1029 lines
32 KiB
Rust
1029 lines
32 KiB
Rust
use crate::{instruction::{InstructionEmitter, InstructionConsumer, TimedInstruction}, zeroes::zeroes2};
|
|
|
|
#[derive(Debug)]
|
|
pub enum PhysicsInstruction {
|
|
CollisionStart(RelativeCollision),
|
|
CollisionEnd(RelativeCollision),
|
|
StrafeTick,
|
|
ReachWalkTargetVelocity,
|
|
// Water,
|
|
// Spawn(
|
|
// Option<SpawnId>,
|
|
// bool,//true = Trigger; false = teleport
|
|
// bool,//true = Force
|
|
// )
|
|
//InputInstructions conditionally activate RefreshWalkTarget (by doing what SetWalkTargetVelocity used to do and then flagging it)
|
|
Input(InputInstruction),
|
|
//temp
|
|
SetSpawnPosition(glam::Vec3),
|
|
}
|
|
#[derive(Debug)]
|
|
pub enum InputInstruction {
|
|
MoveMouse(glam::IVec2),
|
|
MoveForward(bool),
|
|
MoveLeft(bool),
|
|
MoveBack(bool),
|
|
MoveRight(bool),
|
|
MoveUp(bool),
|
|
MoveDown(bool),
|
|
Jump(bool),
|
|
Zoom(bool),
|
|
Reset,
|
|
Idle,
|
|
//Idle: there were no input events, but the simulation is safe to advance to this timestep
|
|
//for interpolation / networking / playback reasons, most playback heads will always want
|
|
//to be 1 instruction ahead to generate the next state for interpolation.
|
|
}
|
|
|
|
pub struct Body {
|
|
position: glam::Vec3,//I64 where 2^32 = 1 u
|
|
velocity: glam::Vec3,//I64 where 2^32 = 1 u/s
|
|
acceleration: glam::Vec3,//I64 where 2^32 = 1 u/s/s
|
|
time: TIME,//nanoseconds x xxxxD!
|
|
}
|
|
trait MyHash{
|
|
fn hash(&self) -> u64;
|
|
}
|
|
impl MyHash for Body {
|
|
fn hash(&self) -> u64 {
|
|
let mut hasher=std::collections::hash_map::DefaultHasher::new();
|
|
for &el in self.position.as_ref().iter() {
|
|
std::hash::Hasher::write(&mut hasher, el.to_ne_bytes().as_slice());
|
|
}
|
|
for &el in self.velocity.as_ref().iter() {
|
|
std::hash::Hasher::write(&mut hasher, el.to_ne_bytes().as_slice());
|
|
}
|
|
for &el in self.acceleration.as_ref().iter() {
|
|
std::hash::Hasher::write(&mut hasher, el.to_ne_bytes().as_slice());
|
|
}
|
|
std::hash::Hasher::write(&mut hasher, self.time.to_ne_bytes().as_slice());
|
|
return std::hash::Hasher::finish(&hasher);//hash check to see if walk target is valid
|
|
}
|
|
}
|
|
|
|
pub enum MoveRestriction {
|
|
Air,
|
|
Water,
|
|
Ground,
|
|
Ladder,//multiple ladders how
|
|
}
|
|
|
|
/*
|
|
enum InputInstruction {
|
|
}
|
|
struct InputState {
|
|
}
|
|
impl InputState {
|
|
pub fn get_control(&self,control:u32) -> bool {
|
|
self.controls&control!=0
|
|
}
|
|
}
|
|
impl crate::instruction::InstructionEmitter<InputInstruction> for InputState{
|
|
fn next_instruction(&self, time_limit:crate::body::TIME) -> Option<TimedInstruction<InputInstruction>> {
|
|
//this is polled by PhysicsState for actions like Jump
|
|
//no, it has to be the other way around. physics is run up until the jump instruction, and then the jump instruction is pushed.
|
|
self.queue.get(0)
|
|
}
|
|
}
|
|
impl crate::instruction::InstructionConsumer<InputInstruction> for InputState{
|
|
fn process_instruction(&mut self,ins:TimedInstruction<InputInstruction>){
|
|
//add to queue
|
|
self.queue.push(ins);
|
|
}
|
|
}
|
|
*/
|
|
|
|
enum MouseInterpolation {
|
|
First,//just checks the last value
|
|
Lerp,//lerps between
|
|
}
|
|
pub struct MouseInterpolationState {
|
|
interpolation: MouseInterpolation,
|
|
time0: TIME,
|
|
time1: TIME,
|
|
mouse0: glam::IVec2,
|
|
mouse1: glam::IVec2,
|
|
}
|
|
|
|
impl MouseInterpolationState {
|
|
pub fn new() -> Self {
|
|
Self {
|
|
interpolation:MouseInterpolation::First,
|
|
time0:0,
|
|
time1:1,//ONE NANOSECOND!!!! avoid divide by zero
|
|
mouse0:glam::IVec2::ZERO,
|
|
mouse1:glam::IVec2::ZERO,
|
|
}
|
|
}
|
|
pub fn move_mouse(&mut self,time:TIME,delta:glam::IVec2){
|
|
self.time0=self.time1;
|
|
self.mouse0=self.mouse1;
|
|
self.time1=time;
|
|
self.mouse1=self.mouse1+delta;
|
|
}
|
|
pub fn interpolated_position(&self,time:TIME) -> glam::IVec2 {
|
|
match self.interpolation {
|
|
MouseInterpolation::First => self.mouse0,
|
|
MouseInterpolation::Lerp => {
|
|
let m0=self.mouse0.as_i64vec2();
|
|
let m1=self.mouse1.as_i64vec2();
|
|
//these are deltas
|
|
let t1t=(self.time1-time) as i64;
|
|
let tt0=(time-self.time0) as i64;
|
|
let dt=(self.time1-self.time0) as i64;
|
|
((m0*t1t+m1*tt0)/dt).as_ivec2()
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
pub enum WalkEnum{
|
|
Reached,
|
|
Transient,
|
|
}
|
|
pub struct WalkState {
|
|
pub target_velocity: glam::Vec3,
|
|
pub target_time: TIME,
|
|
pub state: WalkEnum,
|
|
}
|
|
impl WalkState {
|
|
pub fn new() -> Self {
|
|
Self{
|
|
target_velocity:glam::Vec3::ZERO,
|
|
target_time:0,
|
|
state:WalkEnum::Reached,
|
|
}
|
|
}
|
|
}
|
|
|
|
// Note: we use the Y=up coordinate space in this example.
|
|
pub struct Camera {
|
|
offset: glam::Vec3,
|
|
angles: glam::DVec2,//YAW AND THEN PITCH
|
|
//punch: glam::Vec3,
|
|
//punch_velocity: glam::Vec3,
|
|
fov: glam::Vec2,//slope
|
|
sensitivity: glam::DVec2,
|
|
time: TIME,
|
|
}
|
|
|
|
#[inline]
|
|
fn mat3_from_rotation_y_f64(angle: f64) -> glam::Mat3 {
|
|
let (sina, cosa) = angle.sin_cos();
|
|
glam::Mat3::from_cols(
|
|
glam::Vec3::new(cosa as f32, 0.0, -sina as f32),
|
|
glam::Vec3::Y,
|
|
glam::Vec3::new(sina as f32, 0.0, cosa as f32),
|
|
)
|
|
}
|
|
#[inline]
|
|
fn perspective_rh(fov_x_slope: f32, fov_y_slope: f32, z_near: f32, z_far: f32) -> glam::Mat4 {
|
|
//glam_assert!(z_near > 0.0 && z_far > 0.0);
|
|
let r = z_far / (z_near - z_far);
|
|
glam::Mat4::from_cols(
|
|
glam::Vec4::new(1.0/fov_x_slope, 0.0, 0.0, 0.0),
|
|
glam::Vec4::new(0.0, 1.0/fov_y_slope, 0.0, 0.0),
|
|
glam::Vec4::new(0.0, 0.0, r, -1.0),
|
|
glam::Vec4::new(0.0, 0.0, r * z_near, 0.0),
|
|
)
|
|
}
|
|
impl Camera {
|
|
pub fn from_offset(offset:glam::Vec3,aspect:f32) -> Self {
|
|
Self{
|
|
offset,
|
|
angles: glam::DVec2::ZERO,
|
|
fov: glam::vec2(aspect,1.0),
|
|
sensitivity: glam::dvec2(1.0/6144.0,1.0/6144.0),
|
|
time: 0,
|
|
}
|
|
}
|
|
fn simulate_move_angles(&self, delta: glam::IVec2) -> glam::DVec2 {
|
|
let mut a=self.angles-self.sensitivity*delta.as_dvec2();
|
|
a.y=a.y.clamp(-std::f64::consts::FRAC_PI_2, std::f64::consts::FRAC_PI_2);
|
|
return a
|
|
}
|
|
fn simulate_move_rotation_y(&self, delta_x: i32) -> glam::Mat3 {
|
|
mat3_from_rotation_y_f64(self.angles.x-self.sensitivity.x*(delta_x as f64))
|
|
}
|
|
pub fn proj(&self)->glam::Mat4{
|
|
perspective_rh(self.fov.x, self.fov.y, 0.5, 2000.0)
|
|
}
|
|
pub fn view(&self,pos:glam::Vec3)->glam::Mat4{
|
|
//f32 good enough for view matrix
|
|
glam::Mat4::from_translation(pos+self.offset) * glam::Mat4::from_euler(glam::EulerRot::YXZ, self.angles.x as f32, self.angles.y as f32, 0f32)
|
|
}
|
|
pub fn set_fov_aspect(&mut self,fov:f32,aspect:f32){
|
|
self.fov.x=fov*aspect;
|
|
self.fov.y=fov;
|
|
}
|
|
}
|
|
|
|
const CONTROL_MOVEFORWARD:u32 = 0b00000001;
|
|
const CONTROL_MOVEBACK:u32 = 0b00000010;
|
|
const CONTROL_MOVERIGHT:u32 = 0b00000100;
|
|
const CONTROL_MOVELEFT:u32 = 0b00001000;
|
|
const CONTROL_MOVEUP:u32 = 0b00010000;
|
|
const CONTROL_MOVEDOWN:u32 = 0b00100000;
|
|
const CONTROL_JUMP:u32 = 0b01000000;
|
|
const CONTROL_ZOOM:u32 = 0b10000000;
|
|
|
|
const FORWARD_DIR:glam::Vec3 = glam::Vec3::new(0.0,0.0,-1.0);
|
|
const RIGHT_DIR:glam::Vec3 = glam::Vec3::new(1.0,0.0,0.0);
|
|
const UP_DIR:glam::Vec3 = glam::Vec3::new(0.0,1.0,0.0);
|
|
|
|
fn get_control_dir(controls: u32) -> glam::Vec3{
|
|
//don't get fancy just do it
|
|
let mut control_dir:glam::Vec3 = glam::Vec3::new(0.0,0.0,0.0);
|
|
if controls & CONTROL_MOVEFORWARD == CONTROL_MOVEFORWARD {
|
|
control_dir+=FORWARD_DIR;
|
|
}
|
|
if controls & CONTROL_MOVEBACK == CONTROL_MOVEBACK {
|
|
control_dir+=-FORWARD_DIR;
|
|
}
|
|
if controls & CONTROL_MOVELEFT == CONTROL_MOVELEFT {
|
|
control_dir+=-RIGHT_DIR;
|
|
}
|
|
if controls & CONTROL_MOVERIGHT == CONTROL_MOVERIGHT {
|
|
control_dir+=RIGHT_DIR;
|
|
}
|
|
if controls & CONTROL_MOVEUP == CONTROL_MOVEUP {
|
|
control_dir+=UP_DIR;
|
|
}
|
|
if controls & CONTROL_MOVEDOWN == CONTROL_MOVEDOWN {
|
|
control_dir+=-UP_DIR;
|
|
}
|
|
return control_dir
|
|
}
|
|
|
|
pub struct PhysicsState {
|
|
pub body: Body,
|
|
pub hitbox_halfsize: glam::Vec3,
|
|
pub contacts: std::collections::HashSet::<RelativeCollision>,
|
|
//pub intersections: Vec<ModelId>,
|
|
pub models: Vec<ModelPhysics>,
|
|
//camera must exist in state because wormholes modify the camera, also camera punch
|
|
pub camera: Camera,
|
|
pub mouse_interpolation: MouseInterpolationState,
|
|
pub controls: u32,
|
|
pub time: TIME,
|
|
pub strafe_tick_num: TIME,
|
|
pub strafe_tick_den: TIME,
|
|
pub tick: u32,
|
|
pub mv: f32,
|
|
pub walk: WalkState,
|
|
pub walkspeed: f32,
|
|
pub friction: f32,
|
|
pub walk_accel: f32,
|
|
pub gravity: glam::Vec3,
|
|
pub grounded: bool,
|
|
pub spawn_point: glam::Vec3,
|
|
}
|
|
|
|
#[derive(Debug,Clone,Copy,Hash,Eq,PartialEq)]
|
|
pub enum AabbFace{
|
|
Right,//+X
|
|
Top,
|
|
Back,
|
|
Left,
|
|
Bottom,
|
|
Front,
|
|
}
|
|
#[derive(Clone)]
|
|
pub struct Aabb {
|
|
min: glam::Vec3,
|
|
max: glam::Vec3,
|
|
}
|
|
|
|
impl Aabb {
|
|
// const FACE_DATA: [[f32; 3]; 6] = [
|
|
// [0.0f32, 0., 1.],
|
|
// [0.0f32, 0., -1.],
|
|
// [1.0f32, 0., 0.],
|
|
// [-1.0f32, 0., 0.],
|
|
// [0.0f32, 1., 0.],
|
|
// [0.0f32, -1., 0.],
|
|
// ];
|
|
const VERTEX_DATA: [glam::Vec3; 8] = [
|
|
glam::vec3(1., -1., -1.),
|
|
glam::vec3(1., 1., -1.),
|
|
glam::vec3(1., 1., 1.),
|
|
glam::vec3(1., -1., 1.),
|
|
glam::vec3(-1., -1., 1.),
|
|
glam::vec3(-1., 1., 1.),
|
|
glam::vec3(-1., 1., -1.),
|
|
glam::vec3(-1., -1., -1.),
|
|
];
|
|
const VERTEX_DATA_RIGHT: [glam::Vec3; 4] = [
|
|
glam::vec3(1., -1., -1.),
|
|
glam::vec3(1., 1., -1.),
|
|
glam::vec3(1., 1., 1.),
|
|
glam::vec3(1., -1., 1.),
|
|
];
|
|
const VERTEX_DATA_TOP: [glam::Vec3; 4] = [
|
|
glam::vec3(1., 1., -1.),
|
|
glam::vec3(-1., 1., -1.),
|
|
glam::vec3(-1., 1., 1.),
|
|
glam::vec3(1., 1., 1.),
|
|
];
|
|
const VERTEX_DATA_BACK: [glam::Vec3; 4] = [
|
|
glam::vec3(-1., -1., 1.),
|
|
glam::vec3(1., -1., 1.),
|
|
glam::vec3(1., 1., 1.),
|
|
glam::vec3(-1., 1., 1.),
|
|
];
|
|
const VERTEX_DATA_LEFT: [glam::Vec3; 4] = [
|
|
glam::vec3(-1., -1., 1.),
|
|
glam::vec3(-1., 1., 1.),
|
|
glam::vec3(-1., 1., -1.),
|
|
glam::vec3(-1., -1., -1.),
|
|
];
|
|
const VERTEX_DATA_BOTTOM: [glam::Vec3; 4] = [
|
|
glam::vec3(1., -1., 1.),
|
|
glam::vec3(-1., -1., 1.),
|
|
glam::vec3(-1., -1., -1.),
|
|
glam::vec3(1., -1., -1.),
|
|
];
|
|
const VERTEX_DATA_FRONT: [glam::Vec3; 4] = [
|
|
glam::vec3(-1., 1., -1.),
|
|
glam::vec3(1., 1., -1.),
|
|
glam::vec3(1., -1., -1.),
|
|
glam::vec3(-1., -1., -1.),
|
|
];
|
|
|
|
pub fn new() -> Self {
|
|
Self {min: glam::Vec3::INFINITY,max: glam::Vec3::NEG_INFINITY}
|
|
}
|
|
|
|
pub fn grow(&mut self, point:glam::Vec3){
|
|
self.min=self.min.min(point);
|
|
self.max=self.max.max(point);
|
|
}
|
|
|
|
pub fn normal(face:AabbFace) -> glam::Vec3 {
|
|
match face {
|
|
AabbFace::Right => glam::vec3(1.,0.,0.),
|
|
AabbFace::Top => glam::vec3(0.,1.,0.),
|
|
AabbFace::Back => glam::vec3(0.,0.,1.),
|
|
AabbFace::Left => glam::vec3(-1.,0.,0.),
|
|
AabbFace::Bottom => glam::vec3(0.,-1.,0.),
|
|
AabbFace::Front => glam::vec3(0.,0.,-1.),
|
|
}
|
|
}
|
|
pub fn unit_vertices() -> [glam::Vec3;8] {
|
|
return Self::VERTEX_DATA;
|
|
}
|
|
pub fn unit_face_vertices(face:AabbFace) -> [glam::Vec3;4] {
|
|
match face {
|
|
AabbFace::Right => Self::VERTEX_DATA_RIGHT,
|
|
AabbFace::Top => Self::VERTEX_DATA_TOP,
|
|
AabbFace::Back => Self::VERTEX_DATA_BACK,
|
|
AabbFace::Left => Self::VERTEX_DATA_LEFT,
|
|
AabbFace::Bottom => Self::VERTEX_DATA_BOTTOM,
|
|
AabbFace::Front => Self::VERTEX_DATA_FRONT,
|
|
}
|
|
}
|
|
}
|
|
|
|
//pretend to be using what we want to eventually do
|
|
type TreyMeshFace = AabbFace;
|
|
type TreyMesh = Aabb;
|
|
|
|
pub struct ModelPhysics {
|
|
//A model is a thing that has a hitbox. can be represented by a list of TreyMesh-es
|
|
//in this iteration, all it needs is extents.
|
|
mesh: TreyMesh,
|
|
}
|
|
|
|
impl ModelPhysics {
|
|
pub fn from_model(model:&crate::model::IndexedModel,model_transform:glam::Affine3A) -> Self {
|
|
let mut aabb=Aabb::new();
|
|
for indexed_vertex in &model.unique_vertices {
|
|
aabb.grow(model_transform.transform_point3(glam::Vec3::from_array(model.unique_pos[indexed_vertex.pos as usize])));
|
|
}
|
|
Self{
|
|
mesh:aabb,
|
|
}
|
|
}
|
|
pub fn unit_vertices(&self) -> [glam::Vec3;8] {
|
|
Aabb::unit_vertices()
|
|
}
|
|
pub fn mesh(&self) -> &TreyMesh {
|
|
return &self.mesh;
|
|
}
|
|
pub fn unit_face_vertices(&self,face:TreyMeshFace) -> [glam::Vec3;4] {
|
|
Aabb::unit_face_vertices(face)
|
|
}
|
|
pub fn face_mesh(&self,face:TreyMeshFace) -> TreyMesh {
|
|
let mut aabb=self.mesh.clone();
|
|
//in this implementation face = worldspace aabb face
|
|
match face {
|
|
AabbFace::Right => aabb.min.x=aabb.max.x,
|
|
AabbFace::Top => aabb.min.y=aabb.max.y,
|
|
AabbFace::Back => aabb.min.z=aabb.max.z,
|
|
AabbFace::Left => aabb.max.x=aabb.min.x,
|
|
AabbFace::Bottom => aabb.max.y=aabb.min.y,
|
|
AabbFace::Front => aabb.max.z=aabb.min.z,
|
|
}
|
|
return aabb;
|
|
}
|
|
pub fn face_normal(&self,face:TreyMeshFace) -> glam::Vec3 {
|
|
Aabb::normal(face)//this is wrong for scale
|
|
}
|
|
}
|
|
|
|
//need non-face (full model) variant for CanCollide false objects
|
|
//OR have a separate list from contacts for model intersection
|
|
#[derive(Debug,Clone,Eq,Hash,PartialEq)]
|
|
pub struct RelativeCollision {
|
|
face: TreyMeshFace,//just an id
|
|
model: u32,//using id to avoid lifetimes
|
|
}
|
|
|
|
impl RelativeCollision {
|
|
pub fn mesh(&self,models:&Vec<ModelPhysics>) -> TreyMesh {
|
|
return models.get(self.model as usize).unwrap().face_mesh(self.face).clone()
|
|
}
|
|
pub fn normal(&self,models:&Vec<ModelPhysics>) -> glam::Vec3 {
|
|
return models.get(self.model as usize).unwrap().face_normal(self.face)
|
|
}
|
|
}
|
|
|
|
pub type TIME = i64;
|
|
|
|
impl Body {
|
|
pub fn with_pva(position:glam::Vec3,velocity:glam::Vec3,acceleration:glam::Vec3) -> Self {
|
|
Self{
|
|
position,
|
|
velocity,
|
|
acceleration,
|
|
time: 0,
|
|
}
|
|
}
|
|
pub fn extrapolated_position(&self,time: TIME)->glam::Vec3{
|
|
let dt=(time-self.time) as f64/1_000_000_000f64;
|
|
self.position+self.velocity*(dt as f32)+self.acceleration*((0.5*dt*dt) as f32)
|
|
}
|
|
pub fn extrapolated_velocity(&self,time: TIME)->glam::Vec3{
|
|
let dt=(time-self.time) as f64/1_000_000_000f64;
|
|
self.velocity+self.acceleration*(dt as f32)
|
|
}
|
|
pub fn advance_time(&mut self, time: TIME){
|
|
self.position=self.extrapolated_position(time);
|
|
self.velocity=self.extrapolated_velocity(time);
|
|
self.time=time;
|
|
}
|
|
}
|
|
|
|
impl PhysicsState {
|
|
//tickless gaming
|
|
pub fn run(&mut self, time_limit:TIME){
|
|
//prepare is ommitted - everything is done via instructions.
|
|
while let Some(instruction) = self.next_instruction(time_limit) {//collect
|
|
//process
|
|
self.process_instruction(instruction);
|
|
//write hash lol
|
|
}
|
|
}
|
|
|
|
pub fn advance_time(&mut self, time: TIME){
|
|
self.body.advance_time(time);
|
|
self.time=time;
|
|
}
|
|
|
|
fn set_control(&mut self,control:u32,state:bool){
|
|
self.controls=if state{self.controls|control}else{self.controls&!control};
|
|
}
|
|
fn jump(&mut self){
|
|
self.grounded=false;//do I need this?
|
|
let mut v=self.body.velocity+glam::Vec3::new(0.0,0.715588/2.0*100.0,0.0);
|
|
self.contact_constrain_velocity(&mut v);
|
|
self.body.velocity=v;
|
|
}
|
|
|
|
fn contact_constrain_velocity(&self,velocity:&mut glam::Vec3){
|
|
for contact in self.contacts.iter() {
|
|
let n=contact.normal(&self.models);
|
|
let d=velocity.dot(n);
|
|
if d<0f32{
|
|
(*velocity)-=d/n.length_squared()*n;
|
|
}
|
|
}
|
|
}
|
|
fn contact_constrain_acceleration(&self,acceleration:&mut glam::Vec3){
|
|
for contact in self.contacts.iter() {
|
|
let n=contact.normal(&self.models);
|
|
let d=acceleration.dot(n);
|
|
if d<0f32{
|
|
(*acceleration)-=d/n.length_squared()*n;
|
|
}
|
|
}
|
|
}
|
|
fn next_strafe_instruction(&self) -> Option<TimedInstruction<PhysicsInstruction>> {
|
|
return Some(TimedInstruction{
|
|
time:(self.time*self.strafe_tick_num/self.strafe_tick_den+1)*self.strafe_tick_den/self.strafe_tick_num,
|
|
//only poll the physics if there is a before and after mouse event
|
|
instruction:PhysicsInstruction::StrafeTick
|
|
});
|
|
}
|
|
|
|
//state mutated on collision:
|
|
//Accelerator
|
|
//stair step-up
|
|
|
|
//state mutated on instruction
|
|
//change fly acceleration (fly_sustain)
|
|
//change fly velocity
|
|
|
|
//generic event emmiters
|
|
//PlatformStandTime
|
|
//walk/swim/air/ladder sounds
|
|
//VState?
|
|
|
|
//falling under the map
|
|
// fn next_respawn_instruction(&self) -> Option<TimedInstruction<PhysicsInstruction>> {
|
|
// if self.body.position<self.world.min_y {
|
|
// return Some(TimedInstruction{
|
|
// time:self.time,
|
|
// instruction:PhysicsInstruction::Trigger(None)
|
|
// });
|
|
// }
|
|
// }
|
|
|
|
// fn next_water_instruction(&self) -> Option<TimedInstruction<PhysicsInstruction>> {
|
|
// return Some(TimedInstruction{
|
|
// time:(self.time*self.strafe_tick_num/self.strafe_tick_den+1)*self.strafe_tick_den/self.strafe_tick_num,
|
|
// //only poll the physics if there is a before and after mouse event
|
|
// instruction:PhysicsInstruction::Water
|
|
// });
|
|
// }
|
|
|
|
fn refresh_walk_target(&mut self){
|
|
//calculate acceleration yada yada
|
|
if self.grounded{
|
|
let mut v=self.walk.target_velocity;
|
|
self.contact_constrain_velocity(&mut v);
|
|
let mut target_diff=v-self.body.velocity;
|
|
target_diff.y=0f32;
|
|
if target_diff==glam::Vec3::ZERO{
|
|
let mut a=glam::Vec3::ZERO;
|
|
self.contact_constrain_acceleration(&mut a);
|
|
self.body.acceleration=a;
|
|
self.walk.state=WalkEnum::Reached;
|
|
}else{
|
|
let accel=self.walk_accel.min(self.gravity.length()*self.friction);
|
|
let time_delta=target_diff.length()/accel;
|
|
let mut a=target_diff/time_delta;
|
|
self.contact_constrain_acceleration(&mut a);
|
|
self.body.acceleration=a;
|
|
self.walk.target_time=self.body.time+((time_delta as f64)*1_000_000_000f64) as TIME;
|
|
self.walk.state=WalkEnum::Transient;
|
|
}
|
|
}else{
|
|
self.walk.state=WalkEnum::Reached;//there is no walk target while not grounded
|
|
}
|
|
}
|
|
fn next_walk_instruction(&self) -> Option<TimedInstruction<PhysicsInstruction>> {
|
|
//check if you have a valid walk state and create an instruction
|
|
if self.grounded{
|
|
match self.walk.state{
|
|
WalkEnum::Transient=>Some(TimedInstruction{
|
|
time:self.walk.target_time,
|
|
instruction:PhysicsInstruction::ReachWalkTargetVelocity
|
|
}),
|
|
WalkEnum::Reached=>None,
|
|
}
|
|
}else{
|
|
return None;
|
|
}
|
|
}
|
|
fn mesh(&self) -> TreyMesh {
|
|
let mut aabb=Aabb::new();
|
|
for vertex in Aabb::unit_vertices(){
|
|
aabb.grow(self.body.position+self.hitbox_halfsize*vertex);
|
|
}
|
|
aabb
|
|
}
|
|
fn predict_collision_end(&self,time:TIME,time_limit:TIME,collision_data:&RelativeCollision) -> Option<TimedInstruction<PhysicsInstruction>> {
|
|
//must treat cancollide false objects differently: you may not exit through the same face you entered.
|
|
//RelativeCollsion must reference the full model instead of a particular face
|
|
//this is Ctrl+C Ctrl+V of predict_collision_start but with v=-v before the calc and t=-t after the calc
|
|
//find best t
|
|
let mut best_time=time_limit;
|
|
let mut exit_face:Option<TreyMeshFace>=None;
|
|
let mesh0=self.mesh();
|
|
let mesh1=self.models.get(collision_data.model as usize).unwrap().mesh();
|
|
let (v,a)=(-self.body.velocity,self.body.acceleration);
|
|
//collect x
|
|
match collision_data.face {
|
|
AabbFace::Top|AabbFace::Back|AabbFace::Bottom|AabbFace::Front=>{
|
|
for t in zeroes2(mesh0.max.x-mesh1.min.x,v.x,0.5*a.x) {
|
|
//negative t = back in time
|
|
//must be moving towards surface to collide
|
|
//must beat the current soonest collision time
|
|
//must be moving towards surface
|
|
let t_time=self.body.time+((-t as f64)*1_000_000_000f64) as TIME;
|
|
if time<=t_time&&t_time<best_time&&0f32<v.x+a.x*-t{
|
|
//collect valid t
|
|
best_time=t_time;
|
|
exit_face=Some(TreyMeshFace::Left);
|
|
break;
|
|
}
|
|
}
|
|
for t in zeroes2(mesh0.min.x-mesh1.max.x,v.x,0.5*a.x) {
|
|
//negative t = back in time
|
|
//must be moving towards surface to collide
|
|
//must beat the current soonest collision time
|
|
//must be moving towards surface
|
|
let t_time=self.body.time+((-t as f64)*1_000_000_000f64) as TIME;
|
|
if time<=t_time&&t_time<best_time&&v.x+a.x*-t<0f32{
|
|
//collect valid t
|
|
best_time=t_time;
|
|
exit_face=Some(TreyMeshFace::Right);
|
|
break;
|
|
}
|
|
}
|
|
},
|
|
AabbFace::Left=>{
|
|
//generate event if v.x<0||a.x<0
|
|
if -v.x<0f32{
|
|
best_time=time;
|
|
exit_face=Some(TreyMeshFace::Left);
|
|
}
|
|
},
|
|
AabbFace::Right=>{
|
|
//generate event if 0<v.x||0<a.x
|
|
if 0f32<(-v.x){
|
|
best_time=time;
|
|
exit_face=Some(TreyMeshFace::Right);
|
|
}
|
|
},
|
|
}
|
|
//collect y
|
|
match collision_data.face {
|
|
AabbFace::Left|AabbFace::Back|AabbFace::Right|AabbFace::Front=>{
|
|
for t in zeroes2(mesh0.max.y-mesh1.min.y,v.y,0.5*a.y) {
|
|
//negative t = back in time
|
|
//must be moving towards surface to collide
|
|
//must beat the current soonest collision time
|
|
//must be moving towards surface
|
|
let t_time=self.body.time+((-t as f64)*1_000_000_000f64) as TIME;
|
|
if time<=t_time&&t_time<best_time&&0f32<v.y+a.y*-t{
|
|
//collect valid t
|
|
best_time=t_time;
|
|
exit_face=Some(TreyMeshFace::Bottom);
|
|
break;
|
|
}
|
|
}
|
|
for t in zeroes2(mesh0.min.y-mesh1.max.y,v.y,0.5*a.y) {
|
|
//negative t = back in time
|
|
//must be moving towards surface to collide
|
|
//must beat the current soonest collision time
|
|
//must be moving towards surface
|
|
let t_time=self.body.time+((-t as f64)*1_000_000_000f64) as TIME;
|
|
if time<=t_time&&t_time<best_time&&v.y+a.y*-t<0f32{
|
|
//collect valid t
|
|
best_time=t_time;
|
|
exit_face=Some(TreyMeshFace::Top);
|
|
break;
|
|
}
|
|
}
|
|
},
|
|
AabbFace::Bottom=>{
|
|
//generate event if v.y<0||a.y<0
|
|
if -v.y<0f32{
|
|
best_time=time;
|
|
exit_face=Some(TreyMeshFace::Bottom);
|
|
}
|
|
},
|
|
AabbFace::Top=>{
|
|
//generate event if 0<v.y||0<a.y
|
|
if 0f32<(-v.y){
|
|
best_time=time;
|
|
exit_face=Some(TreyMeshFace::Top);
|
|
}
|
|
},
|
|
}
|
|
//collect z
|
|
match collision_data.face {
|
|
AabbFace::Left|AabbFace::Bottom|AabbFace::Right|AabbFace::Top=>{
|
|
for t in zeroes2(mesh0.max.z-mesh1.min.z,v.z,0.5*a.z) {
|
|
//negative t = back in time
|
|
//must be moving towards surface to collide
|
|
//must beat the current soonest collision time
|
|
//must be moving towards surface
|
|
let t_time=self.body.time+((-t as f64)*1_000_000_000f64) as TIME;
|
|
if time<=t_time&&t_time<best_time&&0f32<v.z+a.z*-t{
|
|
//collect valid t
|
|
best_time=t_time;
|
|
exit_face=Some(TreyMeshFace::Front);
|
|
break;
|
|
}
|
|
}
|
|
for t in zeroes2(mesh0.min.z-mesh1.max.z,v.z,0.5*a.z) {
|
|
//negative t = back in time
|
|
//must be moving towards surface to collide
|
|
//must beat the current soonest collision time
|
|
//must be moving towards surface
|
|
let t_time=self.body.time+((-t as f64)*1_000_000_000f64) as TIME;
|
|
if time<=t_time&&t_time<best_time&&v.z+a.z*-t<0f32{
|
|
//collect valid t
|
|
best_time=t_time;
|
|
exit_face=Some(TreyMeshFace::Back);
|
|
break;
|
|
}
|
|
}
|
|
},
|
|
AabbFace::Front=>{
|
|
//generate event if v.z<0||a.z<0
|
|
if -v.z<0f32{
|
|
best_time=time;
|
|
exit_face=Some(TreyMeshFace::Front);
|
|
}
|
|
},
|
|
AabbFace::Back=>{
|
|
//generate event if 0<v.z||0<a.z
|
|
if 0f32<(-v.z){
|
|
best_time=time;
|
|
exit_face=Some(TreyMeshFace::Back);
|
|
}
|
|
},
|
|
}
|
|
//generate instruction
|
|
if let Some(face) = exit_face{
|
|
return Some(TimedInstruction {
|
|
time: best_time,
|
|
instruction: PhysicsInstruction::CollisionEnd(collision_data.clone())
|
|
})
|
|
}
|
|
None
|
|
}
|
|
fn predict_collision_start(&self,time:TIME,time_limit:TIME,model_id:u32) -> Option<TimedInstruction<PhysicsInstruction>> {
|
|
//find best t
|
|
let mut best_time=time_limit;
|
|
let mut best_face:Option<TreyMeshFace>=None;
|
|
let mesh0=self.mesh();
|
|
let mesh1=self.models.get(model_id as usize).unwrap().mesh();
|
|
let (p,v,a)=(self.body.position,self.body.velocity,self.body.acceleration);
|
|
//collect x
|
|
for t in zeroes2(mesh0.max.x-mesh1.min.x,v.x,0.5*a.x) {
|
|
//must collide now or in the future
|
|
//must beat the current soonest collision time
|
|
//must be moving towards surface
|
|
let t_time=self.body.time+((t as f64)*1_000_000_000f64) as TIME;
|
|
if time<=t_time&&t_time<best_time&&0f32<v.x+a.x*t{
|
|
let dp=self.body.extrapolated_position(t_time)-p;
|
|
//faces must be overlapping
|
|
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
|
|
//collect valid t
|
|
best_time=t_time;
|
|
best_face=Some(TreyMeshFace::Left);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
for t in zeroes2(mesh0.min.x-mesh1.max.x,v.x,0.5*a.x) {
|
|
//must collide now or in the future
|
|
//must beat the current soonest collision time
|
|
//must be moving towards surface
|
|
let t_time=self.body.time+((t as f64)*1_000_000_000f64) as TIME;
|
|
if time<=t_time&&t_time<best_time&&v.x+a.x*t<0f32{
|
|
let dp=self.body.extrapolated_position(t_time)-p;
|
|
//faces must be overlapping
|
|
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
|
|
//collect valid t
|
|
best_time=t_time;
|
|
best_face=Some(TreyMeshFace::Right);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
//collect y
|
|
for t in zeroes2(mesh0.max.y-mesh1.min.y,v.y,0.5*a.y) {
|
|
//must collide now or in the future
|
|
//must beat the current soonest collision time
|
|
//must be moving towards surface
|
|
let t_time=self.body.time+((t as f64)*1_000_000_000f64) as TIME;
|
|
if time<=t_time&&t_time<best_time&&0f32<v.y+a.y*t{
|
|
let dp=self.body.extrapolated_position(t_time)-p;
|
|
//faces must be overlapping
|
|
if mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
|
|
//collect valid t
|
|
best_time=t_time;
|
|
best_face=Some(TreyMeshFace::Bottom);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
for t in zeroes2(mesh0.min.y-mesh1.max.y,v.y,0.5*a.y) {
|
|
//must collide now or in the future
|
|
//must beat the current soonest collision time
|
|
//must be moving towards surface
|
|
let t_time=self.body.time+((t as f64)*1_000_000_000f64) as TIME;
|
|
if time<=t_time&&t_time<best_time&&v.y+a.y*t<0f32{
|
|
let dp=self.body.extrapolated_position(t_time)-p;
|
|
//faces must be overlapping
|
|
if mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
|
|
//collect valid t
|
|
best_time=t_time;
|
|
best_face=Some(TreyMeshFace::Top);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
//collect z
|
|
for t in zeroes2(mesh0.max.z-mesh1.min.z,v.z,0.5*a.z) {
|
|
//must collide now or in the future
|
|
//must beat the current soonest collision time
|
|
//must be moving towards surface
|
|
let t_time=self.body.time+((t as f64)*1_000_000_000f64) as TIME;
|
|
if time<=t_time&&t_time<best_time&&0f32<v.z+a.z*t{
|
|
let dp=self.body.extrapolated_position(t_time)-p;
|
|
//faces must be overlapping
|
|
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x {
|
|
//collect valid t
|
|
best_time=t_time;
|
|
best_face=Some(TreyMeshFace::Front);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
for t in zeroes2(mesh0.min.z-mesh1.max.z,v.z,0.5*a.z) {
|
|
//must collide now or in the future
|
|
//must beat the current soonest collision time
|
|
//must be moving towards surface
|
|
let t_time=self.body.time+((t as f64)*1_000_000_000f64) as TIME;
|
|
if time<=t_time&&t_time<best_time&&v.z+a.z*t<0f32{
|
|
let dp=self.body.extrapolated_position(t_time)-p;
|
|
//faces must be overlapping
|
|
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x {
|
|
//collect valid t
|
|
best_time=t_time;
|
|
best_face=Some(TreyMeshFace::Back);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
//generate instruction
|
|
if let Some(face) = best_face{
|
|
return Some(TimedInstruction {
|
|
time: best_time,
|
|
instruction: PhysicsInstruction::CollisionStart(RelativeCollision {
|
|
face,
|
|
model: model_id
|
|
})
|
|
})
|
|
}
|
|
None
|
|
}
|
|
}
|
|
|
|
impl crate::instruction::InstructionEmitter<PhysicsInstruction> for PhysicsState {
|
|
//this little next instruction function can cache its return value and invalidate the cached value by watching the State.
|
|
fn next_instruction(&self,time_limit:TIME) -> Option<TimedInstruction<PhysicsInstruction>> {
|
|
//JUST POLLING!!! NO MUTATION
|
|
let mut collector = crate::instruction::InstructionCollector::new(time_limit);
|
|
//check for collision stop instructions with curent contacts
|
|
for collision_data in self.contacts.iter() {
|
|
collector.collect(self.predict_collision_end(self.time,time_limit,collision_data));
|
|
}
|
|
//check for collision start instructions (against every part in the game with no optimization!!)
|
|
for i in 0..self.models.len() {
|
|
collector.collect(self.predict_collision_start(self.time,time_limit,i as u32));
|
|
}
|
|
if self.grounded {
|
|
//walk maintenance
|
|
collector.collect(self.next_walk_instruction());
|
|
}else{
|
|
//check to see when the next strafe tick is
|
|
collector.collect(self.next_strafe_instruction());
|
|
}
|
|
collector.instruction()
|
|
}
|
|
}
|
|
|
|
impl crate::instruction::InstructionConsumer<PhysicsInstruction> for PhysicsState {
|
|
fn process_instruction(&mut self, ins:TimedInstruction<PhysicsInstruction>) {
|
|
match &ins.instruction {
|
|
PhysicsInstruction::StrafeTick => (),
|
|
PhysicsInstruction::Input(InputInstruction::MoveMouse(_)) => (),
|
|
_=>println!("{:?}",ins),
|
|
}
|
|
//selectively update body
|
|
match &ins.instruction {
|
|
PhysicsInstruction::Input(InputInstruction::MoveMouse(_)) => (),//dodge time for mouse movement
|
|
PhysicsInstruction::Input(_)
|
|
|PhysicsInstruction::SetSpawnPosition(_)
|
|
|PhysicsInstruction::ReachWalkTargetVelocity
|
|
|PhysicsInstruction::CollisionStart(_)
|
|
|PhysicsInstruction::CollisionEnd(_)
|
|
|PhysicsInstruction::StrafeTick => self.advance_time(ins.time),
|
|
}
|
|
match ins.instruction {
|
|
PhysicsInstruction::SetSpawnPosition(position)=>{
|
|
self.spawn_point=position;
|
|
}
|
|
PhysicsInstruction::CollisionStart(c) => {
|
|
//check ground
|
|
match &c.face {
|
|
AabbFace::Top => {
|
|
//ground
|
|
self.grounded=true;
|
|
},
|
|
_ => (),
|
|
}
|
|
self.contacts.insert(c);
|
|
//flatten v
|
|
let mut v=self.body.velocity;
|
|
self.contact_constrain_velocity(&mut v);
|
|
self.body.velocity=v;
|
|
if self.grounded&&self.controls&CONTROL_JUMP!=0{
|
|
self.jump();
|
|
}
|
|
self.refresh_walk_target();
|
|
},
|
|
PhysicsInstruction::CollisionEnd(c) => {
|
|
self.contacts.remove(&c);//remove contact before calling contact_constrain_acceleration
|
|
let mut a=self.gravity;
|
|
self.contact_constrain_acceleration(&mut a);
|
|
self.body.acceleration=a;
|
|
//check ground
|
|
match &c.face {
|
|
AabbFace::Top => {
|
|
self.grounded=false;
|
|
},
|
|
_ => (),
|
|
}
|
|
self.refresh_walk_target();
|
|
},
|
|
PhysicsInstruction::StrafeTick => {
|
|
let camera_mat=self.camera.simulate_move_rotation_y(self.mouse_interpolation.interpolated_position(self.time).x-self.mouse_interpolation.mouse0.x);
|
|
let control_dir=camera_mat*get_control_dir(self.controls);
|
|
let d=self.body.velocity.dot(control_dir);
|
|
if d<self.mv {
|
|
let mut v=self.body.velocity+(self.mv-d)*control_dir;
|
|
self.contact_constrain_velocity(&mut v);
|
|
self.body.velocity=v;
|
|
}
|
|
}
|
|
PhysicsInstruction::ReachWalkTargetVelocity => {
|
|
//precisely set velocity
|
|
let mut a=glam::Vec3::ZERO;
|
|
self.contact_constrain_acceleration(&mut a);
|
|
self.body.acceleration=a;
|
|
let mut v=self.walk.target_velocity;
|
|
self.contact_constrain_velocity(&mut v);
|
|
self.body.velocity=v;
|
|
self.walk.state=WalkEnum::Reached;
|
|
},
|
|
PhysicsInstruction::Input(input_instruction) => {
|
|
let mut refresh_walk_target=true;
|
|
let mut refresh_walk_target_velocity=true;
|
|
match input_instruction{
|
|
InputInstruction::MoveMouse(m) => {
|
|
self.camera.angles=self.camera.simulate_move_angles(self.mouse_interpolation.mouse1-self.mouse_interpolation.mouse0);
|
|
self.mouse_interpolation.move_mouse(self.time,m);
|
|
},
|
|
InputInstruction::MoveForward(s) => self.set_control(CONTROL_MOVEFORWARD,s),
|
|
InputInstruction::MoveLeft(s) => self.set_control(CONTROL_MOVELEFT,s),
|
|
InputInstruction::MoveBack(s) => self.set_control(CONTROL_MOVEBACK,s),
|
|
InputInstruction::MoveRight(s) => self.set_control(CONTROL_MOVERIGHT,s),
|
|
InputInstruction::MoveUp(s) => self.set_control(CONTROL_MOVEUP,s),
|
|
InputInstruction::MoveDown(s) => self.set_control(CONTROL_MOVEDOWN,s),
|
|
InputInstruction::Jump(s) => {
|
|
self.set_control(CONTROL_JUMP,s);
|
|
if self.grounded{
|
|
self.jump();
|
|
}
|
|
refresh_walk_target_velocity=false;
|
|
},
|
|
InputInstruction::Zoom(s) => {
|
|
self.set_control(CONTROL_ZOOM,s);
|
|
refresh_walk_target=false;
|
|
},
|
|
InputInstruction::Reset => {
|
|
//temp
|
|
self.body.position=self.spawn_point;
|
|
self.body.velocity=glam::Vec3::ZERO;
|
|
//manual clear //for c in self.contacts{process_instruction(CollisionEnd(c))}
|
|
self.contacts.clear();
|
|
self.body.acceleration=self.gravity;
|
|
self.walk.state=WalkEnum::Reached;
|
|
self.grounded=false;
|
|
refresh_walk_target=false;
|
|
},
|
|
InputInstruction::Idle => {refresh_walk_target=false;},//literally idle!
|
|
}
|
|
if refresh_walk_target{
|
|
//calculate walk target velocity
|
|
if refresh_walk_target_velocity{
|
|
let camera_mat=self.camera.simulate_move_rotation_y(self.mouse_interpolation.interpolated_position(self.time).x-self.mouse_interpolation.mouse0.x);
|
|
let control_dir=camera_mat*get_control_dir(self.controls);
|
|
self.walk.target_velocity=self.walkspeed*control_dir;
|
|
}
|
|
self.refresh_walk_target();
|
|
}
|
|
},
|
|
}
|
|
}
|
|
}
|