use std::borrow::Cow; use wgpu::{util::DeviceExt,AstcBlock,AstcChannel}; use crate::model_graphics::{GraphicsVertex,GraphicsModelColor4,GraphicsModelInstance,GraphicsModelSingleTexture,IndexedGraphicsModelSingleTexture,IndexedGroupFixedTexture}; #[derive(Clone)] pub struct GraphicsModelUpdate{ transform:Option, color:Option, } struct Entity{ index_count:u32, index_buf:wgpu::Buffer, } fn create_entities(device:&wgpu::Device,entities:&Vec>)->Vec{ entities.iter().map(|indices|{ let index_buf=device.create_buffer_init(&wgpu::util::BufferInitDescriptor{ label:Some("Index"), contents:bytemuck::cast_slice(indices), usage:wgpu::BufferUsages::INDEX, }); Entity{ index_buf, index_count:indices.len() as u32, } }).collect() } struct GraphicsModel{ entities:Vec, model_buf:wgpu::Buffer, vertex_buf:wgpu::Buffer, bind_group:wgpu::BindGroup, index_format:wgpu::IndexFormat, instances:Vec, } pub struct GraphicsSamplers{ repeat: wgpu::Sampler, } pub struct GraphicsBindGroupLayouts{ model: wgpu::BindGroupLayout, } pub struct GraphicsBindGroups { camera: wgpu::BindGroup, skybox_texture: wgpu::BindGroup, } pub struct GraphicsPipelines{ skybox: wgpu::RenderPipeline, model: wgpu::RenderPipeline, } pub struct GraphicsCamera{ screen_size: glam::UVec2, fov: glam::Vec2,//slope //camera angles and such are extrapolated and passed in every time } #[inline] fn perspective_rh(fov_x_slope: f32, fov_y_slope: f32, z_near: f32, z_far: f32) -> glam::Mat4 { //glam_assert!(z_near > 0.0 && z_far > 0.0); let r = z_far / (z_near - z_far); glam::Mat4::from_cols( glam::Vec4::new(1.0/fov_x_slope, 0.0, 0.0, 0.0), glam::Vec4::new(0.0, 1.0/fov_y_slope, 0.0, 0.0), glam::Vec4::new(0.0, 0.0, r, -1.0), glam::Vec4::new(0.0, 0.0, r * z_near, 0.0), ) } impl GraphicsCamera{ pub fn proj(&self)->glam::Mat4{ perspective_rh(self.fov.x, self.fov.y, 0.5, 2000.0) } pub fn world(&self,pos:glam::Vec3,angles:glam::Vec2)->glam::Mat4{ //f32 good enough for view matrix glam::Mat4::from_translation(pos) * glam::Mat4::from_euler(glam::EulerRot::YXZ, angles.x, angles.y, 0f32) } pub fn to_uniform_data(&self,(pos,angles): (glam::Vec3,glam::Vec2)) -> [f32; 16 * 4] { let proj=self.proj(); let proj_inv = proj.inverse(); let view_inv=self.world(pos,angles); let view=view_inv.inverse(); let mut raw = [0f32; 16 * 4]; raw[..16].copy_from_slice(&AsRef::<[f32; 16]>::as_ref(&proj)[..]); raw[16..32].copy_from_slice(&AsRef::<[f32; 16]>::as_ref(&proj_inv)[..]); raw[32..48].copy_from_slice(&AsRef::<[f32; 16]>::as_ref(&view)[..]); raw[48..64].copy_from_slice(&AsRef::<[f32; 16]>::as_ref(&view_inv)[..]); raw } } impl std::default::Default for GraphicsCamera{ fn default()->Self{ Self{ screen_size:glam::UVec2::ONE, fov:glam::Vec2::ONE, } } } pub struct GraphicsState{ pipelines: GraphicsPipelines, bind_groups: GraphicsBindGroups, bind_group_layouts: GraphicsBindGroupLayouts, samplers: GraphicsSamplers, camera:GraphicsCamera, camera_buf: wgpu::Buffer, temp_squid_texture_view: wgpu::TextureView, models: Vec, depth_view: wgpu::TextureView, staging_belt: wgpu::util::StagingBelt, } impl GraphicsState{ const DEPTH_FORMAT: wgpu::TextureFormat=wgpu::TextureFormat::Depth24Plus; fn create_depth_texture( config: &wgpu::SurfaceConfiguration, device: &wgpu::Device, ) -> wgpu::TextureView { let depth_texture=device.create_texture(&wgpu::TextureDescriptor { size: wgpu::Extent3d { width: config.width, height: config.height, depth_or_array_layers: 1, }, mip_level_count: 1, sample_count: 1, dimension: wgpu::TextureDimension::D2, format: Self::DEPTH_FORMAT, usage: wgpu::TextureUsages::RENDER_ATTACHMENT, label: None, view_formats: &[], }); depth_texture.create_view(&wgpu::TextureViewDescriptor::default()) } pub fn clear(&mut self){ self.models.clear(); } pub fn load_user_settings(&mut self,user_settings:&crate::settings::UserSettings){ self.camera.fov=user_settings.calculate_fov(1.0,&self.camera.screen_size).as_vec2(); } pub fn generate_models(&mut self,device:&wgpu::Device,queue:&wgpu::Queue,indexed_models:crate::model::IndexedModelInstances){ //generate texture view per texture //idk how to do this gooder lol let mut double_map=std::collections::HashMap::::new(); let mut texture_loading_threads=Vec::new(); let num_textures=indexed_models.textures.len(); for (i,texture_id) in indexed_models.textures.into_iter().enumerate(){ let path=std::path::PathBuf::from(format!("textures/{}.dds",texture_id)); if let Ok(mut file) = std::fs::File::open(path.clone()){ double_map.insert(i as u32, texture_loading_threads.len() as u32); texture_loading_threads.push((texture_id,std::thread::spawn(move ||{ ddsfile::Dds::read(&mut file).unwrap() }))); }else{ //println!("missing texture path={:?}",path); } } let texture_views:Vec=texture_loading_threads.into_iter().map(|(texture_id,thread)|{ let image=thread.join().unwrap(); let (mut width,mut height)=(image.get_width(),image.get_height()); let format=match image.header10.unwrap().dxgi_format{ ddsfile::DxgiFormat::R8G8B8A8_UNorm_sRGB => wgpu::TextureFormat::Rgba8UnormSrgb, ddsfile::DxgiFormat::BC7_UNorm_sRGB => { //floor(w,4), should be ceil(w,4) width=width/4*4; height=height/4*4; wgpu::TextureFormat::Bc7RgbaUnormSrgb }, other=>panic!("unsupported format {:?}",other), }; let size = wgpu::Extent3d { width, height, depth_or_array_layers: 1, }; let layer_size = wgpu::Extent3d { depth_or_array_layers: 1, ..size }; let max_mips = layer_size.max_mips(wgpu::TextureDimension::D2); let texture = device.create_texture_with_data( queue, &wgpu::TextureDescriptor { size, mip_level_count: max_mips, sample_count: 1, dimension: wgpu::TextureDimension::D2, format, usage: wgpu::TextureUsages::TEXTURE_BINDING | wgpu::TextureUsages::COPY_DST, label: Some(format!("Texture{}",texture_id).as_str()), view_formats: &[], }, wgpu::util::TextureDataOrder::LayerMajor, &image.data, ); texture.create_view(&wgpu::TextureViewDescriptor { label: Some(format!("Texture{} View",texture_id).as_str()), dimension: Some(wgpu::TextureViewDimension::D2), ..wgpu::TextureViewDescriptor::default() }) }).collect(); //split groups with different textures into separate models //the models received here are supposed to be tightly packed, i.e. no code needs to check if two models are using the same groups. let indexed_models_len=indexed_models.models.len(); let mut unique_texture_models=Vec::with_capacity(indexed_models_len); for model in indexed_models.models.into_iter(){ //convert ModelInstance into GraphicsModelInstance let instances:Vec=model.instances.into_iter().filter_map(|instance|{ if instance.color.w==0.0{ None }else{ Some(GraphicsModelInstance{ transform: instance.transform.into(), normal_transform: Into::::into(instance.transform.matrix3).inverse().transpose(), color:GraphicsModelColor4::from(instance.color), }) } }).collect(); //skip pushing a model if all instances are invisible if instances.len()==0{ continue; } //check each group, if it's using a new texture then make a new clone of the model let id=unique_texture_models.len(); let mut unique_textures=Vec::new(); for group in model.groups.into_iter(){ //ignore zero copy optimization for now let texture_index=if let Some(texture_index)=unique_textures.iter().position(|&texture|texture==group.texture){ texture_index }else{ //create new texture_index let texture_index=unique_textures.len(); unique_textures.push(group.texture); unique_texture_models.push(IndexedGraphicsModelSingleTexture{ unique_pos:model.unique_pos.iter().map(|&v|*Into::::into(v).as_ref()).collect(), unique_tex:model.unique_tex.iter().map(|v|*v.as_ref()).collect(), unique_normal:model.unique_normal.iter().map(|&v|*Into::::into(v).as_ref()).collect(), unique_color:model.unique_color.iter().map(|v|*v.as_ref()).collect(), unique_vertices:model.unique_vertices.clone(), texture:group.texture, groups:Vec::new(), instances:instances.clone(), }); texture_index }; unique_texture_models[id+texture_index].groups.push(IndexedGroupFixedTexture{ polys:group.polys, }); } } //check every model to see if it's using the same (texture,color) but has few instances, if it is combine it into one model //1. collect unique instances of texture and color, note model id //2. for each model id, check if removing it from the pool decreases both the model count and instance count by more than one //3. transpose all models that stay in the set //best plan: benchmark set_bind_group, set_vertex_buffer, set_index_buffer and draw_indexed //check if the estimated render performance is better by transposing multiple model instances into one model instance //for now: just deduplicate single models... let mut deduplicated_models=Vec::with_capacity(indexed_models_len);//use indexed_models_len because the list will likely get smaller instead of bigger let mut unique_texture_color=std::collections::HashMap::new();//texture->color->vec![(model_id,instance_id)] for (model_id,model) in unique_texture_models.iter().enumerate(){ //for now: filter out models with more than one instance if 1=model.unique_pos.iter().map(|untransformed_pos|{ let pos=instance.transform.transform_point3(glam::Vec3::from_array(untransformed_pos.clone())).to_array(); let h=pos.map(|v|bytemuck::cast::(v)); (if let Some(&pos_id)=pos_id_from.get(&h){ pos_id }else{ let pos_id=unique_pos.len(); unique_pos.push(pos.clone()); pos_id_from.insert(h,pos_id); pos_id }) as u32 }).collect(); let map_tex_id:Vec=model.unique_tex.iter().map(|tex|{ let h=tex.map(|v|bytemuck::cast::(v)); (if let Some(&tex_id)=tex_id_from.get(&h){ tex_id }else{ let tex_id=unique_tex.len(); unique_tex.push(tex.clone()); tex_id_from.insert(h,tex_id); tex_id }) as u32 }).collect(); let map_normal_id:Vec=model.unique_normal.iter().map(|untransformed_normal|{ let normal=(instance.normal_transform*glam::Vec3::from_array(untransformed_normal.clone())).to_array(); let h=normal.map(|v|bytemuck::cast::(v)); (if let Some(&normal_id)=normal_id_from.get(&h){ normal_id }else{ let normal_id=unique_normal.len(); unique_normal.push(normal.clone()); normal_id_from.insert(h,normal_id); normal_id }) as u32 }).collect(); let map_color_id:Vec=model.unique_color.iter().map(|color|{ let h=color.map(|v|bytemuck::cast::(v)); (if let Some(&color_id)=color_id_from.get(&h){ color_id }else{ let color_id=unique_color.len(); unique_color.push(color.clone()); color_id_from.insert(h,color_id); color_id }) as u32 }).collect(); //map the indexed vertices onto new indices //creating the vertex map is slightly different because the vertices are directly hashable let map_vertex_id:Vec=model.unique_vertices.iter().map(|unmapped_vertex|{ let vertex=crate::model::IndexedVertex{ pos:map_pos_id[unmapped_vertex.pos as usize], tex:map_tex_id[unmapped_vertex.tex as usize], normal:map_normal_id[unmapped_vertex.normal as usize], color:map_color_id[unmapped_vertex.color as usize], }; (if let Some(&vertex_id)=vertex_id_from.get(&vertex){ vertex_id }else{ let vertex_id=unique_vertices.len(); unique_vertices.push(vertex.clone()); vertex_id_from.insert(vertex,vertex_id); vertex_id }) as u32 }).collect(); for group in &model.groups{ for poly in &group.polys{ polys.push(crate::model::IndexedPolygon{vertices:poly.vertices.iter().map(|&vertex_id|map_vertex_id[vertex_id as usize]).collect()}); } } } //push model into dedup deduplicated_models.push(IndexedGraphicsModelSingleTexture{ unique_pos, unique_tex, unique_normal, unique_color, unique_vertices, texture, groups:vec![IndexedGroupFixedTexture{ polys }], instances:vec![GraphicsModelInstance{ transform:glam::Mat4::IDENTITY, normal_transform:glam::Mat3::IDENTITY, color }], }); } } } //fill untouched models for (model_id,model) in unique_texture_models.into_iter().enumerate(){ if !selected_model_instances.contains(&model_id){ deduplicated_models.push(model); } } //de-index models let deduplicated_models_len=deduplicated_models.len(); let models:Vec=deduplicated_models.into_iter().map(|model|{ let mut vertices = Vec::new(); let mut index_from_vertex = std::collections::HashMap::new();//:: //this mut be combined in a more complex way if the models use different render patterns per group let mut indices = Vec::new(); for group in model.groups { for poly in group.polys { for end_index in 2..poly.vertices.len() { for &index in &[0, end_index - 1, end_index] { let vertex_index = poly.vertices[index]; if let Some(&i)=index_from_vertex.get(&vertex_index){ indices.push(i); }else{ let i=vertices.len(); let vertex=&model.unique_vertices[vertex_index as usize]; vertices.push(GraphicsVertex{ pos: model.unique_pos[vertex.pos as usize], tex: model.unique_tex[vertex.tex as usize], normal: model.unique_normal[vertex.normal as usize], color:model.unique_color[vertex.color as usize], }); index_from_vertex.insert(vertex_index,i); indices.push(i); } } } } } GraphicsModelSingleTexture{ instances:model.instances, entities:if (u32::MAX as usize){ match double_map.get(&texture_id){ Some(&mapped_texture_id)=>&texture_views[mapped_texture_id as usize], None=>&self.temp_squid_texture_view, } }, None=>&self.temp_squid_texture_view, }; let model_bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor { layout: &self.bind_group_layouts.model, entries: &[ wgpu::BindGroupEntry { binding: 0, resource: model_buf.as_entire_binding(), }, wgpu::BindGroupEntry { binding: 1, resource: wgpu::BindingResource::TextureView(texture_view), }, wgpu::BindGroupEntry { binding: 2, resource: wgpu::BindingResource::Sampler(&self.samplers.repeat), }, ], label: Some(format!("Model{} Bind Group",model_count).as_str()), }); let vertex_buf = device.create_buffer_init(&wgpu::util::BufferInitDescriptor { label: Some("Vertex"), contents: bytemuck::cast_slice(&model.vertices), usage: wgpu::BufferUsages::VERTEX, }); //all of these are being moved here self.models.push(GraphicsModel{ instances:instances_chunk.to_vec(), vertex_buf, index_format:match &model.entities{ crate::model_graphics::Entities::U32(_)=>wgpu::IndexFormat::Uint32, crate::model_graphics::Entities::U16(_)=>wgpu::IndexFormat::Uint16, }, entities:match &model.entities{ crate::model_graphics::Entities::U32(entities)=>create_entities(device,entities), crate::model_graphics::Entities::U16(entities)=>create_entities(device,entities), }, bind_group: model_bind_group, model_buf, }); } } println!("Texture References={}",num_textures); println!("Textures Loaded={}",texture_views.len()); println!("Indexed Models={}",indexed_models_len); println!("Deduplicated Models={}",deduplicated_models_len); println!("Graphics Objects: {}",self.models.len()); println!("Graphics Instances: {}",instance_count); } pub fn new( device:&wgpu::Device, queue:&wgpu::Queue, config:&wgpu::SurfaceConfiguration, )->Self{ let camera_bind_group_layout = device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor { label: None, entries: &[ wgpu::BindGroupLayoutEntry { binding: 0, visibility: wgpu::ShaderStages::VERTEX, ty: wgpu::BindingType::Buffer { ty: wgpu::BufferBindingType::Uniform, has_dynamic_offset: false, min_binding_size: None, }, count: None, }, ], }); let skybox_texture_bind_group_layout = device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor { label: Some("Skybox Texture Bind Group Layout"), entries: &[ wgpu::BindGroupLayoutEntry { binding: 0, visibility: wgpu::ShaderStages::FRAGMENT, ty: wgpu::BindingType::Texture { sample_type: wgpu::TextureSampleType::Float { filterable: true }, multisampled: false, view_dimension: wgpu::TextureViewDimension::Cube, }, count: None, }, wgpu::BindGroupLayoutEntry { binding: 1, visibility: wgpu::ShaderStages::FRAGMENT, ty: wgpu::BindingType::Sampler(wgpu::SamplerBindingType::Filtering), count: None, }, ], }); let model_bind_group_layout = device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor { label: Some("Model Bind Group Layout"), entries: &[ wgpu::BindGroupLayoutEntry { binding: 0, visibility: wgpu::ShaderStages::VERTEX, ty: wgpu::BindingType::Buffer { ty: wgpu::BufferBindingType::Uniform, has_dynamic_offset: false, min_binding_size: None, }, count: None, }, wgpu::BindGroupLayoutEntry { binding: 1, visibility: wgpu::ShaderStages::FRAGMENT, ty: wgpu::BindingType::Texture { sample_type: wgpu::TextureSampleType::Float { filterable: true }, multisampled: false, view_dimension: wgpu::TextureViewDimension::D2, }, count: None, }, wgpu::BindGroupLayoutEntry { binding: 2, visibility: wgpu::ShaderStages::FRAGMENT, ty: wgpu::BindingType::Sampler(wgpu::SamplerBindingType::Filtering), count: None, }, ], }); let clamp_sampler = device.create_sampler(&wgpu::SamplerDescriptor { label: Some("Clamp Sampler"), address_mode_u: wgpu::AddressMode::ClampToEdge, address_mode_v: wgpu::AddressMode::ClampToEdge, address_mode_w: wgpu::AddressMode::ClampToEdge, mag_filter: wgpu::FilterMode::Linear, min_filter: wgpu::FilterMode::Linear, mipmap_filter: wgpu::FilterMode::Linear, ..Default::default() }); let repeat_sampler = device.create_sampler(&wgpu::SamplerDescriptor { label: Some("Repeat Sampler"), address_mode_u: wgpu::AddressMode::Repeat, address_mode_v: wgpu::AddressMode::Repeat, address_mode_w: wgpu::AddressMode::Repeat, mag_filter: wgpu::FilterMode::Linear, min_filter: wgpu::FilterMode::Linear, mipmap_filter: wgpu::FilterMode::Linear, anisotropy_clamp:16, ..Default::default() }); // Create the render pipeline let shader = device.create_shader_module(wgpu::ShaderModuleDescriptor { label: None, source: wgpu::ShaderSource::Wgsl(Cow::Borrowed(include_str!("shader.wgsl"))), }); //load textures let device_features = device.features(); let skybox_texture_view={ let skybox_format = if device_features.contains(wgpu::Features::TEXTURE_COMPRESSION_ASTC) { println!("Using ASTC"); wgpu::TextureFormat::Astc { block: AstcBlock::B4x4, channel: AstcChannel::UnormSrgb, } } else if device_features.contains(wgpu::Features::TEXTURE_COMPRESSION_ETC2) { println!("Using ETC2"); wgpu::TextureFormat::Etc2Rgb8UnormSrgb } else if device_features.contains(wgpu::Features::TEXTURE_COMPRESSION_BC) { println!("Using BC"); wgpu::TextureFormat::Bc1RgbaUnormSrgb } else { println!("Using plain"); wgpu::TextureFormat::Bgra8UnormSrgb }; let bytes = match skybox_format { wgpu::TextureFormat::Astc { block: AstcBlock::B4x4, channel: AstcChannel::UnormSrgb, } => &include_bytes!("../images/astc.dds")[..], wgpu::TextureFormat::Etc2Rgb8UnormSrgb => &include_bytes!("../images/etc2.dds")[..], wgpu::TextureFormat::Bc1RgbaUnormSrgb => &include_bytes!("../images/bc1.dds")[..], wgpu::TextureFormat::Bgra8UnormSrgb => &include_bytes!("../images/bgra.dds")[..], _ => unreachable!(), }; let skybox_image = ddsfile::Dds::read(&mut std::io::Cursor::new(bytes)).unwrap(); let size = wgpu::Extent3d { width: skybox_image.get_width(), height: skybox_image.get_height(), depth_or_array_layers: 6, }; let layer_size = wgpu::Extent3d { depth_or_array_layers: 1, ..size }; let max_mips = layer_size.max_mips(wgpu::TextureDimension::D2); let skybox_texture = device.create_texture_with_data( queue, &wgpu::TextureDescriptor { size, mip_level_count: max_mips, sample_count: 1, dimension: wgpu::TextureDimension::D2, format: skybox_format, usage: wgpu::TextureUsages::TEXTURE_BINDING | wgpu::TextureUsages::COPY_DST, label: Some("Skybox Texture"), view_formats: &[], }, wgpu::util::TextureDataOrder::LayerMajor, &skybox_image.data, ); skybox_texture.create_view(&wgpu::TextureViewDescriptor { label: Some("Skybox Texture View"), dimension: Some(wgpu::TextureViewDimension::Cube), ..wgpu::TextureViewDescriptor::default() }) }; //squid let squid_texture_view={ let bytes = include_bytes!("../images/squid.dds"); let image = ddsfile::Dds::read(&mut std::io::Cursor::new(bytes)).unwrap(); let size = wgpu::Extent3d { width: image.get_width(), height: image.get_height(), depth_or_array_layers: 1, }; let layer_size = wgpu::Extent3d { depth_or_array_layers: 1, ..size }; let max_mips = layer_size.max_mips(wgpu::TextureDimension::D2); let texture = device.create_texture_with_data( queue, &wgpu::TextureDescriptor { size, mip_level_count: max_mips, sample_count: 1, dimension: wgpu::TextureDimension::D2, format: wgpu::TextureFormat::Bc7RgbaUnorm, usage: wgpu::TextureUsages::TEXTURE_BINDING | wgpu::TextureUsages::COPY_DST, label: Some("Squid Texture"), view_formats: &[], }, wgpu::util::TextureDataOrder::LayerMajor, &image.data, ); texture.create_view(&wgpu::TextureViewDescriptor { label: Some("Squid Texture View"), dimension: Some(wgpu::TextureViewDimension::D2), ..wgpu::TextureViewDescriptor::default() }) }; let model_pipeline_layout = device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor { label: None, bind_group_layouts: &[ &camera_bind_group_layout, &skybox_texture_bind_group_layout, &model_bind_group_layout, ], push_constant_ranges: &[], }); let sky_pipeline_layout = device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor { label: None, bind_group_layouts: &[ &camera_bind_group_layout, &skybox_texture_bind_group_layout, ], push_constant_ranges: &[], }); // Create the render pipelines let sky_pipeline = device.create_render_pipeline(&wgpu::RenderPipelineDescriptor { label: Some("Sky Pipeline"), layout: Some(&sky_pipeline_layout), vertex: wgpu::VertexState { module: &shader, entry_point: "vs_sky", buffers: &[], }, fragment: Some(wgpu::FragmentState { module: &shader, entry_point: "fs_sky", targets: &[Some(config.view_formats[0].into())], }), primitive: wgpu::PrimitiveState { front_face: wgpu::FrontFace::Cw, ..Default::default() }, depth_stencil: Some(wgpu::DepthStencilState { format: Self::DEPTH_FORMAT, depth_write_enabled: false, depth_compare: wgpu::CompareFunction::LessEqual, stencil: wgpu::StencilState::default(), bias: wgpu::DepthBiasState::default(), }), multisample: wgpu::MultisampleState::default(), multiview: None, }); let model_pipeline = device.create_render_pipeline(&wgpu::RenderPipelineDescriptor { label: Some("Model Pipeline"), layout: Some(&model_pipeline_layout), vertex: wgpu::VertexState { module: &shader, entry_point: "vs_entity_texture", buffers: &[wgpu::VertexBufferLayout { array_stride: std::mem::size_of::() as wgpu::BufferAddress, step_mode: wgpu::VertexStepMode::Vertex, attributes: &wgpu::vertex_attr_array![0 => Float32x3, 1 => Float32x2, 2 => Float32x3, 3 => Float32x4], }], }, fragment: Some(wgpu::FragmentState { module: &shader, entry_point: "fs_entity_texture", targets: &[Some(config.view_formats[0].into())], }), primitive: wgpu::PrimitiveState { front_face: wgpu::FrontFace::Cw, cull_mode:Some(wgpu::Face::Front), ..Default::default() }, depth_stencil: Some(wgpu::DepthStencilState { format: Self::DEPTH_FORMAT, depth_write_enabled: true, depth_compare: wgpu::CompareFunction::LessEqual, stencil: wgpu::StencilState::default(), bias: wgpu::DepthBiasState::default(), }), multisample: wgpu::MultisampleState::default(), multiview: None, }); let camera=GraphicsCamera::default(); let camera_uniforms = camera.to_uniform_data(crate::physics::PhysicsOutputState::default().extrapolate(glam::IVec2::ZERO,crate::integer::Time::ZERO)); let camera_buf = device.create_buffer_init(&wgpu::util::BufferInitDescriptor { label: Some("Camera"), contents: bytemuck::cast_slice(&camera_uniforms), usage: wgpu::BufferUsages::UNIFORM | wgpu::BufferUsages::COPY_DST, }); let camera_bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor { layout: &camera_bind_group_layout, entries: &[ wgpu::BindGroupEntry { binding: 0, resource: camera_buf.as_entire_binding(), }, ], label: Some("Camera"), }); let skybox_texture_bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor { layout: &skybox_texture_bind_group_layout, entries: &[ wgpu::BindGroupEntry { binding: 0, resource: wgpu::BindingResource::TextureView(&skybox_texture_view), }, wgpu::BindGroupEntry { binding: 1, resource: wgpu::BindingResource::Sampler(&clamp_sampler), }, ], label: Some("Sky Texture"), }); let depth_view = Self::create_depth_texture(config, device); Self{ pipelines:GraphicsPipelines{ skybox:sky_pipeline, model:model_pipeline }, bind_groups:GraphicsBindGroups{ camera:camera_bind_group, skybox_texture:skybox_texture_bind_group, }, camera, camera_buf, models: Vec::new(), depth_view, staging_belt: wgpu::util::StagingBelt::new(0x100), bind_group_layouts: GraphicsBindGroupLayouts { model: model_bind_group_layout }, samplers: GraphicsSamplers { repeat: repeat_sampler }, temp_squid_texture_view: squid_texture_view, } } pub fn resize( &mut self, device:&wgpu::Device, config:&wgpu::SurfaceConfiguration, user_settings:&crate::settings::UserSettings, ) { self.depth_view=Self::create_depth_texture(config,device); self.camera.screen_size=glam::uvec2(config.width,config.height); self.load_user_settings(user_settings); } pub fn render( &mut self, view:&wgpu::TextureView, device:&wgpu::Device, queue:&wgpu::Queue, physics_output:crate::physics::PhysicsOutputState, predicted_time:crate::integer::Time, mouse_pos:glam::IVec2, ) { //TODO: use scheduled frame times to create beautiful smoothing simulation physics extrapolation assuming no input let mut encoder = device.create_command_encoder(&wgpu::CommandEncoderDescriptor { label: None }); // update rotation let camera_uniforms = self.camera.to_uniform_data(physics_output.extrapolate(mouse_pos,predicted_time)); self.staging_belt .write_buffer( &mut encoder, &self.camera_buf, 0, wgpu::BufferSize::new((camera_uniforms.len() * 4) as wgpu::BufferAddress).unwrap(), device, ) .copy_from_slice(bytemuck::cast_slice(&camera_uniforms)); //This code only needs to run when the uniforms change /* for model in self.models.iter() { let model_uniforms = get_instances_buffer_data(&model.instances); self.staging_belt .write_buffer( &mut encoder, &model.model_buf,//description of where data will be written when command is executed 0,//offset in staging belt? wgpu::BufferSize::new((model_uniforms.len() * 4) as wgpu::BufferAddress).unwrap(), device, ) .copy_from_slice(bytemuck::cast_slice(&model_uniforms)); } */ self.staging_belt.finish(); { let mut rpass = encoder.begin_render_pass(&wgpu::RenderPassDescriptor { label: None, color_attachments: &[Some(wgpu::RenderPassColorAttachment { view, resolve_target: None, ops: wgpu::Operations { load: wgpu::LoadOp::Clear(wgpu::Color { r: 0.1, g: 0.2, b: 0.3, a: 1.0, }), store:wgpu::StoreOp::Store, }, })], depth_stencil_attachment: Some(wgpu::RenderPassDepthStencilAttachment { view: &self.depth_view, depth_ops: Some(wgpu::Operations { load: wgpu::LoadOp::Clear(1.0), store:wgpu::StoreOp::Discard, }), stencil_ops: None, }), timestamp_writes:Default::default(), occlusion_query_set:Default::default(), }); rpass.set_bind_group(0, &self.bind_groups.camera, &[]); rpass.set_bind_group(1, &self.bind_groups.skybox_texture, &[]); rpass.set_pipeline(&self.pipelines.model); for model in self.models.iter() { rpass.set_bind_group(2, &model.bind_group, &[]); rpass.set_vertex_buffer(0, model.vertex_buf.slice(..)); for entity in model.entities.iter(){ rpass.set_index_buffer(entity.index_buf.slice(..),model.index_format); rpass.draw_indexed(0..entity.index_count,0,0..model.instances.len() as u32); } } rpass.set_pipeline(&self.pipelines.skybox); rpass.draw(0..3, 0..1); } queue.submit(std::iter::once(encoder.finish())); self.staging_belt.recall(); } } const MODEL_BUFFER_SIZE:usize=4*4 + 12 + 4;//let size=std::mem::size_of::(); const MODEL_BUFFER_SIZE_BYTES:usize=MODEL_BUFFER_SIZE*4; fn get_instances_buffer_data(instances:&[GraphicsModelInstance]) -> Vec { let mut raw = Vec::with_capacity(MODEL_BUFFER_SIZE*instances.len()); for (i,mi) in instances.iter().enumerate(){ let mut v = raw.split_off(MODEL_BUFFER_SIZE*i); //model transform raw.extend_from_slice(&AsRef::<[f32; 4*4]>::as_ref(&mi.transform)[..]); //normal transform raw.extend_from_slice(AsRef::<[f32; 3]>::as_ref(&mi.normal_transform.x_axis)); raw.extend_from_slice(&[0.0]); raw.extend_from_slice(AsRef::<[f32; 3]>::as_ref(&mi.normal_transform.y_axis)); raw.extend_from_slice(&[0.0]); raw.extend_from_slice(AsRef::<[f32; 3]>::as_ref(&mi.normal_transform.z_axis)); raw.extend_from_slice(&[0.0]); //color raw.extend_from_slice(AsRef::<[f32; 4]>::as_ref(&mi.color.get())); raw.append(&mut v); } raw }