use crate::instruction::{InstructionEmitter,InstructionConsumer,TimedInstruction}; use crate::integer::{Time,Planar64,Planar64Vec3,Planar64Mat3,Angle32,Ratio64,Ratio64Vec2}; use crate::model_physics::{PhysicsMesh,TransformedMesh,MeshQuery}; #[derive(Debug)] pub enum PhysicsInstruction { CollisionStart(Collision), CollisionEnd(Collision), StrafeTick, ReachWalkTargetVelocity, // Water, // Spawn( // Option, // bool,//true = Trigger; false = teleport // bool,//true = Force // ) //InputInstructions conditionally activate RefreshWalkTarget (by doing what SetWalkTargetVelocity used to do and then flagging it) Input(PhysicsInputInstruction), } #[derive(Debug)] pub enum PhysicsInputInstruction { ReplaceMouse(MouseState,MouseState), SetNextMouse(MouseState), SetMoveRight(bool), SetMoveUp(bool), SetMoveBack(bool), SetMoveLeft(bool), SetMoveDown(bool), SetMoveForward(bool), SetJump(bool), SetZoom(bool), Reset, Idle, //Idle: there were no input events, but the simulation is safe to advance to this timestep //for interpolation / networking / playback reasons, most playback heads will always want //to be 1 instruction ahead to generate the next state for interpolation. } #[derive(Clone,Hash,Default)] pub struct Body{ pub position:Planar64Vec3,//I64 where 2^32 = 1 u pub velocity:Planar64Vec3,//I64 where 2^32 = 1 u/s pub acceleration:Planar64Vec3,//I64 where 2^32 = 1 u/s/s pub time:Time,//nanoseconds x xxxxD! } //hey dumbass just use a delta #[derive(Clone,Debug)] pub struct MouseState { pub pos: glam::IVec2, pub time:Time, } impl Default for MouseState{ fn default() -> Self { Self { time:Time::ZERO, pos:glam::IVec2::ZERO, } } } impl MouseState { pub fn lerp(&self,target:&MouseState,time:Time)->glam::IVec2 { let m0=self.pos.as_i64vec2(); let m1=target.pos.as_i64vec2(); //these are deltas let t1t=(target.time-time).nanos(); let tt0=(time-self.time).nanos(); let dt=(target.time-self.time).nanos(); ((m0*t1t+m1*tt0)/dt).as_ivec2() } } enum JumpDirection{ Exactly(Planar64Vec3), FromContactNormal, } enum WalkEnum{ Reached, Transient(WalkTarget), } struct WalkTarget{ velocity:Planar64Vec3, time:Time, } struct WalkState{ jump_direction:JumpDirection, contact:ContactCollision, state:WalkEnum, } impl WalkEnum{ //args going crazy //(walk_enum,body.acceleration)=with_target_velocity(); fn with_target_velocity(body:&Body,style:&StyleModifiers,velocity:Planar64Vec3,normal:&Planar64Vec3,speed:Planar64,normal_accel:Planar64)->(WalkEnum,Planar64Vec3){ let mut target_diff=velocity-body.velocity; //remove normal component target_diff-=normal.clone()*(normal.dot(target_diff)/normal.dot(normal.clone())); if target_diff==Planar64Vec3::ZERO{ (WalkEnum::Reached,Planar64Vec3::ZERO) }else{ //normal friction acceleration is clippedAcceleration.dot(normal)*friction let diff_len=target_diff.length(); let friction=if diff_len(Self,Planar64Vec3){ let (walk_enum,a)=WalkEnum::with_target_velocity(body,style,velocity,&Planar64Vec3::Y,style.walk_speed,-normal.dot(gravity)); (Self{ state:walk_enum, contact, jump_direction:JumpDirection::Exactly(Planar64Vec3::Y), },a) } fn ladder(body:&Body,style:&StyleModifiers,gravity:Planar64Vec3,velocity:Planar64Vec3,contact:ContactCollision,normal:&Planar64Vec3)->(Self,Planar64Vec3){ let (walk_enum,a)=WalkEnum::with_target_velocity(body,style,velocity,normal,style.ladder_speed,style.ladder_accel); (Self{ state:walk_enum, contact, jump_direction:JumpDirection::FromContactNormal, },a) } } struct Modes{ modes:Vec, mode_from_mode_id:std::collections::HashMap::, } impl Modes{ fn clear(&mut self){ self.modes.clear(); self.mode_from_mode_id.clear(); } fn get_mode(&self,mode_id:u32)->Option<&crate::model::ModeDescription>{ self.modes.get(*self.mode_from_mode_id.get(&mode_id)?) } fn insert(&mut self,temp_map_mode_id:u32,mode:crate::model::ModeDescription){ let mode_id=self.modes.len(); self.mode_from_mode_id.insert(temp_map_mode_id,mode_id); self.modes.push(mode); } } impl Default for Modes{ fn default() -> Self { Self{ modes:Vec::new(), mode_from_mode_id:std::collections::HashMap::new(), } } } #[derive(Default)] struct PhysicsModels{ meshes:Vec, models:Vec, //separate models into Contacting and Intersecting? //wrap model id with ContactingModelId and IntersectingModelId //attributes can be split into contacting and intersecting (this also saves a bit of memory) //can go even further and deduplicate General attributes separately, reconstructing it when queried attributes:Vec, model_id_from_wormhole_id:std::collections::HashMap::, } impl PhysicsModels{ fn clear(&mut self){ self.meshes.clear(); self.models.clear(); self.attributes.clear(); self.model_id_from_wormhole_id.clear(); } fn aabb_list(&self)->Vec{ self.models.iter().map(|model|{ let mut aabb=crate::aabb::Aabb::default(); for pos in self.meshes[model.mesh_id].verts(){ aabb.grow(model.transform.transform_point3(pos)); } aabb }).collect() } //TODO: "statically" verify the maps don't refer to any nonexistant data, if they do delete the references. //then I can make these getter functions unchecked. fn mesh(&self,model_id:usize)->TransformedMesh{ TransformedMesh::new( &self.meshes[self.models[model_id].mesh_id], &self.models[model_id].transform, &self.models[model_id].normal_transform, ) } fn model(&self,model_id:usize)->&PhysicsModel{ &self.models[model_id] } fn attr(&self,model_id:usize)->&PhysicsCollisionAttributes{ &self.attributes[self.models[model_id].attr_id] } fn get_wormhole_model(&self,wormhole_id:u32)->Option<&PhysicsModel>{ self.models.get(*self.model_id_from_wormhole_id.get(&wormhole_id)?) } fn push_mesh(&mut self,mesh:PhysicsMesh){ self.meshes.push(mesh); } fn push_model(&mut self,model:PhysicsModel)->usize{ let model_id=self.models.len(); self.models.push(model); model_id } fn push_attr(&mut self,attr:PhysicsCollisionAttributes)->usize{ let attr_id=self.attributes.len(); self.attributes.push(attr); attr_id } } #[derive(Clone)] pub struct PhysicsCamera{ //punch: Planar64Vec3, //punch_velocity: Planar64Vec3, sensitivity:Ratio64Vec2,//dots to Angle32 ratios mouse:MouseState,//last seen absolute mouse pos clamped_mouse_pos:glam::IVec2,//angles are calculated from this cumulative value angle_pitch_lower_limit:Angle32, angle_pitch_upper_limit:Angle32, //angle limits could be an enum + struct that defines whether it's limited and selects clamp or wrap depending // enum AngleLimit{ // Unlimited, // Limited{lower:Angle32,upper:Angle32}, // } //pitch_limit:AngleLimit, //yaw_limit:AngleLimit, } impl PhysicsCamera { pub fn move_mouse(&mut self,mouse_pos:glam::IVec2){ let mut unclamped_mouse_pos=self.clamped_mouse_pos+mouse_pos-self.mouse.pos; unclamped_mouse_pos.y=unclamped_mouse_pos.y.clamp( self.sensitivity.y.rhs_div_int(self.angle_pitch_lower_limit.get() as i64) as i32, self.sensitivity.y.rhs_div_int(self.angle_pitch_upper_limit.get() as i64) as i32, ); self.clamped_mouse_pos=unclamped_mouse_pos; } pub fn simulate_move_angles(&self,mouse_pos:glam::IVec2)->glam::Vec2 { let a=-self.sensitivity.mul_int((mouse_pos-self.mouse.pos+self.clamped_mouse_pos).as_i64vec2()); let ax=Angle32::wrap_from_i64(a.x); let ay=Angle32::clamp_from_i64(a.y) //clamp to actual vertical cam limit .clamp(self.angle_pitch_lower_limit,self.angle_pitch_upper_limit); return glam::vec2(ax.into(),ay.into()); } fn simulate_move_rotation(&self,mouse_pos:glam::IVec2)->Planar64Mat3{ let a=-self.sensitivity.mul_int((mouse_pos-self.mouse.pos+self.clamped_mouse_pos).as_i64vec2()); let ax=Angle32::wrap_from_i64(a.x); let ay=Angle32::clamp_from_i64(a.y) //clamp to actual vertical cam limit .clamp(self.angle_pitch_lower_limit,self.angle_pitch_upper_limit); Planar64Mat3::from_rotation_yx(ax,ay) } fn simulate_move_rotation_y(&self,mouse_pos_x:i32)->Planar64Mat3{ let ax=-self.sensitivity.x.mul_int((mouse_pos_x-self.mouse.pos.x+self.clamped_mouse_pos.x) as i64); Planar64Mat3::from_rotation_y(Angle32::wrap_from_i64(ax)) } } impl std::default::Default for PhysicsCamera{ fn default()->Self{ Self{ sensitivity:Ratio64Vec2::ONE*200_000, mouse:MouseState::default(),//t=0 does not cause divide by zero because it's immediately replaced clamped_mouse_pos:glam::IVec2::ZERO, angle_pitch_lower_limit:-Angle32::FRAC_PI_2, angle_pitch_upper_limit:Angle32::FRAC_PI_2, } } } pub struct GameMechanicsState{ stage_id:u32, jump_counts:std::collections::HashMap,//model_id -> jump count next_ordered_checkpoint_id:u32,//which OrderedCheckpoint model_id you must pass next (if 0 you haven't passed OrderedCheckpoint0) unordered_checkpoints:std::collections::HashSet,//hashset of UnorderedCheckpoint model ids } impl std::default::Default for GameMechanicsState{ fn default()->Self{ Self{ stage_id:0, next_ordered_checkpoint_id:0, unordered_checkpoints:std::collections::HashSet::new(), jump_counts:std::collections::HashMap::new(), } } } struct WorldState{} enum JumpCalculation{ Capped,//roblox Energy,//new Linear,//source } enum JumpImpulse{ FromTime(Time),//jump time is invariant across mass and gravity changes FromHeight(Planar64),//jump height is invariant across mass and gravity changes FromDeltaV(Planar64),//jump velocity is invariant across mass and gravity changes FromEnergy(Planar64),// :) } //Jumping acts on dot(walks_state.normal,body.velocity) //Capped means it increases the dot to the cap //Energy means it adds energy //Linear means it linearly adds on enum EnableStrafe{ Always, MaskAny(u32),//hsw, shsw MaskAll(u32), //Function(Boxbool>), } struct StrafeSettings{ enable:EnableStrafe, air_accel_limit:Option, tick_rate:Ratio64, } struct StyleModifiers{ controls_used:u32,//controls which are allowed to pass into gameplay controls_mask:u32,//controls which are masked from control state (e.g. jump in scroll style) strafe:Option, jump_impulse:JumpImpulse, jump_calculation:JumpCalculation, static_friction:Planar64, kinetic_friction:Planar64, walk_speed:Planar64, walk_accel:Planar64, ladder_speed:Planar64, ladder_accel:Planar64, ladder_dot:Planar64, swim_speed:Planar64, mass:Planar64, mv:Planar64, surf_slope:Option, rocket_force:Option, gravity:Planar64Vec3, hitbox_halfsize:Planar64Vec3, camera_offset:Planar64Vec3, } impl std::default::Default for StyleModifiers{ fn default()->Self{ Self::roblox_bhop() } } impl StyleModifiers{ const CONTROL_MOVEFORWARD:u32=0b00000001; const CONTROL_MOVEBACK:u32=0b00000010; const CONTROL_MOVERIGHT:u32=0b00000100; const CONTROL_MOVELEFT:u32=0b00001000; const CONTROL_MOVEUP:u32=0b00010000; const CONTROL_MOVEDOWN:u32=0b00100000; const CONTROL_JUMP:u32=0b01000000; const CONTROL_ZOOM:u32=0b10000000; const RIGHT_DIR:Planar64Vec3=Planar64Vec3::X; const UP_DIR:Planar64Vec3=Planar64Vec3::Y; const FORWARD_DIR:Planar64Vec3=Planar64Vec3::NEG_Z; fn new()->Self{ Self{ controls_used:!0, controls_mask:!0,//&!(Self::CONTROL_MOVEUP|Self::CONTROL_MOVEDOWN), strafe:Some(StrafeSettings{ enable:EnableStrafe::Always, air_accel_limit:None, tick_rate:Ratio64::new(128,Time::ONE_SECOND.nanos() as u64).unwrap(), }), jump_impulse:JumpImpulse::FromEnergy(Planar64::int(512)), jump_calculation:JumpCalculation::Energy, gravity:Planar64Vec3::int(0,-80,0), static_friction:Planar64::int(2), kinetic_friction:Planar64::int(3),//unrealistic: kinetic friction is typically lower than static mass:Planar64::int(1), mv:Planar64::int(2), rocket_force:None, walk_speed:Planar64::int(16), walk_accel:Planar64::int(80), ladder_speed:Planar64::int(16), ladder_accel:Planar64::int(160), ladder_dot:(Planar64::int(1)/2).sqrt(), swim_speed:Planar64::int(12), surf_slope:Some(Planar64::raw(7)/8), hitbox_halfsize:Planar64Vec3::int(2,5,2)/2, camera_offset:Planar64Vec3::int(0,2,0),//4.5-2.5=2 } } fn roblox_bhop()->Self{ Self{ controls_used:!0, controls_mask:!0,//&!(Self::CONTROL_MOVEUP|Self::CONTROL_MOVEDOWN), strafe:Some(StrafeSettings{ enable:EnableStrafe::Always, air_accel_limit:None, tick_rate:Ratio64::new(100,Time::ONE_SECOND.nanos() as u64).unwrap(), }), jump_impulse:JumpImpulse::FromTime(Time::from_micros(715_588)), jump_calculation:JumpCalculation::Capped, gravity:Planar64Vec3::int(0,-100,0), static_friction:Planar64::int(2), kinetic_friction:Planar64::int(3),//unrealistic: kinetic friction is typically lower than static mass:Planar64::int(1), mv:Planar64::int(27)/10, rocket_force:None, walk_speed:Planar64::int(18), walk_accel:Planar64::int(90), ladder_speed:Planar64::int(18), ladder_accel:Planar64::int(180), ladder_dot:(Planar64::int(1)/2).sqrt(), swim_speed:Planar64::int(12), surf_slope:Some(Planar64::raw(3787805118)),// normal.y=0.75 hitbox_halfsize:Planar64Vec3::int(2,5,2)/2, camera_offset:Planar64Vec3::int(0,2,0),//4.5-2.5=2 } } fn roblox_surf()->Self{ Self{ controls_used:!0, controls_mask:!0,//&!(Self::CONTROL_MOVEUP|Self::CONTROL_MOVEDOWN), strafe:Some(StrafeSettings{ enable:EnableStrafe::Always, air_accel_limit:None, tick_rate:Ratio64::new(100,Time::ONE_SECOND.nanos() as u64).unwrap(), }), jump_impulse:JumpImpulse::FromTime(Time::from_micros(715_588)), jump_calculation:JumpCalculation::Capped, gravity:Planar64Vec3::int(0,-50,0), static_friction:Planar64::int(2), kinetic_friction:Planar64::int(3),//unrealistic: kinetic friction is typically lower than static mass:Planar64::int(1), mv:Planar64::int(27)/10, rocket_force:None, walk_speed:Planar64::int(18), walk_accel:Planar64::int(90), ladder_speed:Planar64::int(18), ladder_accel:Planar64::int(180), ladder_dot:(Planar64::int(1)/2).sqrt(), swim_speed:Planar64::int(12), surf_slope:Some(Planar64::raw(3787805118)),// normal.y=0.75 hitbox_halfsize:Planar64Vec3::int(2,5,2)/2, camera_offset:Planar64Vec3::int(0,2,0),//4.5-2.5=2 } } fn source_bhop()->Self{ Self{ controls_used:!0, controls_mask:!0,//&!(Self::CONTROL_MOVEUP|Self::CONTROL_MOVEDOWN), strafe:Some(StrafeSettings{ enable:EnableStrafe::Always, air_accel_limit:Some(Planar64::raw(150<<28)*66), tick_rate:Ratio64::new(100,Time::ONE_SECOND.nanos() as u64).unwrap(), }), jump_impulse:JumpImpulse::FromHeight(Planar64::raw(52<<28)), jump_calculation:JumpCalculation::Linear, gravity:Planar64Vec3::raw(0,-800<<28,0), static_friction:Planar64::int(2),//? kinetic_friction:Planar64::int(3),//? mass:Planar64::int(1), mv:Planar64::raw(30<<28), rocket_force:None, walk_speed:Planar64::int(18),//? walk_accel:Planar64::int(90),//? ladder_speed:Planar64::int(18),//? ladder_accel:Planar64::int(180),//? ladder_dot:(Planar64::int(1)/2).sqrt(),//? swim_speed:Planar64::int(12),//? surf_slope:Some(Planar64::raw(3787805118)),// normal.y=0.75 hitbox_halfsize:Planar64Vec3::raw(33<<28,73<<28,33<<28)/2, camera_offset:Planar64Vec3::raw(0,(64<<28)-(73<<27),0), } } fn source_surf()->Self{ Self{ controls_used:!0, controls_mask:!0,//&!(Self::CONTROL_MOVEUP|Self::CONTROL_MOVEDOWN), strafe:Some(StrafeSettings{ enable:EnableStrafe::Always, air_accel_limit:Some(Planar64::raw(150<<28)*66), tick_rate:Ratio64::new(66,Time::ONE_SECOND.nanos() as u64).unwrap(), }), jump_impulse:JumpImpulse::FromHeight(Planar64::raw(52<<28)), jump_calculation:JumpCalculation::Linear, gravity:Planar64Vec3::raw(0,-800<<28,0), static_friction:Planar64::int(2),//? kinetic_friction:Planar64::int(3),//? mass:Planar64::int(1), mv:Planar64::raw(30<<28), rocket_force:None, walk_speed:Planar64::int(18),//? walk_accel:Planar64::int(90),//? ladder_speed:Planar64::int(18),//? ladder_accel:Planar64::int(180),//? ladder_dot:(Planar64::int(1)/2).sqrt(),//? swim_speed:Planar64::int(12),//? surf_slope:Some(Planar64::raw(3787805118)),// normal.y=0.75 hitbox_halfsize:Planar64Vec3::raw(33<<28,73<<28,33<<28)/2, camera_offset:Planar64Vec3::raw(0,(64<<28)-(73<<27),0), } } fn roblox_rocket()->Self{ Self{ controls_used:!0, controls_mask:!0, strafe:None, jump_impulse:JumpImpulse::FromTime(Time::from_micros(715_588)), jump_calculation:JumpCalculation::Capped, gravity:Planar64Vec3::int(0,-100,0), static_friction:Planar64::int(2), kinetic_friction:Planar64::int(3),//unrealistic: kinetic friction is typically lower than static mass:Planar64::int(1), mv:Planar64::int(27)/10, rocket_force:Some(Planar64::int(200)), walk_speed:Planar64::int(18), walk_accel:Planar64::int(90), ladder_speed:Planar64::int(18), ladder_accel:Planar64::int(180), ladder_dot:(Planar64::int(1)/2).sqrt(), swim_speed:Planar64::int(12), surf_slope:Some(Planar64::raw(3787805118)),// normal.y=0.75 hitbox_halfsize:Planar64Vec3::int(2,5,2)/2, camera_offset:Planar64Vec3::int(0,2,0),//4.5-2.5=2 } } fn get_control(&self,control:u32,controls:u32)->bool{ controls&self.controls_mask&control==control } fn allow_strafe(&self,controls:u32)->bool{ //disable strafing according to strafe settings match &self.strafe{ Some(StrafeSettings{enable:EnableStrafe::Always,air_accel_limit:_,tick_rate:_})=>true, &Some(StrafeSettings{enable:EnableStrafe::MaskAny(mask),air_accel_limit:_,tick_rate:_})=>mask&controls!=0, &Some(StrafeSettings{enable:EnableStrafe::MaskAll(mask),air_accel_limit:_,tick_rate:_})=>mask&controls==mask, None=>false, } } fn get_control_dir(&self,controls:u32)->Planar64Vec3{ //don't get fancy just do it let mut control_dir:Planar64Vec3 = Planar64Vec3::ZERO; //Apply mask after held check so you can require non-allowed keys to be held for some reason let controls=controls&self.controls_mask; if controls & Self::CONTROL_MOVEFORWARD == Self::CONTROL_MOVEFORWARD { control_dir+=Self::FORWARD_DIR; } if controls & Self::CONTROL_MOVEBACK == Self::CONTROL_MOVEBACK { control_dir-=Self::FORWARD_DIR; } if controls & Self::CONTROL_MOVELEFT == Self::CONTROL_MOVELEFT { control_dir-=Self::RIGHT_DIR; } if controls & Self::CONTROL_MOVERIGHT == Self::CONTROL_MOVERIGHT { control_dir+=Self::RIGHT_DIR; } if controls & Self::CONTROL_MOVEUP == Self::CONTROL_MOVEUP { control_dir+=Self::UP_DIR; } if controls & Self::CONTROL_MOVEDOWN == Self::CONTROL_MOVEDOWN { control_dir-=Self::UP_DIR; } return control_dir } //fn get_jump_time(&self)->Planar64 //fn get_jump_height(&self)->Planar64 //fn get_jump_energy(&self)->Planar64 fn get_jump_deltav(&self)->Planar64{ match &self.jump_impulse{ &JumpImpulse::FromTime(time)=>self.gravity.length()*(time/2), &JumpImpulse::FromHeight(height)=>(self.gravity.length()*height*2).sqrt(), &JumpImpulse::FromDeltaV(deltav)=>deltav, &JumpImpulse::FromEnergy(energy)=>(energy*2/self.mass).sqrt(), } } fn get_walk_target_velocity(&self,camera:&PhysicsCamera,controls:u32,next_mouse:&MouseState,time:Time,normal:&Planar64Vec3)->Planar64Vec3{ let mut control_dir=self.get_control_dir(controls); if control_dir==Planar64Vec3::ZERO{ return control_dir; } let camera_mat=camera.simulate_move_rotation_y(camera.mouse.lerp(&next_mouse,time).x); control_dir=camera_mat*control_dir; let n=normal.length(); let m=control_dir.length(); let d=normal.dot(control_dir)/m; if dPlanar64Vec3{ let mut control_dir=self.get_control_dir(controls); if control_dir==Planar64Vec3::ZERO{ return control_dir; } let camera_mat=camera.simulate_move_rotation(camera.mouse.lerp(&next_mouse,time)); control_dir=camera_mat*control_dir; let n=normal.length(); let m=control_dir.length(); let mut d=normal.dot(control_dir)/m; if d< -self.ladder_dot*n{ control_dir=Planar64Vec3::Y*m; d=normal.y(); }else if self.ladder_dot*nPlanar64Vec3{ let camera_mat=camera.simulate_move_rotation(camera.mouse.lerp(&next_mouse,time)); camera_mat*self.get_control_dir(controls) } } enum MoveState{ Air, Walk(WalkState), Water, Ladder(WalkState), } pub struct PhysicsState{ time:Time, body:Body, world:WorldState,//currently there is only one state the world can be in game:GameMechanicsState, style:StyleModifiers, touching:TouchingState, //camera must exist in state because wormholes modify the camera, also camera punch camera:PhysicsCamera, pub next_mouse:MouseState,//Where is the mouse headed next controls:u32, move_state:MoveState, models:PhysicsModels, bvh:crate::bvh::BvhNode, modes:Modes, //the spawn point is where you spawn when you load into the map. //This is not the same as Reset which teleports you to Spawn0 spawn_point:Planar64Vec3, } #[derive(Clone,Default)] pub struct PhysicsOutputState{ body:Body, camera:PhysicsCamera, camera_offset:Planar64Vec3, } impl PhysicsOutputState{ pub fn extrapolate(&self,mouse_pos:glam::IVec2,time:Time)->(glam::Vec3,glam::Vec2){ ((self.body.extrapolated_position(time)+self.camera_offset).into(),self.camera.simulate_move_angles(mouse_pos)) } } #[derive(Clone,Hash,Eq,PartialEq)] enum PhysicsCollisionAttributes{ Contact{//track whether you are contacting the object contacting:crate::model::ContactingAttributes, general:crate::model::GameMechanicAttributes, }, Intersect{//track whether you are intersecting the object intersecting:crate::model::IntersectingAttributes, general:crate::model::GameMechanicAttributes, }, } struct NonPhysicsError; impl TryFrom<&crate::model::CollisionAttributes> for PhysicsCollisionAttributes{ type Error=NonPhysicsError; fn try_from(value:&crate::model::CollisionAttributes)->Result{ match value{ crate::model::CollisionAttributes::Decoration=>Err(NonPhysicsError), crate::model::CollisionAttributes::Contact{contacting,general}=>Ok(Self::Contact{contacting:contacting.clone(),general:general.clone()}), crate::model::CollisionAttributes::Intersect{intersecting,general}=>Ok(Self::Intersect{intersecting:intersecting.clone(),general:general.clone()}), } } } pub struct PhysicsModel{ //A model is a thing that has a hitbox. can be represented by a list of TreyMesh-es //in this iteration, all it needs is extents. mesh_id:usize, attr_id:usize, transform:crate::integer::Planar64Affine3, normal_transform:crate::integer::Planar64Mat3, } impl PhysicsModel{ pub fn new(mesh_id:usize,attr_id:usize,transform:crate::integer::Planar64Affine3)->Self{ let normal_transform=transform.matrix3.inverse().transpose(); Self{ mesh_id, attr_id, transform, normal_transform, } } } #[derive(Debug,Clone,Eq,Hash,PartialEq)] struct ContactCollision{ face_id:crate::model_physics::MinkowskiFace, model_id:usize,//using id to avoid lifetimes } #[derive(Debug,Clone,Eq,Hash,PartialEq)] struct IntersectCollision{ model_id:usize, } #[derive(Debug,Clone,Eq,Hash,PartialEq)] enum Collision{ Contact(ContactCollision), Intersect(IntersectCollision), } impl Collision{ fn model_id(&self)->usize{ match self{ &Collision::Contact(ContactCollision{model_id,face_id:_}) |&Collision::Intersect(IntersectCollision{model_id})=>model_id, } } fn face_id(&self)->Option{ match self{ &Collision::Contact(ContactCollision{model_id:_,face_id})=>Some(face_id), &Collision::Intersect(IntersectCollision{model_id:_})=>None, } } } #[derive(Default)] struct TouchingState{ contacts:std::collections::HashSet::, intersects:std::collections::HashSet::, } impl TouchingState{ fn clear(&mut self){ self.contacts.clear(); self.intersects.clear(); } fn insert(&mut self,collision:Collision)->bool{ match collision{ Collision::Contact(collision)=>self.contacts.insert(collision), Collision::Intersect(collision)=>self.intersects.insert(collision), } } fn remove(&mut self,collision:&Collision)->bool{ match collision{ Collision::Contact(collision)=>self.contacts.remove(collision), Collision::Intersect(collision)=>self.intersects.remove(collision), } } fn base_acceleration(&self,models:&PhysicsModels,style:&StyleModifiers,camera:&PhysicsCamera,controls:u32,next_mouse:&MouseState,time:Time)->Planar64Vec3{ let mut a=style.gravity; if let Some(rocket_force)=style.rocket_force{ a+=style.get_propulsion_control_dir(camera,controls,next_mouse,time)*rocket_force; } //add accelerators for contact in &self.contacts{ match models.attr(contact.model_id){ PhysicsCollisionAttributes::Contact{contacting,general}=>{ match &general.accelerator{ Some(accelerator)=>a+=accelerator.acceleration, None=>(), } }, _=>panic!("impossible touching state"), } } for intersect in &self.intersects{ match models.attr(intersect.model_id){ PhysicsCollisionAttributes::Intersect{intersecting,general}=>{ match &general.accelerator{ Some(accelerator)=>a+=accelerator.acceleration, None=>(), } }, _=>panic!("impossible touching state"), } } //add water../? a } fn constrain_velocity(&self,models:&PhysicsModels,velocity:&mut Planar64Vec3){ //TODO: trey push solve for contact in &self.contacts{ let n=models.mesh(contact.model_id).face_nd(contact.face_id).0; let d=n.dot128(*velocity); if d<0{ *velocity-=n*Planar64::raw(((d<<32)/n.dot128(n)) as i64); } } } fn constrain_acceleration(&self,models:&PhysicsModels,acceleration:&mut Planar64Vec3){ //TODO: trey push solve for contact in &self.contacts{ let n=models.mesh(contact.model_id).face_nd(contact.face_id).0; let d=n.dot128(*acceleration); if d<0{ *acceleration-=n*Planar64::raw(((d<<32)/n.dot128(n)) as i64); } } } fn get_move_state(&self,body:&Body,models:&PhysicsModels,style:&StyleModifiers,camera:&PhysicsCamera,controls:u32,next_mouse:&MouseState,time:Time)->(MoveState,Planar64Vec3){ //check current move conditions and use heuristics to determine //which ladder to climb on, which ground to walk on, etc //collect move state affecting objects from contacts (accelerator,water,ladder,ground) let gravity=self.base_acceleration(models,style,camera,controls,next_mouse,time); let mut move_state=MoveState::Air; let mut a=gravity; for contact in &self.contacts{ match models.attr(contact.model_id){ PhysicsCollisionAttributes::Contact{contacting,general}=>{ let normal=models.mesh(contact.model_id).face_nd(contact.face_id).0; match &contacting.contact_behaviour{ Some(crate::model::ContactingBehaviour::Ladder(_))=>{ //ladder walkstate let mut target_velocity=style.get_ladder_target_velocity(camera,controls,next_mouse,time,&normal); self.constrain_velocity(models,&mut target_velocity); let (walk_state,mut acceleration)=WalkState::ladder(body,style,gravity,target_velocity,contact.clone(),&normal); move_state=MoveState::Ladder(walk_state); self.constrain_acceleration(models,&mut acceleration); a=acceleration; }, None=>if style.surf_slope.map_or(true,|s|normal.walkable(s,Planar64Vec3::Y)){ //check ground let mut target_velocity=style.get_walk_target_velocity(camera,controls,next_mouse,time,&normal); self.constrain_velocity(models,&mut target_velocity); let (walk_state,mut acceleration)=WalkState::ground(body,style,gravity,target_velocity,contact.clone(),&normal); move_state=MoveState::Walk(walk_state); self.constrain_acceleration(models,&mut acceleration); a=acceleration; }, _=>(), } }, _=>panic!("impossible touching state"), } } for intersect in &self.intersects{ // } self.constrain_acceleration(models,&mut a); (move_state,a) } fn predict_collision_end(&self,collector:&mut crate::instruction::InstructionCollector,models:&PhysicsModels,style_mesh:&TransformedMesh,body:&Body,time:Time){ let relative_body=VirtualBody::relative(&Body::default(),body).body(time); for contact in &self.contacts{ //detect face slide off let minkowski=crate::model_physics::MinkowskiMesh::minkowski_sum(&style_mesh,&models.mesh(contact.model_id)); collector.collect(minkowski.predict_collision_face_out(&relative_body,collector.time(),contact.face_id).map(|(face,time)|{ TimedInstruction{ time, instruction:PhysicsInstruction::CollisionEnd( Collision::Contact(ContactCollision{model_id:contact.model_id,face_id:contact.face_id}) ), } })); } for intersect in &self.intersects{ //detect model collision in reverse let minkowski=crate::model_physics::MinkowskiMesh::minkowski_sum(&style_mesh,&models.mesh(intersect.model_id)); collector.collect(minkowski.predict_collision_out(&relative_body,collector.time()).map(|(face,time)|{ TimedInstruction{ time, instruction:PhysicsInstruction::CollisionEnd( Collision::Intersect(IntersectCollision{model_id:intersect.model_id}) ), } })); } } } impl Body{ pub fn new(position:Planar64Vec3,velocity:Planar64Vec3,acceleration:Planar64Vec3,time:Time)->Self{ Self{ position, velocity, acceleration, time, } } pub fn extrapolated_position(&self,time:Time)->Planar64Vec3{ let dt=time-self.time; self.position+self.velocity*dt+self.acceleration*(dt*dt/2) } pub fn extrapolated_velocity(&self,time:Time)->Planar64Vec3{ let dt=time-self.time; self.velocity+self.acceleration*dt } pub fn advance_time(&mut self,time:Time){ self.position=self.extrapolated_position(time); self.velocity=self.extrapolated_velocity(time); self.time=time; } } impl std::fmt::Display for Body{ fn fmt(&self,f:&mut std::fmt::Formatter<'_>)->std::fmt::Result{ write!(f,"p({}) v({}) a({}) t({})",self.position,self.velocity,self.acceleration,self.time) } } struct VirtualBody<'a>{ body0:&'a Body, body1:&'a Body, } impl VirtualBody<'_>{ fn relative<'a>(body0:&'a Body,body1:&'a Body)->VirtualBody<'a>{ //(p0,v0,a0,t0) //(p1,v1,a1,t1) VirtualBody{ body0, body1, } } fn extrapolated_position(&self,time:Time)->Planar64Vec3{ self.body1.extrapolated_position(time)-self.body0.extrapolated_position(time) } fn extrapolated_velocity(&self,time:Time)->Planar64Vec3{ self.body1.extrapolated_velocity(time)-self.body0.extrapolated_velocity(time) } fn acceleration(&self)->Planar64Vec3{ self.body1.acceleration-self.body0.acceleration } fn body(&self,time:Time)->Body{ Body::new(self.extrapolated_position(time),self.extrapolated_velocity(time),self.acceleration(),time) } } impl Default for PhysicsState{ fn default()->Self{ Self{ spawn_point:Planar64Vec3::int(0,50,0), body:Body::new(Planar64Vec3::int(0,50,0),Planar64Vec3::int(0,0,0),Planar64Vec3::int(0,-100,0),Time::ZERO), time:Time::ZERO, style:StyleModifiers::default(), touching:TouchingState::default(), models:PhysicsModels::default(), bvh:crate::bvh::BvhNode::default(), move_state: MoveState::Air, camera:PhysicsCamera::default(), next_mouse:MouseState::default(), controls:0, world:WorldState{}, game:GameMechanicsState::default(), modes:Modes::default(), } } } impl PhysicsState { pub fn clear(&mut self){ self.models.clear(); self.modes.clear(); self.touching.clear(); self.bvh=crate::bvh::BvhNode::default(); } pub fn output(&self)->PhysicsOutputState{ PhysicsOutputState{ body:self.body.clone(), camera:self.camera.clone(), camera_offset:self.style.camera_offset.clone(), } } pub fn spawn(&mut self,spawn_point:Planar64Vec3){ self.game.stage_id=0; self.spawn_point=spawn_point; self.process_instruction(crate::instruction::TimedInstruction{ time:self.time, instruction: PhysicsInstruction::Input(PhysicsInputInstruction::Reset), }); } pub fn generate_models(&mut self,indexed_models:&crate::model::IndexedModelInstances){ let mut starts=Vec::new(); let mut spawns=Vec::new(); let mut attr_hash=std::collections::HashMap::new(); for model in &indexed_models.models{ let mesh_id=self.models.meshes.len(); let mut make_mesh=false; for model_instance in &model.instances{ if let Ok(physics_attributes)=PhysicsCollisionAttributes::try_from(&model_instance.attributes){ let attr_id=if let Some(&attr_id)=attr_hash.get(&physics_attributes){ attr_id }else{ let attr_id=self.models.push_attr(physics_attributes.clone()); attr_hash.insert(physics_attributes,attr_id); attr_id }; let model_physics=PhysicsModel::new(mesh_id,attr_id,model_instance.transform); make_mesh=true; let model_id=self.models.push_model(model_physics); for attr in &model_instance.temp_indexing{ match attr{ crate::model::TempIndexedAttributes::Start(s)=>starts.push((model_id,s.clone())), crate::model::TempIndexedAttributes::Spawn(s)=>spawns.push((model_id,s.clone())), crate::model::TempIndexedAttributes::Wormhole(s)=>{self.models.model_id_from_wormhole_id.insert(s.wormhole_id,model_id);}, } } } } if make_mesh{ self.models.push_mesh(PhysicsMesh::from(model)); } } self.bvh=crate::bvh::generate_bvh(self.models.aabb_list()); //I don't wanna write structs for temporary structures //this code builds ModeDescriptions from the unsorted lists at the top of the function starts.sort_by_key(|tup|tup.1.mode_id); let mut mode_id_from_map_mode_id=std::collections::HashMap::new(); let mut modedatas:Vec<(usize,Vec<(u32,usize)>,u32)>=starts.into_iter().enumerate().map(|(i,(model_id,s))|{ mode_id_from_map_mode_id.insert(s.mode_id,i); (model_id,Vec::new(),s.mode_id) }).collect(); for (model_id,s) in spawns{ if let Some(mode_id)=mode_id_from_map_mode_id.get(&s.mode_id){ if let Some(modedata)=modedatas.get_mut(*mode_id){ modedata.1.push((s.stage_id,model_id)); } } } for mut tup in modedatas.into_iter(){ tup.1.sort_by_key(|tup|tup.0); let mut eshmep1=std::collections::HashMap::new(); let mut eshmep2=std::collections::HashMap::new(); self.modes.insert(tup.2,crate::model::ModeDescription{ start:tup.0, spawns:tup.1.into_iter().enumerate().map(|(i,tup)|{eshmep1.insert(tup.0,i);tup.1}).collect(), spawn_from_stage_id:eshmep1, ordered_checkpoint_from_checkpoint_id:eshmep2, }); } println!("Physics Objects: {}",self.models.models.len()); } pub fn load_user_settings(&mut self,user_settings:&crate::settings::UserSettings){ self.camera.sensitivity=user_settings.calculate_sensitivity(); } //tickless gaming pub fn run(&mut self, time_limit:Time){ //prepare is ommitted - everything is done via instructions. while let Some(instruction) = self.next_instruction(time_limit) {//collect //process self.process_instruction(instruction); //write hash lol } } pub fn advance_time(&mut self, time: Time){ self.body.advance_time(time); self.time=time; } fn set_control(&mut self,control:u32,state:bool){ self.controls=if state{self.controls|control}else{self.controls&!control}; } fn next_strafe_instruction(&self)->Option>{ self.style.strafe.as_ref().map(|strafe|{ TimedInstruction{ time:Time::from_nanos(strafe.tick_rate.rhs_div_int(strafe.tick_rate.mul_int(self.time.nanos())+1)), //only poll the physics if there is a before and after mouse event instruction:PhysicsInstruction::StrafeTick } }) } //state mutated on collision: //Accelerator //stair step-up //state mutated on instruction //change fly acceleration (fly_sustain) //change fly velocity //generic event emmiters //PlatformStandTime //walk/swim/air/ladder sounds //VState? //falling under the map // fn next_respawn_instruction(&self) -> Option> { // if self.body.position Option> { // return Some(TimedInstruction{ // time:(self.time*self.strafe_tick_num/self.strafe_tick_den+1)*self.strafe_tick_den/self.strafe_tick_num, // //only poll the physics if there is a before and after mouse event // instruction:PhysicsInstruction::Water // }); // } fn refresh_walk_target(&mut self)->Planar64Vec3{ match &mut self.move_state{ MoveState::Air|MoveState::Water=>self.touching.base_acceleration(&self.models,&self.style,&self.camera,self.controls,&self.next_mouse,self.time), MoveState::Walk(WalkState{state,contact,jump_direction:_})=>{ let n=self.models.mesh(contact.model_id).face_nd(contact.face_id).0; let gravity=self.touching.base_acceleration(&self.models,&self.style,&self.camera,self.controls,&self.next_mouse,self.time); let mut a; let mut v=self.style.get_walk_target_velocity(&self.camera,self.controls,&self.next_mouse,self.time,&n); self.touching.constrain_velocity(&self.models,&mut v); let normal_accel=-n.dot(gravity)/n.length(); (*state,a)=WalkEnum::with_target_velocity(&self.body,&self.style,v,&n,self.style.walk_speed,normal_accel); a }, MoveState::Ladder(WalkState{state,contact,jump_direction:_})=>{ let n=self.models.mesh(contact.model_id).face_nd(contact.face_id).0; let gravity=self.touching.base_acceleration(&self.models,&self.style,&self.camera,self.controls,&self.next_mouse,self.time); let mut a; let mut v=self.style.get_ladder_target_velocity(&self.camera,self.controls,&self.next_mouse,self.time,&n); self.touching.constrain_velocity(&self.models,&mut v); (*state,a)=WalkEnum::with_target_velocity(&self.body,&self.style,v,&n,self.style.ladder_speed,self.style.ladder_accel); a }, } } fn next_move_instruction(&self)->Option>{ //check if you have a valid walk state and create an instruction match &self.move_state{ MoveState::Walk(walk_state)|MoveState::Ladder(walk_state)=>match &walk_state.state{ WalkEnum::Transient(walk_target)=>Some(TimedInstruction{ time:walk_target.time, instruction:PhysicsInstruction::ReachWalkTargetVelocity }), WalkEnum::Reached=>None, } MoveState::Air=>self.next_strafe_instruction(), MoveState::Water=>None,//TODO } } } impl crate::instruction::InstructionEmitter for PhysicsState{ //this little next instruction function can cache its return value and invalidate the cached value by watching the State. fn next_instruction(&self,time_limit:Time)->Option>{ //JUST POLLING!!! NO MUTATION let mut collector = crate::instruction::InstructionCollector::new(time_limit); collector.collect(self.next_move_instruction()); let style_mesh=self.style.mesh(); //check for collision ends self.touching.predict_collision_end(&mut collector,&self.models,&style_mesh,&self.body,self.time); //check for collision starts let mut aabb=crate::aabb::Aabb::default(); aabb.grow(self.body.extrapolated_position(self.time)); aabb.grow(self.body.extrapolated_position(collector.time())); aabb.inflate(self.style.hitbox_halfsize); //common body let relative_body=VirtualBody::relative(&Body::default(),&self.body).body(self.time); self.bvh.the_tester(&aabb,&mut |id|{ //no checks are needed because of the time limits. let minkowski=crate::model_physics::MinkowskiMesh::minkowski_sum(&style_mesh,&self.models.mesh(id)); collector.collect(minkowski.predict_collision_in(&relative_body,collector.time()).map(|(face,time)|{ TimedInstruction{time,instruction:PhysicsInstruction::CollisionStart(match self.models.attr(id){ PhysicsCollisionAttributes::Contact{contacting:_,general:_}=>Collision::Contact(ContactCollision{model_id:id,face_id:face}), PhysicsCollisionAttributes::Intersect{intersecting:_,general:_}=>Collision::Intersect(IntersectCollision{model_id:id}), })} })); }); collector.instruction() } } fn get_walk_state(move_state:&MoveState)->Option<&WalkState>{ match move_state{ MoveState::Walk(walk_state)|MoveState::Ladder(walk_state)=>Some(walk_state), MoveState::Air|MoveState::Water=>None, } } fn jumped_velocity(models:&PhysicsModels,style:&StyleModifiers,walk_state:&WalkState,v:&mut Planar64Vec3){ let jump_dir=match &walk_state.jump_direction{ JumpDirection::FromContactNormal=>models.mesh(walk_state.contact.model_id).face_nd(walk_state.contact.face_id).0, &JumpDirection::Exactly(dir)=>dir, }; *v=*v+jump_dir*(style.get_jump_deltav()/jump_dir.length()); } fn set_position(body:&mut Body,touching:&mut TouchingState,point:Planar64Vec3)->Planar64Vec3{ //test intersections at new position //hovering above the surface 0 units is not intersecting. you will fall into it just fine body.position=point; //manual clear //for c in contacts{process_instruction(CollisionEnd(c))} touching.clear(); //TODO: calculate contacts and determine the actual state //touching.recalculate(body); point } fn set_velocity_cull(body:&mut Body,touching:&mut TouchingState,models:&PhysicsModels,v:Planar64Vec3)->bool{ //This is not correct but is better than what I have let mut culled=false; touching.contacts.retain(|contact|{ let n=models.mesh(contact.model_id).face_nd(contact.face_id).0; let r=n.dot(v)<=Planar64::ZERO; if !r{ culled=true; println!("set_velocity_cull contact={:?}",contact); } r }); set_velocity(body,touching,models,v); culled } fn set_velocity(body:&mut Body,touching:&TouchingState,models:&PhysicsModels,mut v:Planar64Vec3)->Planar64Vec3{ touching.constrain_velocity(&models,&mut v); body.velocity=v; v } fn set_acceleration_cull(body:&mut Body,touching:&mut TouchingState,models:&PhysicsModels,a:Planar64Vec3)->bool{ //This is not correct but is better than what I have let mut culled=false; touching.contacts.retain(|contact|{ let n=models.mesh(contact.model_id).face_nd(contact.face_id).0; let r=n.dot(a)<=Planar64::ZERO; if !r{ culled=true; println!("set_acceleration_cull contact={:?}",contact); } r }); set_acceleration(body,touching,models,a); culled } fn set_acceleration(body:&mut Body,touching:&TouchingState,models:&PhysicsModels,mut a:Planar64Vec3)->Planar64Vec3{ touching.constrain_acceleration(&models,&mut a); body.acceleration=a; a } fn teleport(body:&mut Body,touching:&mut TouchingState,models:&PhysicsModels,style:&StyleModifiers,point:Planar64Vec3)->MoveState{ set_position(body,touching,point); set_acceleration(body,touching,models,style.gravity); MoveState::Air } fn teleport_to_spawn(body:&mut Body,touching:&mut TouchingState,style:&StyleModifiers,mode:&crate::model::ModeDescription,models:&PhysicsModels,stage_id:u32)->Option{ let model=models.model(*mode.get_spawn_model_id(stage_id)? as usize); let point=model.transform.transform_point3(Planar64Vec3::Y)+Planar64Vec3::Y*(style.hitbox_halfsize.y()+Planar64::ONE/16); Some(teleport(body,touching,models,style,point)) } fn run_teleport_behaviour(teleport_behaviour:&Option,game:&mut GameMechanicsState,models:&PhysicsModels,modes:&Modes,style:&StyleModifiers,touching:&mut TouchingState,body:&mut Body,model_id:usize)->Option{ //TODO: jump count and checkpoints are always reset on teleport. //Map makers are expected to use tools to prevent //multi-boosting on JumpLimit boosters such as spawning into a SetVelocity match teleport_behaviour{ Some(crate::model::TeleportBehaviour::StageElement(stage_element))=>{ if stage_element.force||game.stage_idNone, crate::model::StageElementBehaviour::Trigger |crate::model::StageElementBehaviour::Teleport=>{ //I guess this is correct behaviour when trying to teleport to a non-existent spawn but it's still weird teleport_to_spawn(body,touching,style,modes.get_mode(stage_element.mode_id)?,models,game.stage_id) }, crate::model::StageElementBehaviour::Platform=>None, &crate::model::StageElementBehaviour::Checkpoint=>{ // let mode=modes.get_mode(stage_element.mode_id)?; // if mode.ordered_checkpoint_id.map_or(true,|id|id{ if checkpoint_id{ //count model id in accumulated unordered checkpoints game.unordered_checkpoints.insert(model_id); None }, &crate::model::StageElementBehaviour::JumpLimit(jump_limit)=>{ //let count=game.jump_counts.get(&model.id); //TODO None }, } }, Some(crate::model::TeleportBehaviour::Wormhole(wormhole))=>{ let origin_model=models.model(model_id); let destination_model=models.get_wormhole_model(wormhole.destination_model_id)?; //ignore the transform for now Some(teleport(body,touching,models,style,body.position-origin_model.transform.translation+destination_model.transform.translation)) } None=>None, } } impl crate::instruction::InstructionConsumer for PhysicsState { fn process_instruction(&mut self, ins:TimedInstruction) { match &ins.instruction{ PhysicsInstruction::Input(PhysicsInputInstruction::Idle) |PhysicsInstruction::Input(PhysicsInputInstruction::SetNextMouse(_)) |PhysicsInstruction::Input(PhysicsInputInstruction::ReplaceMouse(_,_)) |PhysicsInstruction::StrafeTick=>(), _=>println!("{}|{:?}",ins.time,ins.instruction), } //selectively update body match &ins.instruction{ PhysicsInstruction::Input(PhysicsInputInstruction::Idle)=>self.time=ins.time,//idle simply updates time PhysicsInstruction::Input(_) |PhysicsInstruction::ReachWalkTargetVelocity |PhysicsInstruction::CollisionStart(_) |PhysicsInstruction::CollisionEnd(_) |PhysicsInstruction::StrafeTick=>self.advance_time(ins.time), } match ins.instruction{ PhysicsInstruction::CollisionStart(c)=>{ let model_id=c.model_id(); match (self.models.attr(model_id),&c){ (PhysicsCollisionAttributes::Contact{contacting,general},Collision::Contact(contact))=>{ let mut v=self.body.velocity; let normal=self.models.mesh(model_id).face_nd(contact.face_id).0; match &contacting.contact_behaviour{ Some(crate::model::ContactingBehaviour::Surf)=>println!("I'm surfing!"), Some(crate::model::ContactingBehaviour::Cling)=>println!("Unimplemented!"), &Some(crate::model::ContactingBehaviour::Elastic(elasticity))=>{ let n=self.models.mesh(contact.model_id).face_nd(contact.face_id).0; //velocity and normal are facing opposite directions so this is inherently negative. let d=n.dot(v)*(Planar64::ONE+Planar64::raw(elasticity as i64+1)); v+=n*(d/n.dot(n)); }, Some(crate::model::ContactingBehaviour::Ladder(contacting_ladder))=>{ if contacting_ladder.sticky{ //kill v v=Planar64Vec3::ZERO;//model.velocity } //ladder walkstate let gravity=self.touching.base_acceleration(&self.models,&self.style,&self.camera,self.controls,&self.next_mouse,self.time); let mut target_velocity=self.style.get_ladder_target_velocity(&self.camera,self.controls,&self.next_mouse,self.time,&normal); self.touching.constrain_velocity(&self.models,&mut target_velocity); let (walk_state,a)=WalkState::ladder(&self.body,&self.style,gravity,target_velocity,contact.clone(),&normal); self.move_state=MoveState::Ladder(walk_state); set_acceleration(&mut self.body,&self.touching,&self.models,a); } None=>if self.style.surf_slope.map_or(true,|s|self.models.mesh(model_id).face_nd(contact.face_id).0.walkable(s,Planar64Vec3::Y)){ //ground let gravity=self.touching.base_acceleration(&self.models,&self.style,&self.camera,self.controls,&self.next_mouse,self.time); let mut target_velocity=self.style.get_walk_target_velocity(&self.camera,self.controls,&self.next_mouse,self.time,&normal); self.touching.constrain_velocity(&self.models,&mut target_velocity); let (walk_state,a)=WalkState::ground(&self.body,&self.style,gravity,target_velocity,contact.clone(),&normal); self.move_state=MoveState::Walk(walk_state); set_acceleration(&mut self.body,&self.touching,&self.models,a); }, } //check ground self.touching.insert(c); //I love making functions with 10 arguments to dodge the borrow checker run_teleport_behaviour(&general.teleport_behaviour,&mut self.game,&self.models,&self.modes,&self.style,&mut self.touching,&mut self.body,model_id); //flatten v self.touching.constrain_velocity(&self.models,&mut v); match &general.booster{ Some(booster)=>{ //DELETE THIS when boosters get converted to height machines match booster{ &crate::model::GameMechanicBooster::Affine(transform)=>v=transform.transform_point3(v), &crate::model::GameMechanicBooster::Velocity(velocity)=>v+=velocity, &crate::model::GameMechanicBooster::Energy{direction: _,energy: _}=>todo!(), } }, None=>(), } let calc_move=if self.style.get_control(StyleModifiers::CONTROL_JUMP,self.controls){ if let Some(walk_state)=get_walk_state(&self.move_state){ jumped_velocity(&self.models,&self.style,walk_state,&mut v); set_velocity_cull(&mut self.body,&mut self.touching,&self.models,v) }else{false} }else{false}; match &general.trajectory{ Some(trajectory)=>{ match trajectory{ crate::model::GameMechanicSetTrajectory::AirTime(_) => todo!(), crate::model::GameMechanicSetTrajectory::Height(_) => todo!(), crate::model::GameMechanicSetTrajectory::TargetPointTime { target_point: _, time: _ } => todo!(), crate::model::GameMechanicSetTrajectory::TargetPointSpeed { target_point: _, speed: _, trajectory_choice: _ } => todo!(), &crate::model::GameMechanicSetTrajectory::Velocity(velocity)=>v=velocity, crate::model::GameMechanicSetTrajectory::DotVelocity { direction: _, dot: _ } => todo!(), } }, None=>(), } set_velocity(&mut self.body,&self.touching,&self.models,v); //not sure if or is correct here if calc_move||Planar64::ZERO{ //I think that setting the velocity to 0 was preventing surface contacts from entering an infinite loop self.touching.insert(c); run_teleport_behaviour(&general.teleport_behaviour,&mut self.game,&self.models,&self.modes,&self.style,&mut self.touching,&mut self.body,model_id); }, _=>panic!("invalid pair"), } }, PhysicsInstruction::CollisionEnd(c) => { match self.models.attr(c.model_id()){ PhysicsCollisionAttributes::Contact{contacting:_,general:_}=>{ self.touching.remove(&c);//remove contact before calling contact_constrain_acceleration //check ground (self.move_state,self.body.acceleration)=self.touching.get_move_state(&self.body,&self.models,&self.style,&self.camera,self.controls,&self.next_mouse,self.time); }, PhysicsCollisionAttributes::Intersect{intersecting:_,general:_}=>{ self.touching.remove(&c); }, } }, PhysicsInstruction::StrafeTick => { let control_dir=self.style.get_control_dir(self.controls); if control_dir!=Planar64Vec3::ZERO{ let camera_mat=self.camera.simulate_move_rotation_y(self.camera.mouse.lerp(&self.next_mouse,self.time).x); let control_dir=camera_mat*control_dir; //normalize but careful for zero let d=self.body.velocity.dot(control_dir); if d { match &mut self.move_state{ MoveState::Air|MoveState::Water=>(), MoveState::Walk(walk_state)|MoveState::Ladder(walk_state)=>{ match &mut walk_state.state{ WalkEnum::Reached=>(), WalkEnum::Transient(walk_target)=>{ //precisely set velocity let a=Planar64Vec3::ZERO;//ignore gravity for now. set_acceleration(&mut self.body,&self.touching,&self.models,a); let v=walk_target.velocity; set_velocity(&mut self.body,&self.touching,&self.models,v); walk_state.state=WalkEnum::Reached; }, } } } }, PhysicsInstruction::Input(input_instruction) => { let mut refresh_walk_target=true; match input_instruction{ PhysicsInputInstruction::SetNextMouse(m) => { self.camera.move_mouse(self.next_mouse.pos); (self.camera.mouse,self.next_mouse)=(self.next_mouse.clone(),m); }, PhysicsInputInstruction::ReplaceMouse(m0,m1) => { self.camera.move_mouse(m0.pos); (self.camera.mouse,self.next_mouse)=(m0,m1); }, PhysicsInputInstruction::SetMoveForward(s) => self.set_control(StyleModifiers::CONTROL_MOVEFORWARD,s), PhysicsInputInstruction::SetMoveLeft(s) => self.set_control(StyleModifiers::CONTROL_MOVELEFT,s), PhysicsInputInstruction::SetMoveBack(s) => self.set_control(StyleModifiers::CONTROL_MOVEBACK,s), PhysicsInputInstruction::SetMoveRight(s) => self.set_control(StyleModifiers::CONTROL_MOVERIGHT,s), PhysicsInputInstruction::SetMoveUp(s) => self.set_control(StyleModifiers::CONTROL_MOVEUP,s), PhysicsInputInstruction::SetMoveDown(s) => self.set_control(StyleModifiers::CONTROL_MOVEDOWN,s), PhysicsInputInstruction::SetJump(s) => { self.set_control(StyleModifiers::CONTROL_JUMP,s); if let Some(walk_state)=get_walk_state(&self.move_state){ let mut v=self.body.velocity; jumped_velocity(&self.models,&self.style,walk_state,&mut v); if set_velocity_cull(&mut self.body,&mut self.touching,&self.models,v){ (self.move_state,self.body.acceleration)=self.touching.get_move_state(&self.body,&self.models,&self.style,&self.camera,self.controls,&self.next_mouse,self.time); } } refresh_walk_target=false; }, PhysicsInputInstruction::SetZoom(s) => { self.set_control(StyleModifiers::CONTROL_ZOOM,s); refresh_walk_target=false; }, PhysicsInputInstruction::Reset => { //it matters which of these runs first, but I have not thought it through yet as it doesn't matter yet set_position(&mut self.body,&mut self.touching,self.spawn_point); set_velocity(&mut self.body,&self.touching,&self.models,Planar64Vec3::ZERO); (self.move_state,self.body.acceleration)=self.touching.get_move_state(&self.body,&self.models,&self.style,&self.camera,self.controls,&self.next_mouse,self.time); refresh_walk_target=false; }, PhysicsInputInstruction::Idle => {refresh_walk_target=false;},//literally idle! } if refresh_walk_target{ let a=self.refresh_walk_target(); if set_acceleration_cull(&mut self.body,&mut self.touching,&self.models,a){ (self.move_state,self.body.acceleration)=self.touching.get_move_state(&self.body,&self.models,&self.style,&self.camera,self.controls,&self.next_mouse,self.time); } } }, } } }