use std::{borrow::Cow, time::Instant}; use wgpu::{util::DeviceExt, AstcBlock, AstcChannel}; use model_graphics::{GraphicsVertex,ModelGraphicsInstance}; use physics::{InputInstruction, PhysicsInstruction}; use instruction::{TimedInstruction, InstructionConsumer}; mod bvh; mod aabb; mod model; mod model_graphics; mod zeroes; mod worker; mod physics; mod sniffer; mod settings; mod framework; mod primitives; mod instruction; mod load_roblox; mod integer; struct Entity { index_count: u32, index_buf: wgpu::Buffer, } struct ModelGraphics { instances: Vec, vertex_buf: wgpu::Buffer, entities: Vec, bind_group: wgpu::BindGroup, model_buf: wgpu::Buffer, } pub struct GraphicsSamplers{ repeat: wgpu::Sampler, } pub struct GraphicsBindGroupLayouts{ model: wgpu::BindGroupLayout, } pub struct GraphicsBindGroups { camera: wgpu::BindGroup, skybox_texture: wgpu::BindGroup, } pub struct GraphicsPipelines{ skybox: wgpu::RenderPipeline, model: wgpu::RenderPipeline, } pub struct GraphicsCamera{ screen_size: glam::UVec2, fov: glam::Vec2,//slope //camera angles and such are extrapolated and passed in every time } #[inline] fn perspective_rh(fov_x_slope: f32, fov_y_slope: f32, z_near: f32, z_far: f32) -> glam::Mat4 { //glam_assert!(z_near > 0.0 && z_far > 0.0); let r = z_far / (z_near - z_far); glam::Mat4::from_cols( glam::Vec4::new(1.0/fov_x_slope, 0.0, 0.0, 0.0), glam::Vec4::new(0.0, 1.0/fov_y_slope, 0.0, 0.0), glam::Vec4::new(0.0, 0.0, r, -1.0), glam::Vec4::new(0.0, 0.0, r * z_near, 0.0), ) } impl GraphicsCamera{ pub fn new(screen_size:glam::UVec2,fov:glam::Vec2)->Self{ Self{ screen_size, fov, } } pub fn proj(&self)->glam::Mat4{ perspective_rh(self.fov.x, self.fov.y, 0.5, 2000.0) } pub fn world(&self,pos:glam::Vec3,angles:glam::Vec2)->glam::Mat4{ //f32 good enough for view matrix glam::Mat4::from_translation(pos) * glam::Mat4::from_euler(glam::EulerRot::YXZ, angles.x, angles.y, 0f32) } pub fn to_uniform_data(&self,(pos,angles): (glam::Vec3,glam::Vec2)) -> [f32; 16 * 4] { let proj=self.proj(); let proj_inv = proj.inverse(); let view_inv=self.world(pos,angles); let view=view_inv.inverse(); let mut raw = [0f32; 16 * 4]; raw[..16].copy_from_slice(&AsRef::<[f32; 16]>::as_ref(&proj)[..]); raw[16..32].copy_from_slice(&AsRef::<[f32; 16]>::as_ref(&proj_inv)[..]); raw[32..48].copy_from_slice(&AsRef::<[f32; 16]>::as_ref(&view)[..]); raw[48..64].copy_from_slice(&AsRef::<[f32; 16]>::as_ref(&view_inv)[..]); raw } } pub struct GraphicsState{ pipelines: GraphicsPipelines, bind_groups: GraphicsBindGroups, bind_group_layouts: GraphicsBindGroupLayouts, samplers: GraphicsSamplers, camera:GraphicsCamera, camera_buf: wgpu::Buffer, temp_squid_texture_view: wgpu::TextureView, models: Vec, depth_view: wgpu::TextureView, staging_belt: wgpu::util::StagingBelt, } impl GraphicsState{ pub fn clear(&mut self){ self.models.clear(); } pub fn load_user_settings(&mut self,user_settings:&settings::UserSettings){ self.camera.fov=user_settings.calculate_fov(1.0,&self.camera.screen_size).as_vec2(); } } pub struct GlobalState{ start_time: std::time::Instant, manual_mouse_lock:bool, mouse:physics::MouseState, user_settings:settings::UserSettings, graphics:GraphicsState, physics_thread:worker::CompatWorker,physics::PhysicsOutputState,Box)->physics::PhysicsOutputState>>, } impl GlobalState{ const DEPTH_FORMAT: wgpu::TextureFormat = wgpu::TextureFormat::Depth24Plus; fn create_depth_texture( config: &wgpu::SurfaceConfiguration, device: &wgpu::Device, ) -> wgpu::TextureView { let depth_texture = device.create_texture(&wgpu::TextureDescriptor { size: wgpu::Extent3d { width: config.width, height: config.height, depth_or_array_layers: 1, }, mip_level_count: 1, sample_count: 1, dimension: wgpu::TextureDimension::D2, format: Self::DEPTH_FORMAT, usage: wgpu::TextureUsages::RENDER_ATTACHMENT, label: None, view_formats: &[], }); depth_texture.create_view(&wgpu::TextureViewDescriptor::default()) } fn generate_model_graphics(&mut self,device:&wgpu::Device,queue:&wgpu::Queue,indexed_models:model::IndexedModelInstances){ //generate texture view per texture //idk how to do this gooder lol let mut double_map=std::collections::HashMap::::new(); let mut texture_loading_threads=Vec::new(); let num_textures=indexed_models.textures.len(); for (i,texture_id) in indexed_models.textures.into_iter().enumerate(){ if let Ok(mut file) = std::fs::File::open(std::path::Path::new(&format!("textures/{}.dds",texture_id))){ double_map.insert(i as u32, texture_loading_threads.len() as u32); texture_loading_threads.push((texture_id,std::thread::spawn(move ||{ ddsfile::Dds::read(&mut file).unwrap() }))); } } let texture_views:Vec=texture_loading_threads.into_iter().map(|(texture_id,thread)|{ let image=thread.join().unwrap(); let (mut width,mut height)=(image.get_width(),image.get_height()); let format=match image.header10.unwrap().dxgi_format{ ddsfile::DxgiFormat::R8G8B8A8_UNorm_sRGB => wgpu::TextureFormat::Rgba8UnormSrgb, ddsfile::DxgiFormat::BC7_UNorm_sRGB => { //floor(w,4), should be ceil(w,4) width=width/4*4; height=height/4*4; wgpu::TextureFormat::Bc7RgbaUnormSrgb }, other=>panic!("unsupported format {:?}",other), }; let size = wgpu::Extent3d { width, height, depth_or_array_layers: 1, }; let layer_size = wgpu::Extent3d { depth_or_array_layers: 1, ..size }; let max_mips = layer_size.max_mips(wgpu::TextureDimension::D2); let texture = device.create_texture_with_data( queue, &wgpu::TextureDescriptor { size, mip_level_count: max_mips, sample_count: 1, dimension: wgpu::TextureDimension::D2, format, usage: wgpu::TextureUsages::TEXTURE_BINDING | wgpu::TextureUsages::COPY_DST, label: Some(format!("Texture{}",texture_id).as_str()), view_formats: &[], }, &image.data, ); texture.create_view(&wgpu::TextureViewDescriptor { label: Some(format!("Texture{} View",texture_id).as_str()), dimension: Some(wgpu::TextureViewDimension::D2), ..wgpu::TextureViewDescriptor::default() }) }).collect(); //split groups with different textures into separate models //the models received here are supposed to be tightly packed, i.e. no code needs to check if two models are using the same groups. let indexed_models_len=indexed_models.models.len(); let mut unique_texture_models=Vec::with_capacity(indexed_models_len); for model in indexed_models.models.into_iter(){ //convert ModelInstance into ModelGraphicsInstance let instances:Vec=model.instances.into_iter().filter_map(|instance|{ if instance.color.w==0.0{ None }else{ Some(ModelGraphicsInstance{ transform: instance.transform.into(), normal_transform: Into::::into(instance.transform.matrix3).inverse().transpose(), color:model_graphics::ModelGraphicsColor4::from(instance.color), }) } }).collect(); //skip pushing a model if all instances are invisible if instances.len()==0{ continue; } //check each group, if it's using a new texture then make a new clone of the model let id=unique_texture_models.len(); let mut unique_textures=Vec::new(); for group in model.groups.into_iter(){ //ignore zero copy optimization for now let texture_index=if let Some(texture_index)=unique_textures.iter().position(|&texture|texture==group.texture){ texture_index }else{ //create new texture_index let texture_index=unique_textures.len(); unique_textures.push(group.texture); unique_texture_models.push(model_graphics::IndexedModelGraphicsSingleTexture{ unique_pos:model.unique_pos.iter().map(|&v|*Into::::into(v).as_ref()).collect(), unique_tex:model.unique_tex.iter().map(|v|*v.as_ref()).collect(), unique_normal:model.unique_normal.iter().map(|&v|*Into::::into(v).as_ref()).collect(), unique_color:model.unique_color.iter().map(|v|*v.as_ref()).collect(), unique_vertices:model.unique_vertices.clone(), texture:group.texture, groups:Vec::new(), instances:instances.clone(), }); texture_index }; unique_texture_models[id+texture_index].groups.push(model_graphics::IndexedGroupFixedTexture{ polys:group.polys, }); } } //check every model to see if it's using the same (texture,color) but has few instances, if it is combine it into one model //1. collect unique instances of texture and color, note model id //2. for each model id, check if removing it from the pool decreases both the model count and instance count by more than one //3. transpose all models that stay in the set //best plan: benchmark set_bind_group, set_vertex_buffer, set_index_buffer and draw_indexed //check if the estimated render performance is better by transposing multiple model instances into one model instance //for now: just deduplicate single models... let mut deduplicated_models=Vec::with_capacity(indexed_models_len);//use indexed_models_len because the list will likely get smaller instead of bigger let mut unique_texture_color=std::collections::HashMap::new();//texture->color->vec![(model_id,instance_id)] for (model_id,model) in unique_texture_models.iter().enumerate(){ //for now: filter out models with more than one instance if 1=model.unique_pos.iter().map(|untransformed_pos|{ let pos=instance.transform.transform_point3(glam::Vec3::from_array(untransformed_pos.clone())).to_array(); let h=pos.map(|v|bytemuck::cast::(v)); (if let Some(&pos_id)=pos_id_from.get(&h){ pos_id }else{ let pos_id=unique_pos.len(); unique_pos.push(pos.clone()); pos_id_from.insert(h,pos_id); pos_id }) as u32 }).collect(); let map_tex_id:Vec=model.unique_tex.iter().map(|tex|{ let h=tex.map(|v|bytemuck::cast::(v)); (if let Some(&tex_id)=tex_id_from.get(&h){ tex_id }else{ let tex_id=unique_tex.len(); unique_tex.push(tex.clone()); tex_id_from.insert(h,tex_id); tex_id }) as u32 }).collect(); let map_normal_id:Vec=model.unique_normal.iter().map(|untransformed_normal|{ let normal=(instance.normal_transform*glam::Vec3::from_array(untransformed_normal.clone())).to_array(); let h=normal.map(|v|bytemuck::cast::(v)); (if let Some(&normal_id)=normal_id_from.get(&h){ normal_id }else{ let normal_id=unique_normal.len(); unique_normal.push(normal.clone()); normal_id_from.insert(h,normal_id); normal_id }) as u32 }).collect(); let map_color_id:Vec=model.unique_color.iter().map(|color|{ let h=color.map(|v|bytemuck::cast::(v)); (if let Some(&color_id)=color_id_from.get(&h){ color_id }else{ let color_id=unique_color.len(); unique_color.push(color.clone()); color_id_from.insert(h,color_id); color_id }) as u32 }).collect(); //map the indexed vertices onto new indices //creating the vertex map is slightly different because the vertices are directly hashable let map_vertex_id:Vec=model.unique_vertices.iter().map(|unmapped_vertex|{ let vertex=model::IndexedVertex{ pos:map_pos_id[unmapped_vertex.pos as usize] as u32, tex:map_tex_id[unmapped_vertex.tex as usize] as u32, normal:map_normal_id[unmapped_vertex.normal as usize] as u32, color:map_color_id[unmapped_vertex.color as usize] as u32, }; (if let Some(&vertex_id)=vertex_id_from.get(&vertex){ vertex_id }else{ let vertex_id=unique_vertices.len(); unique_vertices.push(vertex.clone()); vertex_id_from.insert(vertex,vertex_id); vertex_id }) as u32 }).collect(); for group in &model.groups{ for poly in &group.polys{ polys.push(model::IndexedPolygon{vertices:poly.vertices.iter().map(|&vertex_id|map_vertex_id[vertex_id as usize]).collect()}); } } } //push model into dedup deduplicated_models.push(model_graphics::IndexedModelGraphicsSingleTexture{ unique_pos, unique_tex, unique_normal, unique_color, unique_vertices, texture, groups:vec![model_graphics::IndexedGroupFixedTexture{ polys }], instances:vec![model_graphics::ModelGraphicsInstance{ transform:glam::Mat4::IDENTITY, normal_transform:glam::Mat3::IDENTITY, color }], }); } } } //fill untouched models for (model_id,model) in unique_texture_models.into_iter().enumerate(){ if !selected_model_instances.contains(&model_id){ deduplicated_models.push(model); } } //de-index models let deduplicated_models_len=deduplicated_models.len(); let models:Vec=deduplicated_models.into_iter().map(|model|{ let mut vertices = Vec::new(); let mut index_from_vertex = std::collections::HashMap::new();//:: let mut entities = Vec::new(); //this mut be combined in a more complex way if the models use different render patterns per group let mut indices = Vec::new(); for group in model.groups { for poly in group.polys { for end_index in 2..poly.vertices.len() { for &index in &[0, end_index - 1, end_index] { let vertex_index = poly.vertices[index]; if let Some(&i)=index_from_vertex.get(&vertex_index){ indices.push(i); }else{ let i=vertices.len() as u16; let vertex=&model.unique_vertices[vertex_index as usize]; vertices.push(model_graphics::GraphicsVertex{ pos: model.unique_pos[vertex.pos as usize], tex: model.unique_tex[vertex.tex as usize], normal: model.unique_normal[vertex.normal as usize], color:model.unique_color[vertex.color as usize], }); index_from_vertex.insert(vertex_index,i); indices.push(i); } } } } } entities.push(indices); model_graphics::ModelGraphicsSingleTexture{ instances:model.instances, vertices, entities, texture:model.texture, } }).collect(); //.into_iter() the modeldata vec so entities can be /moved/ to models.entities let mut model_count=0; let mut instance_count=0; let uniform_buffer_binding_size=::required_limits().max_uniform_buffer_binding_size as usize; let chunk_size=uniform_buffer_binding_size/MODEL_BUFFER_SIZE_BYTES; self.graphics.models.reserve(models.len()); for model in models.into_iter() { instance_count+=model.instances.len(); for instances_chunk in model.instances.rchunks(chunk_size){ model_count+=1; let model_uniforms = get_instances_buffer_data(instances_chunk); let model_buf = device.create_buffer_init(&wgpu::util::BufferInitDescriptor { label: Some(format!("Model{} Buf",model_count).as_str()), contents: bytemuck::cast_slice(&model_uniforms), usage: wgpu::BufferUsages::UNIFORM | wgpu::BufferUsages::COPY_DST, }); let texture_view=match model.texture{ Some(texture_id)=>{ match double_map.get(&texture_id){ Some(&mapped_texture_id)=>&texture_views[mapped_texture_id as usize], None=>&self.graphics.temp_squid_texture_view, } }, None=>&self.graphics.temp_squid_texture_view, }; let model_bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor { layout: &self.graphics.bind_group_layouts.model, entries: &[ wgpu::BindGroupEntry { binding: 0, resource: model_buf.as_entire_binding(), }, wgpu::BindGroupEntry { binding: 1, resource: wgpu::BindingResource::TextureView(texture_view), }, wgpu::BindGroupEntry { binding: 2, resource: wgpu::BindingResource::Sampler(&self.graphics.samplers.repeat), }, ], label: Some(format!("Model{} Bind Group",model_count).as_str()), }); let vertex_buf = device.create_buffer_init(&wgpu::util::BufferInitDescriptor { label: Some("Vertex"), contents: bytemuck::cast_slice(&model.vertices), usage: wgpu::BufferUsages::VERTEX, }); //all of these are being moved here self.graphics.models.push(ModelGraphics{ instances:instances_chunk.to_vec(), vertex_buf, entities: model.entities.iter().map(|indices|{ let index_buf = device.create_buffer_init(&wgpu::util::BufferInitDescriptor { label: Some("Index"), contents: bytemuck::cast_slice(&indices), usage: wgpu::BufferUsages::INDEX, }); Entity { index_buf, index_count: indices.len() as u32, } }).collect(), bind_group: model_bind_group, model_buf, }); } } println!("Texture References={}",num_textures); println!("Textures Loaded={}",texture_views.len()); println!("Indexed Models={}",indexed_models_len); println!("Deduplicated Models={}",deduplicated_models_len); println!("Graphics Objects: {}",self.graphics.models.len()); println!("Graphics Instances: {}",instance_count); } } const MODEL_BUFFER_SIZE:usize=4*4 + 12 + 4;//let size=std::mem::size_of::(); const MODEL_BUFFER_SIZE_BYTES:usize=MODEL_BUFFER_SIZE*4; fn get_instances_buffer_data(instances:&[ModelGraphicsInstance]) -> Vec { let mut raw = Vec::with_capacity(MODEL_BUFFER_SIZE*instances.len()); for (i,mi) in instances.iter().enumerate(){ let mut v = raw.split_off(MODEL_BUFFER_SIZE*i); //model transform raw.extend_from_slice(&AsRef::<[f32; 4*4]>::as_ref(&mi.transform)[..]); //normal transform raw.extend_from_slice(AsRef::<[f32; 3]>::as_ref(&mi.normal_transform.x_axis)); raw.extend_from_slice(&[0.0]); raw.extend_from_slice(AsRef::<[f32; 3]>::as_ref(&mi.normal_transform.y_axis)); raw.extend_from_slice(&[0.0]); raw.extend_from_slice(AsRef::<[f32; 3]>::as_ref(&mi.normal_transform.z_axis)); raw.extend_from_slice(&[0.0]); //color raw.extend_from_slice(AsRef::<[f32; 4]>::as_ref(&mi.color.get())); raw.append(&mut v); } raw } impl framework::Example for GlobalState { fn optional_features() -> wgpu::Features { wgpu::Features::TEXTURE_COMPRESSION_ASTC | wgpu::Features::TEXTURE_COMPRESSION_ETC2 } fn required_features() -> wgpu::Features { wgpu::Features::TEXTURE_COMPRESSION_BC } fn required_limits() -> wgpu::Limits { wgpu::Limits::default() //framework.rs was using goofy limits that caused me a multi-day headache } fn init( config: &wgpu::SurfaceConfiguration, _adapter: &wgpu::Adapter, device: &wgpu::Device, queue: &wgpu::Queue, ) -> Self { //wee let user_settings=settings::read_user_settings(); let mut indexed_models = Vec::new(); indexed_models.append(&mut model::generate_indexed_model_list_from_obj(obj::ObjData::load_buf(&include_bytes!("../models/teslacyberv3.0.obj")[..]).unwrap(),glam::Vec4::ONE)); indexed_models.push(primitives::unit_sphere()); indexed_models.push(primitives::unit_cylinder()); indexed_models.push(primitives::unit_cube()); println!("models.len = {:?}", indexed_models.len()); indexed_models[0].instances.push(model::ModelInstance{ transform:integer::Planar64Affine3::try_from(glam::Affine3A::from_translation(glam::vec3(10.,0.,-10.))).unwrap(), ..Default::default() }); //quad monkeys indexed_models[1].instances.push(model::ModelInstance{ transform:integer::Planar64Affine3::try_from(glam::Affine3A::from_translation(glam::vec3(10.,5.,10.))).unwrap(), ..Default::default() }); indexed_models[1].instances.push(model::ModelInstance{ transform:integer::Planar64Affine3::try_from(glam::Affine3A::from_translation(glam::vec3(20.,5.,10.))).unwrap(), color:glam::vec4(1.0,0.0,0.0,1.0), ..Default::default() }); indexed_models[1].instances.push(model::ModelInstance{ transform:integer::Planar64Affine3::try_from(glam::Affine3A::from_translation(glam::vec3(10.,5.,20.))).unwrap(), color:glam::vec4(0.0,1.0,0.0,1.0), ..Default::default() }); indexed_models[1].instances.push(model::ModelInstance{ transform:integer::Planar64Affine3::try_from(glam::Affine3A::from_translation(glam::vec3(20.,5.,20.))).unwrap(), color:glam::vec4(0.0,0.0,1.0,1.0), ..Default::default() }); //decorative monkey indexed_models[1].instances.push(model::ModelInstance{ transform:integer::Planar64Affine3::try_from(glam::Affine3A::from_translation(glam::vec3(15.,10.,15.))).unwrap(), color:glam::vec4(0.5,0.5,0.5,0.5), attributes:model::CollisionAttributes::Decoration, ..Default::default() }); //teapot indexed_models[2].instances.push(model::ModelInstance{ transform:integer::Planar64Affine3::try_from(glam::Affine3A::from_scale_rotation_translation(glam::vec3(0.5, 1.0, 0.2),glam::quat(-0.22248298016985793,-0.839457167990537,-0.05603504040830783,-0.49261857546227916),glam::vec3(-10.,7.,10.))).unwrap(), ..Default::default() }); //ground indexed_models[3].instances.push(model::ModelInstance{ transform:integer::Planar64Affine3::try_from(glam::Affine3A::from_translation(glam::vec3(0.,0.,0.))*glam::Affine3A::from_scale(glam::vec3(160.0, 1.0, 160.0))).unwrap(), ..Default::default() }); let camera_bind_group_layout = device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor { label: None, entries: &[ wgpu::BindGroupLayoutEntry { binding: 0, visibility: wgpu::ShaderStages::VERTEX, ty: wgpu::BindingType::Buffer { ty: wgpu::BufferBindingType::Uniform, has_dynamic_offset: false, min_binding_size: None, }, count: None, }, ], }); let skybox_texture_bind_group_layout = device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor { label: Some("Skybox Texture Bind Group Layout"), entries: &[ wgpu::BindGroupLayoutEntry { binding: 0, visibility: wgpu::ShaderStages::FRAGMENT, ty: wgpu::BindingType::Texture { sample_type: wgpu::TextureSampleType::Float { filterable: true }, multisampled: false, view_dimension: wgpu::TextureViewDimension::Cube, }, count: None, }, wgpu::BindGroupLayoutEntry { binding: 1, visibility: wgpu::ShaderStages::FRAGMENT, ty: wgpu::BindingType::Sampler(wgpu::SamplerBindingType::Filtering), count: None, }, ], }); let model_bind_group_layout = device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor { label: Some("Model Bind Group Layout"), entries: &[ wgpu::BindGroupLayoutEntry { binding: 0, visibility: wgpu::ShaderStages::VERTEX, ty: wgpu::BindingType::Buffer { ty: wgpu::BufferBindingType::Uniform, has_dynamic_offset: false, min_binding_size: None, }, count: None, }, wgpu::BindGroupLayoutEntry { binding: 1, visibility: wgpu::ShaderStages::FRAGMENT, ty: wgpu::BindingType::Texture { sample_type: wgpu::TextureSampleType::Float { filterable: true }, multisampled: false, view_dimension: wgpu::TextureViewDimension::D2, }, count: None, }, wgpu::BindGroupLayoutEntry { binding: 2, visibility: wgpu::ShaderStages::FRAGMENT, ty: wgpu::BindingType::Sampler(wgpu::SamplerBindingType::Filtering), count: None, }, ], }); let clamp_sampler = device.create_sampler(&wgpu::SamplerDescriptor { label: Some("Clamp Sampler"), address_mode_u: wgpu::AddressMode::ClampToEdge, address_mode_v: wgpu::AddressMode::ClampToEdge, address_mode_w: wgpu::AddressMode::ClampToEdge, mag_filter: wgpu::FilterMode::Linear, min_filter: wgpu::FilterMode::Linear, mipmap_filter: wgpu::FilterMode::Linear, ..Default::default() }); let repeat_sampler = device.create_sampler(&wgpu::SamplerDescriptor { label: Some("Repeat Sampler"), address_mode_u: wgpu::AddressMode::Repeat, address_mode_v: wgpu::AddressMode::Repeat, address_mode_w: wgpu::AddressMode::Repeat, mag_filter: wgpu::FilterMode::Linear, min_filter: wgpu::FilterMode::Linear, mipmap_filter: wgpu::FilterMode::Linear, ..Default::default() }); // Create the render pipeline let shader = device.create_shader_module(wgpu::ShaderModuleDescriptor { label: None, source: wgpu::ShaderSource::Wgsl(Cow::Borrowed(include_str!("shader.wgsl"))), }); //load textures let device_features = device.features(); let skybox_texture_view={ let skybox_format = if device_features.contains(wgpu::Features::TEXTURE_COMPRESSION_ASTC) { log::info!("Using ASTC"); wgpu::TextureFormat::Astc { block: AstcBlock::B4x4, channel: AstcChannel::UnormSrgb, } } else if device_features.contains(wgpu::Features::TEXTURE_COMPRESSION_ETC2) { log::info!("Using ETC2"); wgpu::TextureFormat::Etc2Rgb8UnormSrgb } else if device_features.contains(wgpu::Features::TEXTURE_COMPRESSION_BC) { log::info!("Using BC"); wgpu::TextureFormat::Bc1RgbaUnormSrgb } else { log::info!("Using plain"); wgpu::TextureFormat::Bgra8UnormSrgb }; let bytes = match skybox_format { wgpu::TextureFormat::Astc { block: AstcBlock::B4x4, channel: AstcChannel::UnormSrgb, } => &include_bytes!("../images/astc.dds")[..], wgpu::TextureFormat::Etc2Rgb8UnormSrgb => &include_bytes!("../images/etc2.dds")[..], wgpu::TextureFormat::Bc1RgbaUnormSrgb => &include_bytes!("../images/bc1.dds")[..], wgpu::TextureFormat::Bgra8UnormSrgb => &include_bytes!("../images/bgra.dds")[..], _ => unreachable!(), }; let skybox_image = ddsfile::Dds::read(&mut std::io::Cursor::new(bytes)).unwrap(); let size = wgpu::Extent3d { width: skybox_image.get_width(), height: skybox_image.get_height(), depth_or_array_layers: 6, }; let layer_size = wgpu::Extent3d { depth_or_array_layers: 1, ..size }; let max_mips = layer_size.max_mips(wgpu::TextureDimension::D2); log::debug!( "Copying {:?} skybox images of size {}, {}, 6 with {} mips to gpu", skybox_format, size.width, size.height, max_mips, ); let skybox_texture = device.create_texture_with_data( queue, &wgpu::TextureDescriptor { size, mip_level_count: max_mips, sample_count: 1, dimension: wgpu::TextureDimension::D2, format: skybox_format, usage: wgpu::TextureUsages::TEXTURE_BINDING | wgpu::TextureUsages::COPY_DST, label: Some("Skybox Texture"), view_formats: &[], }, &skybox_image.data, ); skybox_texture.create_view(&wgpu::TextureViewDescriptor { label: Some("Skybox Texture View"), dimension: Some(wgpu::TextureViewDimension::Cube), ..wgpu::TextureViewDescriptor::default() }) }; //squid let squid_texture_view={ let bytes = include_bytes!("../images/squid.dds"); let image = ddsfile::Dds::read(&mut std::io::Cursor::new(bytes)).unwrap(); let size = wgpu::Extent3d { width: image.get_width(), height: image.get_height(), depth_or_array_layers: 1, }; let layer_size = wgpu::Extent3d { depth_or_array_layers: 1, ..size }; let max_mips = layer_size.max_mips(wgpu::TextureDimension::D2); let texture = device.create_texture_with_data( queue, &wgpu::TextureDescriptor { size, mip_level_count: max_mips, sample_count: 1, dimension: wgpu::TextureDimension::D2, format: wgpu::TextureFormat::Bc7RgbaUnorm, usage: wgpu::TextureUsages::TEXTURE_BINDING | wgpu::TextureUsages::COPY_DST, label: Some("Squid Texture"), view_formats: &[], }, &image.data, ); texture.create_view(&wgpu::TextureViewDescriptor { label: Some("Squid Texture View"), dimension: Some(wgpu::TextureViewDimension::D2), ..wgpu::TextureViewDescriptor::default() }) }; let model_pipeline_layout = device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor { label: None, bind_group_layouts: &[ &camera_bind_group_layout, &skybox_texture_bind_group_layout, &model_bind_group_layout, ], push_constant_ranges: &[], }); let sky_pipeline_layout = device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor { label: None, bind_group_layouts: &[ &camera_bind_group_layout, &skybox_texture_bind_group_layout, ], push_constant_ranges: &[], }); // Create the render pipelines let sky_pipeline = device.create_render_pipeline(&wgpu::RenderPipelineDescriptor { label: Some("Sky Pipeline"), layout: Some(&sky_pipeline_layout), vertex: wgpu::VertexState { module: &shader, entry_point: "vs_sky", buffers: &[], }, fragment: Some(wgpu::FragmentState { module: &shader, entry_point: "fs_sky", targets: &[Some(config.view_formats[0].into())], }), primitive: wgpu::PrimitiveState { front_face: wgpu::FrontFace::Cw, ..Default::default() }, depth_stencil: Some(wgpu::DepthStencilState { format: Self::DEPTH_FORMAT, depth_write_enabled: false, depth_compare: wgpu::CompareFunction::LessEqual, stencil: wgpu::StencilState::default(), bias: wgpu::DepthBiasState::default(), }), multisample: wgpu::MultisampleState::default(), multiview: None, }); let model_pipeline = device.create_render_pipeline(&wgpu::RenderPipelineDescriptor { label: Some("Model Pipeline"), layout: Some(&model_pipeline_layout), vertex: wgpu::VertexState { module: &shader, entry_point: "vs_entity_texture", buffers: &[wgpu::VertexBufferLayout { array_stride: std::mem::size_of::() as wgpu::BufferAddress, step_mode: wgpu::VertexStepMode::Vertex, attributes: &wgpu::vertex_attr_array![0 => Float32x3, 1 => Float32x2, 2 => Float32x3, 3 => Float32x4], }], }, fragment: Some(wgpu::FragmentState { module: &shader, entry_point: "fs_entity_texture", targets: &[Some(config.view_formats[0].into())], }), primitive: wgpu::PrimitiveState { front_face: wgpu::FrontFace::Cw, ..Default::default() }, depth_stencil: Some(wgpu::DepthStencilState { format: Self::DEPTH_FORMAT, depth_write_enabled: true, depth_compare: wgpu::CompareFunction::LessEqual, stencil: wgpu::StencilState::default(), bias: wgpu::DepthBiasState::default(), }), multisample: wgpu::MultisampleState::default(), multiview: None, }); let mut physics = physics::PhysicsState::default(); physics.load_user_settings(&user_settings); let screen_size=glam::uvec2(config.width,config.height); let camera=GraphicsCamera::new(screen_size,user_settings.calculate_fov(1.0,&screen_size).as_vec2()); let camera_uniforms = camera.to_uniform_data(physics.output().adjust_mouse(&physics::MouseState::default())); let camera_buf = device.create_buffer_init(&wgpu::util::BufferInitDescriptor { label: Some("Camera"), contents: bytemuck::cast_slice(&camera_uniforms), usage: wgpu::BufferUsages::UNIFORM | wgpu::BufferUsages::COPY_DST, }); let camera_bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor { layout: &camera_bind_group_layout, entries: &[ wgpu::BindGroupEntry { binding: 0, resource: camera_buf.as_entire_binding(), }, ], label: Some("Camera"), }); let skybox_texture_bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor { layout: &skybox_texture_bind_group_layout, entries: &[ wgpu::BindGroupEntry { binding: 0, resource: wgpu::BindingResource::TextureView(&skybox_texture_view), }, wgpu::BindGroupEntry { binding: 1, resource: wgpu::BindingResource::Sampler(&clamp_sampler), }, ], label: Some("Sky Texture"), }); let depth_view = Self::create_depth_texture(config, device); let mut graphics=GraphicsState { pipelines:GraphicsPipelines{ skybox:sky_pipeline, model:model_pipeline }, bind_groups:GraphicsBindGroups{ camera:camera_bind_group, skybox_texture:skybox_texture_bind_group, }, camera, camera_buf, models: Vec::new(), depth_view, staging_belt: wgpu::util::StagingBelt::new(0x100), bind_group_layouts: GraphicsBindGroupLayouts { model: model_bind_group_layout }, samplers: GraphicsSamplers { repeat: repeat_sampler }, temp_squid_texture_view: squid_texture_view, }; graphics.load_user_settings(&user_settings); let indexed_model_instances=model::IndexedModelInstances{ textures:Vec::new(), models:indexed_models, spawn_point:integer::Planar64Vec3::Y*50, modes:Vec::new(), }; //how to multithread //1. build physics.generate_models(&indexed_model_instances); //2. move let physics_thread=physics.into_worker(); //3. forget let mut state=GlobalState{ start_time:Instant::now(), manual_mouse_lock:false, mouse:physics::MouseState::default(), user_settings, graphics, physics_thread, }; state.generate_model_graphics(&device,&queue,indexed_model_instances); let args:Vec=std::env::args().collect(); if args.len()==2{ state.load_file(std::path::PathBuf::from(&args[1]), device, queue); } return state; } fn load_file(&mut self,path: std::path::PathBuf, device: &wgpu::Device, queue: &wgpu::Queue){ println!("Loading file: {:?}", &path); //oh boy! let's load the map! if let Ok(file)=std::fs::File::open(path){ let mut input = std::io::BufReader::new(file); let mut first_8=[0u8;8]; //.rbxm roblox binary = "{ match match &first_8[4..8]{ b"lox!"=>rbx_binary::from_reader(input).map_err(|e|format!("{:?}",e)), b"lox "=>rbx_xml::from_reader(input,rbx_xml::DecodeOptions::default()).map_err(|e|format!("{:?}",e)), other=>Err(format!("Unknown Roblox file type {:?}",other)), }{ Ok(dom)=>Some(load_roblox::generate_indexed_models(dom)), Err(e)=>{ println!("Error loading roblox file:{:?}",e); None }, } }, //b"VBSP"=>Some(load_bsp::generate_indexed_models(input)), //b"SNFM"=>Some(sniffer::generate_indexed_models(input)), //b"SNFB"=>Some(sniffer::load_bot(input)), other=>{ println!("loser file {:?}",other); None }, } }{ let spawn_point=indexed_model_instances.spawn_point; //if generate_indexed_models succeeds, clear the previous ones self.graphics.clear(); let mut physics=physics::PhysicsState::default(); //physics.spawn() physics.game.stage_id=0; physics.spawn_point=spawn_point; physics.process_instruction(instruction::TimedInstruction{ time:physics.time, instruction: PhysicsInstruction::Input(physics::PhysicsInputInstruction::Reset), }); physics.load_user_settings(&self.user_settings); physics.generate_models(&indexed_model_instances); self.physics_thread=physics.into_worker(); //graphics.load_user_settings(&self.user_settings); self.generate_model_graphics(device,queue,indexed_model_instances); //manual reset }else{ println!("No modeldatas were generated"); } }else{ println!("Failed to read first 8 bytes and seek back to beginning of file."); } }else{ println!("Could not open file"); } } #[allow(clippy::single_match)] fn update(&mut self, window: &winit::window::Window, device: &wgpu::Device, queue: &wgpu::Queue, event: winit::event::WindowEvent) { let time=integer::Time::from_nanos(self.start_time.elapsed().as_nanos() as i64); match event { winit::event::WindowEvent::DroppedFile(path) => self.load_file(path,device,queue), winit::event::WindowEvent::Focused(state)=>{ //pause unpause //recalculate pressed keys on focus }, winit::event::WindowEvent::KeyboardInput { input:winit::event::KeyboardInput{state, virtual_keycode,..}, .. }=>{ let s=match state { winit::event::ElementState::Pressed => true, winit::event::ElementState::Released => false, }; match virtual_keycode{ Some(winit::event::VirtualKeyCode::Tab)=>{ if s{ self.manual_mouse_lock=false; match window.set_cursor_position(winit::dpi::PhysicalPosition::new(self.graphics.camera.screen_size.x as f32/2.0, self.graphics.camera.screen_size.y as f32/2.0)){ Ok(())=>(), Err(e)=>println!("Could not set cursor position: {:?}",e), } match window.set_cursor_grab(winit::window::CursorGrabMode::None){ Ok(())=>(), Err(e)=>println!("Could not release cursor: {:?}",e), } }else{ //if cursor is outside window don't lock but apparently there's no get pos function //let pos=window.get_cursor_pos(); match window.set_cursor_grab(winit::window::CursorGrabMode::Locked){ Ok(())=>(), Err(_)=>{ match window.set_cursor_grab(winit::window::CursorGrabMode::Confined){ Ok(())=>(), Err(e)=>{ self.manual_mouse_lock=true; println!("Could not confine cursor: {:?}",e) }, } } } } window.set_cursor_visible(s); }, Some(winit::event::VirtualKeyCode::F11)=>{ if s{ if window.fullscreen().is_some(){ window.set_fullscreen(None); }else{ window.set_fullscreen(Some(winit::window::Fullscreen::Borderless(None))); } } }, Some(winit::event::VirtualKeyCode::Escape)=>{ if s{ self.manual_mouse_lock=false; match window.set_cursor_grab(winit::window::CursorGrabMode::None){ Ok(())=>(), Err(e)=>println!("Could not release cursor: {:?}",e), } window.set_cursor_visible(true); } }, Some(keycode)=>{ if let Some(input_instruction)=match keycode { winit::event::VirtualKeyCode::W => Some(InputInstruction::MoveForward(s)), winit::event::VirtualKeyCode::A => Some(InputInstruction::MoveLeft(s)), winit::event::VirtualKeyCode::S => Some(InputInstruction::MoveBack(s)), winit::event::VirtualKeyCode::D => Some(InputInstruction::MoveRight(s)), winit::event::VirtualKeyCode::E => Some(InputInstruction::MoveUp(s)), winit::event::VirtualKeyCode::Q => Some(InputInstruction::MoveDown(s)), winit::event::VirtualKeyCode::Space => Some(InputInstruction::Jump(s)), winit::event::VirtualKeyCode::Z => Some(InputInstruction::Zoom(s)), winit::event::VirtualKeyCode::R => if s{Some(InputInstruction::Reset)}else{None}, _ => None, }{ self.physics_thread.send(TimedInstruction{ time, instruction:input_instruction, }).unwrap(); } }, _=>(), } }, _=>(), } } fn device_event(&mut self, window: &winit::window::Window, event: winit::event::DeviceEvent) { //there's no way this is the best way get a timestamp. let time=integer::Time::from_nanos(self.start_time.elapsed().as_nanos() as i64); match event { winit::event::DeviceEvent::MouseMotion { delta,//these (f64,f64) are integers on my machine } => { if self.manual_mouse_lock{ match window.set_cursor_position(winit::dpi::PhysicalPosition::new(self.graphics.camera.screen_size.x as f32/2.0, self.graphics.camera.screen_size.y as f32/2.0)){ Ok(())=>(), Err(e)=>println!("Could not set cursor position: {:?}",e), } } //do not step the physics because the mouse polling rate is higher than the physics can run. //essentially the previous input will be overwritten until a true step runs //which is fine because they run all the time. let delta=glam::ivec2(delta.0 as i32,delta.1 as i32); self.mouse.pos+=delta; self.physics_thread.send(TimedInstruction{ time, instruction:InputInstruction::MoveMouse(self.mouse.pos), }).unwrap(); }, winit::event::DeviceEvent::MouseWheel { delta, } => { println!("mousewheel {:?}",delta); if false{//self.physics.style.use_scroll{ self.physics_thread.send(TimedInstruction{ time, instruction:InputInstruction::Jump(true),//activates the immediate jump path, but the style modifier prevents controls&CONTROL_JUMP bit from being set to auto jump }).unwrap(); } } _=>(), } } fn resize( &mut self, config: &wgpu::SurfaceConfiguration, device: &wgpu::Device, _queue: &wgpu::Queue, ) { self.graphics.depth_view = Self::create_depth_texture(config, device); self.graphics.camera.screen_size=glam::uvec2(config.width, config.height); self.graphics.load_user_settings(&self.user_settings); } fn render( &mut self, view: &wgpu::TextureView, device: &wgpu::Device, queue: &wgpu::Queue, _spawner: &framework::Spawner, ) { //ideally this would be scheduled to execute and finish right before the render. let time=integer::Time::from_nanos(self.start_time.elapsed().as_nanos() as i64); self.physics_thread.send(TimedInstruction{ time, instruction:InputInstruction::Idle, }).unwrap(); //update time lol self.mouse.time=time; let mut encoder = device.create_command_encoder(&wgpu::CommandEncoderDescriptor { label: None }); // update rotation let camera_uniforms = self.graphics.camera.to_uniform_data(self.physics_thread.grab_clone().adjust_mouse(&self.mouse)); self.graphics.staging_belt .write_buffer( &mut encoder, &self.graphics.camera_buf, 0, wgpu::BufferSize::new((camera_uniforms.len() * 4) as wgpu::BufferAddress).unwrap(), device, ) .copy_from_slice(bytemuck::cast_slice(&camera_uniforms)); //This code only needs to run when the uniforms change /* for model in self.graphics.models.iter() { let model_uniforms = get_instances_buffer_data(&model.instances); self.graphics.staging_belt .write_buffer( &mut encoder, &model.model_buf,//description of where data will be written when command is executed 0,//offset in staging belt? wgpu::BufferSize::new((model_uniforms.len() * 4) as wgpu::BufferAddress).unwrap(), device, ) .copy_from_slice(bytemuck::cast_slice(&model_uniforms)); } */ self.graphics.staging_belt.finish(); { let mut rpass = encoder.begin_render_pass(&wgpu::RenderPassDescriptor { label: None, color_attachments: &[Some(wgpu::RenderPassColorAttachment { view, resolve_target: None, ops: wgpu::Operations { load: wgpu::LoadOp::Clear(wgpu::Color { r: 0.1, g: 0.2, b: 0.3, a: 1.0, }), store: true, }, })], depth_stencil_attachment: Some(wgpu::RenderPassDepthStencilAttachment { view: &self.graphics.depth_view, depth_ops: Some(wgpu::Operations { load: wgpu::LoadOp::Clear(1.0), store: false, }), stencil_ops: None, }), }); rpass.set_bind_group(0, &self.graphics.bind_groups.camera, &[]); rpass.set_bind_group(1, &self.graphics.bind_groups.skybox_texture, &[]); rpass.set_pipeline(&self.graphics.pipelines.model); for model in self.graphics.models.iter() { rpass.set_bind_group(2, &model.bind_group, &[]); rpass.set_vertex_buffer(0, model.vertex_buf.slice(..)); for entity in model.entities.iter() { rpass.set_index_buffer(entity.index_buf.slice(..), wgpu::IndexFormat::Uint16); rpass.draw_indexed(0..entity.index_count, 0, 0..model.instances.len() as u32); } } rpass.set_pipeline(&self.graphics.pipelines.skybox); rpass.draw(0..3, 0..1); } queue.submit(std::iter::once(encoder.finish())); self.graphics.staging_belt.recall(); } } fn main() { framework::run::( format!("Strafe Client v{}", env!("CARGO_PKG_VERSION") ).as_str() ); }