.iter().map(|&v|*Into::<glam::Vec3>::into(v).as_ref()).collect(),
unique_tex:model.unique_tex.iter().map(|v|*v.as_ref()).collect(),
unique_normal:model.unique_normal.iter().map(|&v|*Into::<glam::Vec3>::into(v).as_ref()).collect(),
unique_color:model.unique_color.iter().map(|v|*v.as_ref()).collect(),
unique_vertices:model.unique_vertices.clone(),
texture:group.texture,
groups:Vec::new(),
instances:instances.clone(),
});
texture_index
};
unique_texture_models[id+texture_index].groups.push(IndexedGroupFixedTexture{
polys:group.polys,
});
}
}
//check every model to see if it's using the same (texture,color) but has few instances, if it is combine it into one model
//1. collect unique instances of texture and color, note model id
//2. for each model id, check if removing it from the pool decreases both the model count and instance count by more than one
//3. transpose all models that stay in the set
//best plan: benchmark set_bind_group, set_vertex_buffer, set_index_buffer and draw_indexed
//check if the estimated render performance is better by transposing multiple model instances into one model instance
//for now: just deduplicate single models...
let mut deduplicated_models=Vec::with_capacity(indexed_models_len);//use indexed_models_len because the list will likely get smaller instead of bigger
let mut unique_texture_color=std::collections::HashMap::new();//texture->color->vec![(model_id,instance_id)]
for (model_id,model) in unique_texture_models.iter().enumerate(){
//for now: filter out models with more than one instance
if 1<model.instances.len(){
continue;
}
//populate hashmap
let unique_color=if let Some(unique_color)=unique_texture_color.get_mut(&model.texture){
unique_color
}else{
//make new hashmap
let unique_color=std::collections::HashMap::new();
unique_texture_color.insert(model.texture,unique_color);
unique_texture_color.get_mut(&model.texture).unwrap()
};
//separate instances by color
for (instance_id,instance) in model.instances.iter().enumerate(){
let model_instance_list=if let Some(model_instance_list)=unique_color.get_mut(&instance.color){
model_instance_list
}else{
//make new hashmap
let model_instance_list=Vec::new();
unique_color.insert(instance.color.clone(),model_instance_list);
unique_color.get_mut(&instance.color).unwrap()
};
//add model instance to list
model_instance_list.push((model_id,instance_id));
}
}
//populate a hashset of models selected for transposition
//construct transposed models
let mut selected_model_instances=std::collections::HashSet::new();
for (texture,unique_color) in unique_texture_color.into_iter(){
for (color,model_instance_list) in unique_color.into_iter(){
//world transforming one model does not meet the definition of deduplicaiton
if 1<model_instance_list.len(){
//create model
let mut unique_pos=Vec::new();
let mut pos_id_from=std::collections::HashMap::new();
let mut unique_tex=Vec::new();
let mut tex_id_from=std::collections::HashMap::new();
let mut unique_normal=Vec::new();
let mut normal_id_from=std::collections::HashMap::new();
let mut unique_color=Vec::new();
let mut color_id_from=std::collections::HashMap::new();
let mut unique_vertices=Vec::new();
let mut vertex_id_from=std::collections::HashMap::new();
let mut polys=Vec::new();
//transform instance vertices
for (model_id,instance_id) in model_instance_list.into_iter(){
//populate hashset to prevent these models from being copied
selected_model_instances.insert(model_id);
//there is only one instance per model
let model=&unique_texture_models[model_id];
let instance=&model.instances[instance_id];
//just hash word slices LOL
let map_pos_id:Vec<u32>=model.unique_pos.iter().map(|untransformed_pos|{
let pos=instance.transform.transform_point3(glam::Vec3::from_array(untransformed_pos.clone())).to_array();
let h=pos.map(|v|bytemuck::cast::<f32,u32>(v));
(if let Some(&pos_id)=pos_id_from.get(&h){
pos_id
}else{
let pos_id=unique_pos.len();
unique_pos.push(pos.clone());
pos_id_from.insert(h,pos_id);
pos_id
}) as u32
}).collect();
let map_tex_id:Vec<u32>=model.unique_tex.iter().map(|tex|{
let h=tex.map(|v|bytemuck::cast::<f32,u32>(v));
(if let Some(&tex_id)=tex_id_from.get(&h){
tex_id
}else{
let tex_id=unique_tex.len();
unique_tex.push(tex.clone());
tex_id_from.insert(h,tex_id);
tex_id
}) as u32
}).collect();
let map_normal_id:Vec<u32>=model.unique_normal.iter().map(|untransformed_normal|{
let normal=(instance.normal_transform*glam::Vec3::from_array(untransformed_normal.clone())).to_array();
let h=normal.map(|v|bytemuck::cast::<f32,u32>(v));
(if let Some(&normal_id)=normal_id_from.get(&h){
normal_id
}else{
let normal_id=unique_normal.len();
unique_normal.push(normal.clone());
normal_id_from.insert(h,normal_id);
normal_id
}) as u32
}).collect();
let map_color_id:Vec<u32>=model.unique_color.iter().map(|color|{
let h=color.map(|v|bytemuck::cast::<f32,u32>(v));
(if let Some(&color_id)=color_id_from.get(&h){
color_id
}else{
let color_id=unique_color.len();
unique_color.push(color.clone());
color_id_from.insert(h,color_id);
color_id
}) as u32
}).collect();
//map the indexed vertices onto new indices
//creating the vertex map is slightly different because the vertices are directly hashable
let map_vertex_id:Vec<u32>=model.unique_vertices.iter().map(|unmapped_vertex|{
let vertex=crate::model::IndexedVertex{
2023-10-30 16:23:58 -07:00
pos:map_pos_id[unmapped_vertex.pos as usize],
tex:map_tex_id[unmapped_vertex.tex as usize],
normal:map_normal_id[unmapped_vertex.normal as usize],
color:map_color_id[unmapped_vertex.color as usize],
};
(if let Some(&vertex_id)=vertex_id_from.get(&vertex){
vertex_id
}else{
let vertex_id=unique_vertices.len();
unique_vertices.push(vertex.clone());
vertex_id_from.insert(vertex,vertex_id);
vertex_id
}) as u32
}).collect();
for group in &model.groups{
for poly in &group.polys{
polys.push(crate::model::IndexedPolygon{vertices:poly.vertices.iter().map(|&vertex_id|map_vertex_id[vertex_id as usize]).collect()});
}
}
}
//push model into dedup
deduplicated_models.push(IndexedGraphicsModelSingleTexture{
unique_pos,
unique_tex,
unique_normal,
unique_color,
unique_vertices,
texture,
groups:vec![IndexedGroupFixedTexture{
polys
}],
instances:vec![GraphicsModelInstance{
transform:glam::Mat4::IDENTITY,
normal_transform:glam::Mat3::IDENTITY,
color
}],
});
}
}
}
//fill untouched models
for (model_id,model) in unique_texture_models.into_iter().enumerate(){
if !selected_model_instances.contains(&model_id){
deduplicated_models.push(model);
}
}
//de-index models
let deduplicated_models_len=deduplicated_models.len();
let models:Vec<GraphicsModelSingleTexture>=deduplicated_models.into_iter().map(|model|{
let mut vertices = Vec::new();
let mut index_from_vertex = std::collections::HashMap::new();//::<IndexedVertex,usize>
//this mut be combined in a more complex way if the models use different render patterns per group
let mut indices = Vec::new();
for group in model.groups {
for poly in group.polys {
for end_index in 2..poly.vertices.len() {
for &index in &[0, end_index - 1, end_index] {
let vertex_index = poly.vertices[index];
if let Some(&i)=index_from_vertex.get(&vertex_index){
indices.push(i);
}else{
let i=vertices.len();
let vertex=&model.unique_vertices[vertex_index as usize];
vertices.push(GraphicsVertex{
pos: model.unique_pos[vertex.pos as usize],
tex: model.unique_tex[vertex.tex as usize],
normal: model.unique_normal[vertex.normal as usize],
color:model.unique_color[vertex.color as usize],
});
index_from_vertex.insert(vertex_index,i);
indices.push(i);
}
}
}
}
}
GraphicsModelSingleTexture{
instances:model.instances,
2023-10-30 22:12:17 -07:00
entities:if (u32::MAX as usize)<vertices.len(){
panic!("Model has too many vertices!")
}else if (u16::MAX as usize)<vertices.len(){
crate::model_graphics::Entities::U32(vec![indices.into_iter().map(|vertex_id|vertex_id as u32).collect()])
}else{
crate::model_graphics::Entities::U16(vec![indices.into_iter().map(|vertex_id|vertex_id as u16).collect()])
},
vertices,
texture:model.texture,
}
}).collect();
//.into_iter() the modeldata vec so entities can be /moved/ to models.entities
let mut model_count=0;
let mut instance_count=0;
let uniform_buffer_binding_size=crate::setup::required_limits().max_uniform_buffer_binding_size as usize;
let chunk_size=uniform_buffer_binding_size/MODEL_BUFFER_SIZE_BYTES;
self.models.reserve(models.len());
for model in models.into_iter() {
instance_count+=model.instances.len();
for instances_chunk in model.instances.rchunks(chunk_size){
model_count+=1;
let model_uniforms = get_instances_buffer_data(instances_chunk);
let model_buf = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some(format!("Model{} Buf",model_count).as_str()),
contents: bytemuck::cast_slice(&model_uniforms),
usage: wgpu::BufferUsages::UNIFORM | wgpu::BufferUsages::COPY_DST,
});
let texture_view=match model.texture{
Some(texture_id)=>{
match double_map.get(&texture_id){
Some(&mapped_texture_id)=>&texture_views[mapped_texture_id as usize],
None=>&self.temp_squid_texture_view,
}
},
None=>&self.temp_squid_texture_view,
};
let model_bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor {
layout: &self.bind_group_layouts.model,
entries: &[
wgpu::BindGroupEntry {
binding: 0,
resource: model_buf.as_entire_binding(),
},
wgpu::BindGroupEntry {
binding: 1,
resource: wgpu::BindingResource::TextureView(texture_view),
},
wgpu::BindGroupEntry {
binding: 2,
resource: wgpu::BindingResource::Sampler(&self.samplers.repeat),
},
],
label: Some(format!("Model{} Bind Group",model_count).as_str()),
});
let vertex_buf = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Vertex"),
contents: bytemuck::cast_slice(&model.vertices),
usage: wgpu::BufferUsages::VERTEX,
});
//all of these are being moved here
self.models.push(GraphicsModel{
instances:instances_chunk.to_vec(),
vertex_buf,
index_format:match &model.entities{
crate::model_graphics::Entities::U32(_)=>wgpu::IndexFormat::Uint32,
crate::model_graphics::Entities::U16(_)=>wgpu::IndexFormat::Uint16,
},
entities:match &model.entities{
crate::model_graphics::Entities::U32(entities)=>create_entities(device,entities),
crate::model_graphics::Entities::U16(entities)=>create_entities(device,entities),
},
bind_group: model_bind_group,
model_buf,
});
}
}
println!("Texture References={}",num_textures);
println!("Textures Loaded={}",texture_views.len());
println!("Indexed Models={}",indexed_models_len);
println!("Deduplicated Models={}",deduplicated_models_len);
println!("Graphics Objects: {}",self.models.len());
println!("Graphics Instances: {}",instance_count);
}
pub fn new(
device:&wgpu::Device,
queue:&wgpu::Queue,
config:&wgpu::SurfaceConfiguration,
)->Self{
let camera_bind_group_layout = device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
label: None,
entries: &[
wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStages::VERTEX,
ty: wgpu::BindingType::Buffer {
ty: wgpu::BufferBindingType::Uniform,
has_dynamic_offset: false,
min_binding_size: None,
},
count: None,
},
],
});
let skybox_texture_bind_group_layout = device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
label: Some("Skybox Texture Bind Group Layout"),
entries: &[
wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStages::FRAGMENT,
ty: wgpu::BindingType::Texture {
sample_type: wgpu::TextureSampleType::Float { filterable: true },
multisampled: false,
view_dimension: wgpu::TextureViewDimension::Cube,
},
count: None,
},
wgpu::BindGroupLayoutEntry {
binding: 1,
visibility: wgpu::ShaderStages::FRAGMENT,
ty: wgpu::BindingType::Sampler(wgpu::SamplerBindingType::Filtering),
count: None,
},
],
});
let model_bind_group_layout = device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
label: Some("Model Bind Group Layout"),
entries: &[
wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStages::VERTEX,
ty: wgpu::BindingType::Buffer {
ty: wgpu::BufferBindingType::Uniform,
has_dynamic_offset: false,
min_binding_size: None,
},
count: None,
},
wgpu::BindGroupLayoutEntry {
binding: 1,
visibility: wgpu::ShaderStages::FRAGMENT,
ty: wgpu::BindingType::Texture {
sample_type: wgpu::TextureSampleType::Float { filterable: true },
multisampled: false,
view_dimension: wgpu::TextureViewDimension::D2,
},
count: None,
},
wgpu::BindGroupLayoutEntry {
binding: 2,
visibility: wgpu::ShaderStages::FRAGMENT,
ty: wgpu::BindingType::Sampler(wgpu::SamplerBindingType::Filtering),
count: None,
},
],
});
let clamp_sampler = device.create_sampler(&wgpu::SamplerDescriptor {
label: Some("Clamp Sampler"),
address_mode_u: wgpu::AddressMode::ClampToEdge,
address_mode_v: wgpu::AddressMode::ClampToEdge,
address_mode_w: wgpu::AddressMode::ClampToEdge,
mag_filter: wgpu::FilterMode::Linear,
min_filter: wgpu::FilterMode::Linear,
mipmap_filter: wgpu::FilterMode::Linear,
..Default::default()
});
let repeat_sampler = device.create_sampler(&wgpu::SamplerDescriptor {
label: Some("Repeat Sampler"),
address_mode_u: wgpu::AddressMode::Repeat,
address_mode_v: wgpu::AddressMode::Repeat,
address_mode_w: wgpu::AddressMode::Repeat,
mag_filter: wgpu::FilterMode::Linear,
min_filter: wgpu::FilterMode::Linear,
mipmap_filter: wgpu::FilterMode::Linear,
2023-11-10 19:08:33 -08:00
anisotropy_clamp:16,
..Default::default()
});
// Create the render pipeline
let shader = device.create_shader_module(wgpu::ShaderModuleDescriptor {
label: None,
source: wgpu::ShaderSource::Wgsl(Cow::Borrowed(include_str!("shader.wgsl"))),
});
//load textures
let device_features = device.features();
let skybox_texture_view={
let skybox_format = if device_features.contains(wgpu::Features::TEXTURE_COMPRESSION_ASTC) {
println!("Using ASTC");
wgpu::TextureFormat::Astc {
block: AstcBlock::B4x4,
channel: AstcChannel::UnormSrgb,
}
} else if device_features.contains(wgpu::Features::TEXTURE_COMPRESSION_ETC2) {
println!("Using ETC2");
wgpu::TextureFormat::Etc2Rgb8UnormSrgb
} else if device_features.contains(wgpu::Features::TEXTURE_COMPRESSION_BC) {
println!("Using BC");
wgpu::TextureFormat::Bc1RgbaUnormSrgb
} else {
println!("Using plain");
wgpu::TextureFormat::Bgra8UnormSrgb
};
let bytes = match skybox_format {
wgpu::TextureFormat::Astc {
block: AstcBlock::B4x4,
channel: AstcChannel::UnormSrgb,
} => &include_bytes!("../images/astc.dds")[..],
wgpu::TextureFormat::Etc2Rgb8UnormSrgb => &include_bytes!("../images/etc2.dds")[..],
wgpu::TextureFormat::Bc1RgbaUnormSrgb => &include_bytes!("../images/bc1.dds")[..],
wgpu::TextureFormat::Bgra8UnormSrgb => &include_bytes!("../images/bgra.dds")[..],
_ => unreachable!(),
};
let skybox_image = ddsfile::Dds::read(&mut std::io::Cursor::new(bytes)).unwrap();
let size = wgpu::Extent3d {
width: skybox_image.get_width(),
height: skybox_image.get_height(),
depth_or_array_layers: 6,
};
let layer_size = wgpu::Extent3d {
depth_or_array_layers: 1,
..size
};
let max_mips = layer_size.max_mips(wgpu::TextureDimension::D2);
let skybox_texture = device.create_texture_with_data(
queue,
&wgpu::TextureDescriptor {
size,
mip_level_count: max_mips,
sample_count: 1,
dimension: wgpu::TextureDimension::D2,
format: skybox_format,
usage: wgpu::TextureUsages::TEXTURE_BINDING | wgpu::TextureUsages::COPY_DST,
label: Some("Skybox Texture"),
view_formats: &[],
},
&skybox_image.data,
);
skybox_texture.create_view(&wgpu::TextureViewDescriptor {
label: Some("Skybox Texture View"),
dimension: Some(wgpu::TextureViewDimension::Cube),
..wgpu::TextureViewDescriptor::default()
})
};
//squid
let squid_texture_view={
let bytes = include_bytes!("../images/squid.dds");
let image = ddsfile::Dds::read(&mut std::io::Cursor::new(bytes)).unwrap();
let size = wgpu::Extent3d {
width: image.get_width(),
height: image.get_height(),
depth_or_array_layers: 1,
};
let layer_size = wgpu::Extent3d {
depth_or_array_layers: 1,
..size
};
let max_mips = layer_size.max_mips(wgpu::TextureDimension::D2);
let texture = device.create_texture_with_data(
queue,
&wgpu::TextureDescriptor {
size,
mip_level_count: max_mips,
sample_count: 1,
dimension: wgpu::TextureDimension::D2,
format: wgpu::TextureFormat::Bc7RgbaUnorm,
usage: wgpu::TextureUsages::TEXTURE_BINDING | wgpu::TextureUsages::COPY_DST,
label: Some("Squid Texture"),
view_formats: &[],
},
&image.data,
);
texture.create_view(&wgpu::TextureViewDescriptor {
label: Some("Squid Texture View"),
dimension: Some(wgpu::TextureViewDimension::D2),
..wgpu::TextureViewDescriptor::default()
})
};
let model_pipeline_layout = device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor {
label: None,
bind_group_layouts: &[
&camera_bind_group_layout,
&skybox_texture_bind_group_layout,
&model_bind_group_layout,
],
push_constant_ranges: &[],
});
let sky_pipeline_layout = device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor {
label: None,
bind_group_layouts: &[
&camera_bind_group_layout,
&skybox_texture_bind_group_layout,
],
push_constant_ranges: &[],
});
// Create the render pipelines
let sky_pipeline = device.create_render_pipeline(&wgpu::RenderPipelineDescriptor {
label: Some("Sky Pipeline"),
layout: Some(&sky_pipeline_layout),
vertex: wgpu::VertexState {
module: &shader,
entry_point: "vs_sky",
buffers: &[],
},
fragment: Some(wgpu::FragmentState {
module: &shader,
entry_point: "fs_sky",
targets: &[Some(config.view_formats[0].into())],
}),
primitive: wgpu::PrimitiveState {
front_face: wgpu::FrontFace::Cw,
..Default::default()
},
depth_stencil: Some(wgpu::DepthStencilState {
format: Self::DEPTH_FORMAT,
depth_write_enabled: false,
depth_compare: wgpu::CompareFunction::LessEqual,
stencil: wgpu::StencilState::default(),
bias: wgpu::DepthBiasState::default(),
}),
multisample: wgpu::MultisampleState::default(),
multiview: None,
});
let model_pipeline = device.create_render_pipeline(&wgpu::RenderPipelineDescriptor {
label: Some("Model Pipeline"),
layout: Some(&model_pipeline_layout),
vertex: wgpu::VertexState {
module: &shader,
entry_point: "vs_entity_texture",
buffers: &[wgpu::VertexBufferLayout {
array_stride: std::mem::size_of::<GraphicsVertex>() as wgpu::BufferAddress,
step_mode: wgpu::VertexStepMode::Vertex,
attributes: &wgpu::vertex_attr_array![0 => Float32x3, 1 => Float32x2, 2 => Float32x3, 3 => Float32x4],
}],
},
fragment: Some(wgpu::FragmentState {
module: &shader,
entry_point: "fs_entity_texture",
targets: &[Some(config.view_formats[0].into())],
}),
primitive: wgpu::PrimitiveState {
front_face: wgpu::FrontFace::Cw,
2023-10-26 19:07:44 -07:00
cull_mode:Some(wgpu::Face::Front),
..Default::default()
},
depth_stencil: Some(wgpu::DepthStencilState {
format: Self::DEPTH_FORMAT,
depth_write_enabled: true,
depth_compare: wgpu::CompareFunction::LessEqual,
stencil: wgpu::StencilState::default(),
bias: wgpu::DepthBiasState::default(),
}),
multisample: wgpu::MultisampleState::default(),
multiview: None,
});
let camera=GraphicsCamera::default();
let camera_uniforms = camera.to_uniform_data(crate::physics::PhysicsOutputState::default().extrapolate(glam::IVec2::ZERO,crate::integer::Time::ZERO));
let camera_buf = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Camera"),
contents: bytemuck::cast_slice(&camera_uniforms),
usage: wgpu::BufferUsages::UNIFORM | wgpu::BufferUsages::COPY_DST,
});
let camera_bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor {
layout: &camera_bind_group_layout,
entries: &[
wgpu::BindGroupEntry {
binding: 0,
resource: camera_buf.as_entire_binding(),
},
],
label: Some("Camera"),
});
let skybox_texture_bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor {
layout: &skybox_texture_bind_group_layout,
entries: &[
wgpu::BindGroupEntry {
binding: 0,
resource: wgpu::BindingResource::TextureView(&skybox_texture_view),
},
wgpu::BindGroupEntry {
binding: 1,
resource: wgpu::BindingResource::Sampler(&clamp_sampler),
},
],
label: Some("Sky Texture"),
});
let depth_view = Self::create_depth_texture(config, device);
Self{
pipelines:GraphicsPipelines{
skybox:sky_pipeline,
model:model_pipeline
},
bind_groups:GraphicsBindGroups{
camera:camera_bind_group,
skybox_texture:skybox_texture_bind_group,
},
camera,
camera_buf,
models: Vec::new(),
depth_view,
staging_belt: wgpu::util::StagingBelt::new(0x100),
bind_group_layouts: GraphicsBindGroupLayouts { model: model_bind_group_layout },
samplers: GraphicsSamplers { repeat: repeat_sampler },
temp_squid_texture_view: squid_texture_view,
}
}
pub fn resize(
&mut self,
device:&wgpu::Device,
config:&wgpu::SurfaceConfiguration,
user_settings:&crate::settings::UserSettings,
) {
2023-10-25 15:56:36 -07:00
self.depth_view=Self::create_depth_texture(config,device);
self.camera.screen_size=glam::uvec2(config.width,config.height);
self.load_user_settings(user_settings);
}
pub fn render(
&mut self,
view:&wgpu::TextureView,
device:&wgpu::Device,
queue:&wgpu::Queue,
physics_output:crate::physics::PhysicsOutputState,
predicted_time:crate::integer::Time,
mouse_pos:glam::IVec2,
) {
//TODO: use scheduled frame times to create beautiful smoothing simulation physics extrapolation assuming no input
let mut encoder =
device.create_command_encoder(&wgpu::CommandEncoderDescriptor { label: None });
// update rotation
let camera_uniforms = self.camera.to_uniform_data(physics_output.extrapolate(mouse_pos,predicted_time));
self.staging_belt
.write_buffer(
&mut encoder,
&self.camera_buf,
0,
wgpu::BufferSize::new((camera_uniforms.len() * 4) as wgpu::BufferAddress).unwrap(),
device,
)
.copy_from_slice(bytemuck::cast_slice(&camera_uniforms));
//This code only needs to run when the uniforms change
/*
for model in self.models.iter() {
let model_uniforms = get_instances_buffer_data(&model.instances);
self.staging_belt
.write_buffer(
&mut encoder,
&model.model_buf,//description of where data will be written when command is executed
0,//offset in staging belt?
wgpu::BufferSize::new((model_uniforms.len() * 4) as wgpu::BufferAddress).unwrap(),
device,
)
.copy_from_slice(bytemuck::cast_slice(&model_uniforms));
}
*/
self.staging_belt.finish();
{
let mut rpass = encoder.begin_render_pass(&wgpu::RenderPassDescriptor {
label: None,
color_attachments: &[Some(wgpu::RenderPassColorAttachment {
view,
resolve_target: None,
ops: wgpu::Operations {
load: wgpu::LoadOp::Clear(wgpu::Color {
r: 0.1,
g: 0.2,
b: 0.3,
a: 1.0,
}),
2023-10-26 23:58:27 -07:00
store:wgpu::StoreOp::Store,
},
})],
depth_stencil_attachment: Some(wgpu::RenderPassDepthStencilAttachment {
view: &self.depth_view,
depth_ops: Some(wgpu::Operations {
load: wgpu::LoadOp::Clear(1.0),
2023-10-26 23:58:27 -07:00
store:wgpu::StoreOp::Discard,
}),
stencil_ops: None,
}),
2023-10-26 23:58:27 -07:00
timestamp_writes:Default::default(),
occlusion_query_set:Default::default(),
});
rpass.set_bind_group(0, &self.bind_groups.camera, &[]);
rpass.set_bind_group(1, &self.bind_groups.skybox_texture, &[]);
rpass.set_pipeline(&self.pipelines.model);
for model in self.models.iter() {
rpass.set_bind_group(2, &model.bind_group, &[]);
rpass.set_vertex_buffer(0, model.vertex_buf.slice(..));
for entity in model.entities.iter(){
rpass.set_index_buffer(entity.index_buf.slice(..),model.index_format);
rpass.draw_indexed(0..entity.index_count,0,0..model.instances.len() as u32);
}
}
rpass.set_pipeline(&self.pipelines.skybox);
rpass.draw(0..3, 0..1);
}
queue.submit(std::iter::once(encoder.finish()));
self.staging_belt.recall();
}
}
const MODEL_BUFFER_SIZE:usize=4*4 + 12 + 4;//let size=std::mem::size_of::<ModelInstance>();
const MODEL_BUFFER_SIZE_BYTES:usize=MODEL_BUFFER_SIZE*4;
fn get_instances_buffer_data(instances:&[GraphicsModelInstance]) -> Vec<f32> {
let mut raw = Vec::with_capacity(MODEL_BUFFER_SIZE*instances.len());
for (i,mi) in instances.iter().enumerate(){
2023-10-30 16:13:57 -07:00
let mut v = raw.split_off(MODEL_BUFFER_SIZE*i);
//model transform
raw.extend_from_slice(&AsRef::<[f32; 4*4]>::as_ref(&mi.transform)[..]);
//normal transform
raw.extend_from_slice(AsRef::<[f32; 3]>::as_ref(&mi.normal_transform.x_axis));
raw.extend_from_slice(&[0.0]);
raw.extend_from_slice(AsRef::<[f32; 3]>::as_ref(&mi.normal_transform.y_axis));
raw.extend_from_slice(&[0.0]);
raw.extend_from_slice(AsRef::<[f32; 3]>::as_ref(&mi.normal_transform.z_axis));
raw.extend_from_slice(&[0.0]);
//color
raw.extend_from_slice(AsRef::<[f32; 4]>::as_ref(&mi.color.get()));
raw.append(&mut v);
}
raw
}