use crate::integer::{Planar64,Planar64Vec3}; use std::borrow::Cow; #[derive(Debug,Clone,Copy,Hash,Eq,PartialEq)] pub struct VertId(usize); #[derive(Debug,Clone,Copy,Hash,Eq,PartialEq)] pub struct EdgeId(usize); #[derive(Debug,Clone,Copy,Hash,Eq,PartialEq)] pub struct FaceId(usize); //Vertex <-> Edge <-> Face -> Collide pub enum FEV{ Face(F), Edge(E), Vert(V), } //use Unit32 #[repr(C)] for map files struct Face{ normal:Planar64Vec3, dot:Planar64, } struct Vert(Planar64Vec3); struct FaceRefs{ edges:Vec<(EdgeId,FaceId)>, //verts:Vec, } struct EdgeRefs{ faces:[FaceId;2],//left, right verts:[VertId;2],//bottom, top } struct VertRefs{ //faces:Vec, edges:Vec, } pub struct PhysicsMesh{ faces:Vec, verts:Vec, face_topology:Vec, edge_topology:Vec, vert_topology:Vec, } #[derive(Default,Clone)] struct VertRefGuy{ edges:std::collections::HashSet, } #[derive(Hash,Eq,PartialEq)] struct EdgeIdGuy([VertId;2]); impl EdgeIdGuy{ fn new(v0:VertId,v1:VertId)->Self{ if v0.0Self{ Self([FaceId(0);2]) } fn push(&mut self,i:usize,face_id:FaceId){ self.0[i]=face_id; } } struct FaceRefGuy(Vec); #[derive(Default)] struct EdgePool{ edge_guys:Vec<(EdgeIdGuy,EdgeRefGuy)>, edge_id_from_guy:std::collections::HashMap, } impl EdgePool{ fn push(&mut self,edge_id_guy:EdgeIdGuy)->(&mut EdgeRefGuy,EdgeId,bool){ if let Some(&edge_id)=self.edge_id_from_guy.get(&edge_id_guy){ (&mut unsafe{self.edge_guys.get_unchecked_mut(edge_id)}.1,EdgeId(edge_id),true) }else{ let edge_id=self.edge_guys.len(); self.edge_guys.push((edge_id_guy,EdgeRefGuy::new())); self.edge_id_from_guy.insert(edge_id_guy,edge_id); (&mut unsafe{self.edge_guys.get_unchecked_mut(edge_id)}.1,EdgeId(edge_id),false) } } } impl From<&crate::model::IndexedModel> for PhysicsMesh{ fn from(indexed_model:&crate::model::IndexedModel)->Self{ let verts=indexed_model.unique_pos.iter().map(|v|Vert(v.clone())).collect(); let mut vert_edges=vec![VertRefGuy::default();indexed_model.unique_pos.len()]; let mut edge_pool=EdgePool::default(); let (faces,face_ref_guys):(Vec,Vec)=indexed_model.groups[0].polys.iter().enumerate().map(|(i,poly)|{ let face_id=FaceId(i); //one face per poly let mut normal=Planar64Vec3::ZERO; let len=poly.vertices.len(); let face_edges=poly.vertices.iter().enumerate().map(|(i,&vert_id)|{ let vert0_id=vert_id as usize; let vert1_id=poly.vertices[(i+1)%len] as usize; //https://www.khronos.org/opengl/wiki/Calculating_a_Surface_Normal (Newell's Method) let v0=indexed_model.unique_pos[vert0_id]; let v1=indexed_model.unique_pos[vert1_id]; normal+=Planar64Vec3::new( (v0.y()-v1.y())*(v0.z()+v1.z()), (v0.z()-v1.z())*(v0.x()+v1.x()), (v0.x()-v1.x())*(v0.y()+v1.y()), ); //get/create edge and push face into it let edge_id_guy=EdgeIdGuy::new(VertId(vert0_id),VertId(vert1_id)); let (edge_ref_guy,edge_id,exists)=edge_pool.push(edge_id_guy); if exists{ edge_ref_guy.push(1,face_id); }else{ edge_ref_guy.push(0,face_id); } //index edge into vertices unsafe{vert_edges.get_unchecked_mut(vert0_id)}.edges.insert(edge_id); unsafe{vert_edges.get_unchecked_mut(vert1_id)}.edges.insert(edge_id); //return edge_id edge_id }).collect(); //choose precision loss randomly idk normal=normal/len as i64; let mut dot=Planar64::ZERO; for &v in poly.vertices.iter(){ dot+=normal.dot(indexed_model.unique_pos[v as usize]); } (Face{normal,dot:dot/len as i64},FaceRefGuy(face_edges)) }).unzip(); //conceivably faces, edges, and vertices exist now Self{ faces, verts, face_topology:face_ref_guys.into_iter().enumerate().map(|(i,face_ref_guy)|{ let face_id=FaceId(i); FaceRefs{edges:face_ref_guy.0.into_iter().map(|edge_id|{ //get the edge face that's not this face let edge_faces=edge_pool.edge_guys[edge_id.0].1.0; if edge_faces[0]==face_id{ (edge_id,edge_faces[1]) }else if edge_faces[1]==face_id{ (edge_id,edge_faces[0]) }else{ panic!("edge does not contain face") } }).collect()} }).collect(), edge_topology:edge_pool.edge_guys.into_iter().map(|(edge_id_guy,edge_ref_guy)| EdgeRefs{faces:edge_ref_guy.0,verts:edge_id_guy.0} ).collect(), vert_topology:vert_edges.into_iter().map(|vert_ref_guy| VertRefs{edges:vert_ref_guy.edges.into_iter().collect()} ).collect(), } } } pub trait MeshQuery{ fn closest_fev(&self,point:Planar64Vec3)->FEV; fn edge_n(&self,edge_id:EDGE)->Planar64Vec3{ let verts=self.edge_verts(edge_id); self.vert(verts[1])-self.vert(verts[0]) } fn vert(&self,vert_id:VERT)->Planar64Vec3; fn face_nd(&self,face_id:FACE)->(Planar64Vec3,Planar64); fn face_edges(&self,face_id:FACE)->Cow>; fn edge_faces(&self,edge_id:EDGE)->Cow<[FACE;2]>; fn edge_verts(&self,edge_id:EDGE)->Cow<[VERT;2]>; fn vert_edges(&self,vert_id:VERT)->Cow>; } impl MeshQuery for PhysicsMesh{ fn closest_fev(&self,point:Planar64Vec3)->FEV{ //TODO: put some genius code right here //brute force for now let mut best_distance_squared=Planar64::MAX; //make something up as default ret //hopefully empty meshes don't make their way through here let mut best_fev=FEV::::Vert(VertId(0)); //check each vert for (i,v) in self.verts.iter().enumerate(){ let d=(v.0-point).dot(v.0-point); if d::Vert(VertId(i)); } } //check each edge for (i,e) in self.edge_topology.iter().enumerate(){ let v0=self.vert(e.verts[0]); let v1=self.vert(e.verts[1]); let n=v1-v0; //n.cross(point-v0)=sin(t)*n*dis let d=n.dot(point-v0); if d::Edge(EdgeId(i)); } } } let face_dots:Vec=self.faces.iter().map(|f|f.normal.dot(point)).collect(); //check each face for (i,f) in self.face_topology.iter().enumerate(){ if face_dots[i]::Face(FaceId(i)); } } best_fev } fn face_nd(&self,face_id:FaceId)->(Planar64Vec3,Planar64){ (self.faces[face_id.0].normal,self.faces[face_id.0].dot) } //ideally I never calculate the vertex position, but I have to for the graphical meshes... fn vert(&self,vert_id:VertId)->Planar64Vec3{ self.verts[vert_id.0].0 } fn face_edges(&self,face_id:FaceId)->Cow>{ Cow::Borrowed(&self.face_topology[face_id.0].edges) } fn edge_faces(&self,edge_id:EdgeId)->Cow<[FaceId;2]>{ Cow::Borrowed(&self.edge_topology[edge_id.0].faces) } fn edge_verts(&self,edge_id:EdgeId)->Cow<[VertId;2]>{ Cow::Borrowed(&self.edge_topology[edge_id.0].verts) } fn vert_edges(&self,vert_id:VertId)->Cow>{ Cow::Borrowed(&self.vert_topology[vert_id.0].edges) } } pub struct TransformedMesh<'a>{ mesh:&'a PhysicsMesh, transform:&'a crate::integer::Planar64Affine3, normal_transform:&'a crate::integer::Planar64Mat3, normal_determinant:Planar64, } impl MeshQuery for TransformedMesh<'_>{ fn closest_fev(&self,point:Planar64Vec3)->FEV{ //TODO: put some genius code right here //brute force for now let mut best_distance_squared=Planar64::MAX; //make something up as default ret //hopefully empty meshes don't make their way through here let mut best_fev=FEV::::Vert(VertId(0)); //check each vert for i in 0..self.mesh.verts.len(){ let v=self.vert(VertId(i)); let d=(v-point).dot(v-point); if d::Vert(VertId(i)); } } //check each edge for (i,e) in self.mesh.edge_topology.iter().enumerate(){ let v0=self.vert(e.verts[0]); let v1=self.vert(e.verts[1]); let n=v1-v0; //n.cross(point-v0)=sin(t)*n*dis let d=n.dot(point-v0); if d::Edge(EdgeId(i)); } } } let face_dots:Vec=self.mesh.faces.iter().map(|f|(*self.normal_transform*f.normal).dot(point)).collect(); //check each face for (i,f) in self.mesh.face_topology.iter().enumerate(){ if face_dots[i]::Face(FaceId(i)); } } best_fev } fn face_nd(&self,face_id:FaceId)->(Planar64Vec3,Planar64){ let (n,d)=self.mesh.face_nd(face_id); (*self.normal_transform*n,self.normal_determinant*d) } fn vert(&self,vert_id:VertId)->Planar64Vec3{ self.transform.transform_point3(self.mesh.vert(vert_id)) } #[inline] fn face_edges(&self,face_id:FaceId)->Cow>{ self.mesh.face_edges(face_id) } #[inline] fn edge_faces(&self,edge_id:EdgeId)->Cow<[FaceId;2]>{ self.mesh.edge_faces(edge_id) } #[inline] fn edge_verts(&self,edge_id:EdgeId)->Cow<[VertId;2]>{ self.mesh.edge_verts(edge_id) } #[inline] fn vert_edges(&self,vert_id:VertId)->Cow>{ self.mesh.vert_edges(vert_id) } } //Note that a face on a minkowski mesh refers to a pair of fevs on the meshes it's summed from //(face,vertex) //(edge,edge) //(vertex,face) #[derive(Clone,Copy)] enum MinkowskiVert{ VertVert(VertId,VertId), } #[derive(Clone,Copy)] enum MinkowskiEdge{ VertEdge(VertId,EdgeId), EdgeVert(EdgeId,VertId), } #[derive(Debug,Clone,Copy,Hash,Eq,PartialEq)] pub enum MinkowskiFace{ FaceVert(FaceId,VertId), EdgeEdge(EdgeId,EdgeId), VertFace(VertId,FaceId), } pub struct MinkowskiMesh<'a>{ mesh0:&'a TransformedMesh<'a>, mesh1:&'a TransformedMesh<'a>, } impl MinkowskiMesh<'_>{ pub fn minkowski_sum<'a>(mesh0:&'a TransformedMesh,mesh1:&'a TransformedMesh)->MinkowskiMesh<'a>{ MinkowskiMesh{ mesh0, mesh1, } } } impl MeshQuery for MinkowskiMesh<'_>{ fn closest_fev(&self,point:Planar64Vec3)->FEV{ //put some genius code right here todo!() } fn face_nd(&self,face_id:MinkowskiFace)->(Planar64Vec3,Planar64){ match face_id{ MinkowskiFace::FaceVert(f0,v1)=>{ let (n,d)=self.mesh0.face_nd(f0); (n,d+n.dot(self.mesh1.vert(v1))) }, MinkowskiFace::EdgeEdge(e0,e1)=>{ let [e0f0,e0f1]=self.mesh0.edge_faces(e0).into_owned(); let [e1f0,e1f1]=self.mesh1.edge_faces(e1).into_owned(); //cross edge faces //cross crosses todo!() }, MinkowskiFace::VertFace(v0,f1)=>{ let (n,d)=self.mesh1.face_nd(f1); (-n,d-n.dot(self.mesh0.vert(v0))) }, } } fn vert(&self,vert_id:MinkowskiVert)->Planar64Vec3{ match vert_id{ MinkowskiVert::VertVert(v0,v1)=>{ self.mesh0.vert(v0)-self.mesh1.vert(v1) }, } } fn face_edges(&self,face_id:MinkowskiFace)->Cow>{ match face_id{ MinkowskiFace::FaceVert(f0,v1)=>{ Cow::Owned(self.mesh0.face_edges(f0).iter().map(|&(edge_id0,face_id0)|{ (MinkowskiEdge::EdgeVert(edge_id0,v1),MinkowskiFace::FaceVert(face_id0,v1)) }).collect()) }, MinkowskiFace::EdgeEdge(e0,e1)=>{ let e0v=self.mesh0.edge_verts(e0); let e1v=self.mesh1.edge_verts(e1); let [r0,r1]=e0v.map(|(vert_id0,face_id0)|{ //sort e1 ends by e0 edge dir to get v1 //find face normal formulation without cross products let v1=if 0<(e0.v1-e0.v0).dot(e1.v1-e1.v0){ e1.v0 }else{ e1.v1 }; (MinkowskiEdge::VertEdge(vert_id0,e1),MinkowskiFace::FaceVert(face_id0,v1)) }); let [r2,r3]=e1v.map(|(vert_id1,face_id1)|{ //sort e0 ends by e1 edge dir to get v0 let v0=if 0<(e0.v1-e0.v0).dot(e1.v1-e1.v0){ e0.v0 }else{ e0.v1 }; (MinkowskiEdge::EdgeVert(e0,vert_id1),MinkowskiFace::VertFace(v0,face_id1)) }); Cow::Owned(vec![r0,r1,r2,r3]) }, MinkowskiFace::VertFace(v0,f1)=>{ Cow::Owned(self.mesh1.face_edges(f1).iter().map(|&(edge_id1,face_id1)|{ (MinkowskiEdge::VertEdge(v0,edge_id1),MinkowskiFace::VertFace(v0,face_id1)) }).collect()) }, } } fn edge_faces(&self,edge_id:MinkowskiEdge)->Cow<[MinkowskiFace;2]>{ match edge_id{ MinkowskiEdge::VertEdge(v0,e1)=>{ Cow::Owned(self.mesh1.edge_faces(e1).map(|face_id1|{ MinkowskiFace::VertFace(v0,face_id1) })) }, MinkowskiEdge::EdgeVert(e0,v1)=>{ Cow::Owned(self.mesh0.edge_faces(e0).map(|face_id0|{ MinkowskiFace::FaceVert(face_id0,v1) })) }, } } fn edge_verts(&self,edge_id:MinkowskiEdge)->Cow<[MinkowskiVert;2]>{ match edge_id{ MinkowskiEdge::VertEdge(v0,e1)=>{ Cow::Owned(self.mesh1.edge_verts(e1).map(|(vert_id1,face_id1)|{ (MinkowskiVert::VertVert(v0,vert_id1),MinkowskiFace::VertFace(v0,face_id1)) })) }, MinkowskiEdge::EdgeVert(e0,v1)=>{ Cow::Owned(self.mesh0.edge_verts(e0).map(|(vert_id0,face_id0)|{ (MinkowskiVert::VertVert(vert_id0,v1),MinkowskiFace::FaceVert(face_id0,v1)) })) }, } } fn vert_edges(&self,vert_id:MinkowskiVert)->Cow>{ match vert_id{ MinkowskiVert::VertVert(v0,v1)=>{ let v0e=self.mesh0.vert_edges(v0); let v1e=self.mesh1.vert_edges(v1); //uh oh dot product //pass all dots? //it's a convex hull of {v0e,-v1e} //each edge needs to know which vert to use from the other mesh todo!() }, } } }