Compare commits

...

20 Commits

Author SHA1 Message Date
171e3c34fc comment about processed_time 2023-09-18 14:57:01 -07:00
35058436a7 whoopsie time deltas 2023-09-18 14:56:52 -07:00
e9622a7716 don't print frame delta 2023-09-18 14:55:35 -07:00
bbf93ad6e3 consume vec 2023-09-18 14:55:11 -07:00
f2461c4f39 algebra wrong 2023-09-18 13:56:48 -07:00
2a13c57553 halfsize 2023-09-18 13:56:23 -07:00
e936be4f3c tweaks 2023-09-18 13:45:17 -07:00
543ff75be9 algebra wrong 2023-09-18 13:44:59 -07:00
4978341b5b use hashset for contacts 2023-09-18 13:44:43 -07:00
2d0e80323b implement aabb collision 2023-09-18 13:20:51 -07:00
5cac0e6153 zeroes 2023-09-18 13:20:34 -07:00
943c3ca1c2 how will I do this 2023-09-12 00:05:30 -07:00
5174b13ba0 InputState 2023-09-10 14:26:53 -07:00
c7da64cc64 i128 not necessary in this case and use glam 2023-09-10 14:26:53 -07:00
6ada08ef6f MouseInterpolationState 2023-09-10 13:24:47 -07:00
4c079068d6 tabs 2023-09-10 12:55:37 -07:00
f60a370228 grounded = false 2023-09-09 16:13:01 -07:00
79053420cd delete unused 2023-09-09 16:13:01 -07:00
ea9ac948f8 next_instruction non-optional time_limit 2023-09-09 16:13:01 -07:00
7f841427dd wip: tickless physics 2023-09-09 16:13:01 -07:00
6 changed files with 510 additions and 107 deletions

View File

@ -1,10 +1,12 @@
use crate::instruction::TimedInstruction;
use crate::{instruction::{InstructionEmitter, InstructionConsumer, TimedInstruction}, zeroes::zeroes2};
pub enum PhysicsInstruction {
CollisionStart(RelativeCollision),
CollisionEnd(RelativeCollision),
StrafeTick,
Jump,
SetWalkTargetVelocity(glam::Vec3),
ReachWalkTargetVelocity,
// Water,
// Spawn(
// Option<SpawnId>,
@ -14,15 +16,91 @@ pub enum PhysicsInstruction {
}
pub struct Body {
pub position: glam::Vec3,//I64 where 2^32 = 1 u
pub velocity: glam::Vec3,//I64 where 2^32 = 1 u/s
pub time: TIME,//nanoseconds x xxxxD!
position: glam::Vec3,//I64 where 2^32 = 1 u
velocity: glam::Vec3,//I64 where 2^32 = 1 u/s
acceleration: glam::Vec3,//I64 where 2^32 = 1 u/s/s
time: TIME,//nanoseconds x xxxxD!
//origin_time = timestamp of position and velocity
//processed_time = starting time for new events. prevents colliding with the analytic euqation in the past
}
pub enum MoveRestriction {
Air,
Water,
Ground,
Ladder,//multiple ladders how
}
enum MouseInterpolation {
First,//just checks the last value
Lerp,//lerps between
}
enum InputInstruction {
MoveMouse(glam::IVec2),
Jump(bool),
}
struct InputState {
controls: u32,
mouse_interpolation: MouseInterpolation,
time: TIME,
}
impl InputState {
pub fn get_control(&self,control:u32) -> bool {
self.controls&control!=0
}
pub fn process_instruction(&mut self,ins:InputInstruction){
match ins {
InputInstruction::MoveMouse(m) => todo!("set mouse_interpolation"),
InputInstruction::Jump(b) => todo!("how does info about style modifiers get here"),
}
}
}
pub struct MouseInterpolationState {
interpolation: MouseInterpolation,
time0: TIME,
time1: TIME,
mouse0: glam::IVec2,
mouse1: glam::IVec2,
}
impl MouseInterpolationState {
pub fn move_mouse(&mut self,time:TIME,pos:glam::IVec2){
self.time0=self.time1;
self.mouse0=self.mouse1;
self.time1=time;
self.mouse1=pos;
}
pub fn interpolated_position(&self,time:TIME) -> glam::IVec2 {
match self.interpolation {
MouseInterpolation::First => self.mouse0,
MouseInterpolation::Lerp => {
let m0=self.mouse0.as_i64vec2();
let m1=self.mouse1.as_i64vec2();
//these are deltas
let t1t=(self.time1-time) as i64;
let tt0=(time-self.time0) as i64;
let dt=(self.time1-self.time0) as i64;
((m0*t1t+m1*tt0)/dt).as_ivec2()
}
}
}
}
pub struct PhysicsState {
pub body: Body,
pub contacts: Vec<RelativeCollision>,
pub hitbox_halfsize: glam::Vec3,
pub contacts: std::collections::HashSet::<RelativeCollision>,
//pub intersections: Vec<ModelId>,
//temp
pub models_cringe_clone: Vec<Model>,
pub temp_control_dir: glam::Vec3,
//camera must exist in state because wormholes modify the camera, also camera punch
//pub camera: Camera,
//pub mouse_interpolation: MouseInterpolationState,
pub time: TIME,
pub strafe_tick_num: TIME,
pub strafe_tick_den: TIME,
@ -30,12 +108,13 @@ pub struct PhysicsState {
pub mv: f32,
pub walkspeed: f32,
pub friction: f32,
pub walk_target_velocity: glam::Vec3,
pub gravity: glam::Vec3,
pub grounded: bool,
pub jump_trying: bool,
}
#[derive(Clone,Copy)]
#[derive(Clone,Copy,Hash,Eq,PartialEq)]
pub enum AabbFace{
Right,//+X
Top,
@ -59,6 +138,16 @@ impl Aabb {
// [0.0f32, 1., 0.],
// [0.0f32, -1., 0.],
// ];
const VERTEX_DATA: [glam::Vec3; 8] = [
glam::vec3(1., -1., -1.),
glam::vec3(1., 1., -1.),
glam::vec3(1., 1., 1.),
glam::vec3(1., -1., 1.),
glam::vec3(-1., -1., 1.),
glam::vec3(-1., 1., 1.),
glam::vec3(-1., 1., -1.),
glam::vec3(-1., -1., -1.),
];
const VERTEX_DATA_RIGHT: [glam::Vec3; 4] = [
glam::vec3(1., -1., -1.),
glam::vec3(1., 1., -1.),
@ -115,7 +204,10 @@ impl Aabb {
AabbFace::Front => glam::vec3(0.,0.,-1.),
}
}
pub fn face_vertices(face:AabbFace) -> [glam::Vec3;4] {
pub fn unit_vertices() -> [glam::Vec3;8] {
return Self::VERTEX_DATA;
}
pub fn unit_face_vertices(face:AabbFace) -> [glam::Vec3;4] {
match face {
AabbFace::Right => Self::VERTEX_DATA_RIGHT,
AabbFace::Top => Self::VERTEX_DATA_TOP,
@ -127,7 +219,8 @@ impl Aabb {
}
}
type Face = AabbFace;
//pretend to be using what we want to eventually do
type TreyMeshFace = AabbFace;
type TreyMesh = Aabb;
pub struct Model {
@ -140,25 +233,36 @@ impl Model {
pub fn new(transform:glam::Mat4) -> Self {
Self{transform}
}
pub fn face_vertices(&self,face:Face) -> [glam::Vec3;4] {
Aabb::face_vertices(face)
pub fn unit_vertices(&self) -> [glam::Vec3;8] {
Aabb::unit_vertices()
}
pub fn face_mesh(&self,face:Face) -> TreyMesh {
pub fn mesh(&self) -> TreyMesh {
let mut aabb=Aabb::new();
for &vertex in self.face_vertices(face).iter() {
aabb.grow(vertex);
for &vertex in self.unit_vertices().iter() {
aabb.grow(glam::Vec4Swizzles::xyz(self.transform*vertex.extend(1.0)));
}
return aabb;
}
pub fn face_normal(&self,face:Face) -> glam::Vec3 {
let mut n=glam::Vec3Swizzles::xyzz(Aabb::normal(face));
n.w=0.0;//what a man will do to avoid writing out the components
glam::Vec4Swizzles::xyz(self.transform*n)//this is wrong for scale
pub fn unit_face_vertices(&self,face:TreyMeshFace) -> [glam::Vec3;4] {
Aabb::unit_face_vertices(face)
}
pub fn face_mesh(&self,face:TreyMeshFace) -> TreyMesh {
let mut aabb=Aabb::new();
for &vertex in self.unit_face_vertices(face).iter() {
aabb.grow(glam::Vec4Swizzles::xyz(self.transform*vertex.extend(1.0)));
}
return aabb;
}
pub fn face_normal(&self,face:TreyMeshFace) -> glam::Vec3 {
glam::Vec4Swizzles::xyz(self.transform*Aabb::normal(face).extend(0.0))//this is wrong for scale
}
}
//need non-face (full model) variant for CanCollide false objects
//OR have a separate list from contacts for model intersection
#[derive(Eq, Hash, PartialEq)]
pub struct RelativeCollision {
face: Face,//just an id
face: TreyMeshFace,//just an id
model: u32,//using id to avoid lifetimes
}
@ -173,50 +277,41 @@ impl RelativeCollision {
pub type TIME = i64;
const CONTROL_JUMP:u32 = 0b01000000;//temp DATA NORMALIZATION!@#$
impl Body {
pub fn with_position(position:glam::Vec3) -> Self {
Self{
position: position,
velocity: glam::Vec3::ZERO,
acceleration: glam::Vec3::ZERO,
time: 0,
}
}
pub fn extrapolated_position(&self,time: TIME)->glam::Vec3{
let dt=(time-self.time) as f64/1_000_000_000f64;
self.position+self.velocity*(dt as f32)+self.acceleration*((0.5*dt*dt) as f32)
}
pub fn advance_time(&mut self, time: TIME){
self.position=self.extrapolated_position(time);
self.time=time;
}
}
impl PhysicsState {
//delete this, we are tickless gamers
pub fn run(&mut self, time: TIME, control_dir: glam::Vec3, controls: u32){
let target_tick = (time*self.strafe_tick_num/self.strafe_tick_den) as u32;
//the game code can run for 1 month before running out of ticks
while self.tick<target_tick {
self.tick += 1;
let dt=0.01;
let d=self.body.velocity.dot(control_dir);
if d<self.mv {
self.body.velocity+=(self.mv-d)*control_dir;
}
self.body.velocity+=self.gravity*dt;
self.body.position+=self.body.velocity*dt;
if self.body.position.y<0.0{
self.body.position.y=0.0;
self.body.velocity.y=0.0;
self.grounded=true;
}
if self.grounded&&(controls&CONTROL_JUMP)!=0 {
self.grounded=false;
self.body.velocity+=glam::Vec3::new(0.0,0.715588/2.0*100.0,0.0);
}
if self.grounded {
let applied_friction=self.friction*dt;
let targetv=control_dir*self.walkspeed;
let diffv=targetv-self.body.velocity;
if applied_friction*applied_friction<diffv.length_squared() {
self.body.velocity+=applied_friction*diffv.normalize();
} else {
//PhysicsInstruction::WalkTargetReached
self.body.velocity=targetv;
}
//tickless gaming
pub fn run(&mut self, time: TIME){
//prepare is ommitted - everything is done via instructions.
while let Some(instruction) = self.next_instruction(time) {//collect
//advance
//self.advance_time(instruction.time);
//process
self.process_instruction(instruction);
//write hash lol
}
}
self.body.time=target_tick as TIME*self.strafe_tick_den/self.strafe_tick_num;
}
//delete this
pub fn extrapolate_position(&self, time: TIME) -> glam::Vec3 {
let dt=(time-self.body.time) as f64/1_000_000_000f64;
self.body.position+self.body.velocity*(dt as f32)+self.gravity*((0.5*dt*dt) as f32)
pub fn advance_time(&mut self, time: TIME){
self.body.advance_time(time);
self.time=time;
}
fn next_strafe_instruction(&self) -> Option<TimedInstruction<PhysicsInstruction>> {
@ -262,20 +357,259 @@ impl PhysicsState {
//check if you are accelerating towards a walk target velocity and create an instruction
return None;
}
fn predict_collision_end(&self,model:&Model) -> Option<TimedInstruction<PhysicsInstruction>> {
fn mesh(&self) -> TreyMesh {
let mut aabb=Aabb::new();
for vertex in Aabb::unit_vertices(){
aabb.grow(self.body.position+self.hitbox_halfsize*vertex);
}
aabb
}
fn predict_collision_end(&self,model:&Model,time_limit:TIME,model_id:u32) -> Option<TimedInstruction<PhysicsInstruction>> {
//must treat cancollide false objects differently: you may not exit through the same face you entered.
//RelativeCollsion must reference the full model instead of a particular face
//this is Ctrl+C Ctrl+V of predict_collision_start but with v=-v before the calc and t=-t after the calc
//find best t
let mut best_delta_time=time_limit-self.body.time;
let mut best_face:Option<TreyMeshFace>=None;
let mesh0=self.mesh();
let mesh1=model.mesh();
let (p,v,a)=(self.body.position,-self.body.velocity,self.body.acceleration);
//collect x
for t in zeroes2(mesh0.max.x-mesh1.min.x, v.x, a.x) {
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
let t_time=((-t as f64)*1_000_000_000f64) as TIME;
if 0<=t_time&&t_time<best_delta_time&&0f32<v.x+a.x*-t{
let dp=self.body.extrapolated_position(self.body.time+t_time)-p;
//faces must be overlapping
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
//collect valid t
best_delta_time=t_time;
best_face=Some(TreyMeshFace::Left);
}
}
}
for t in zeroes2(mesh0.min.x-mesh1.max.x, v.x, a.x) {
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
let t_time=((-t as f64)*1_000_000_000f64) as TIME;
if 0<=t_time&&t_time<best_delta_time&&v.x+a.x*-t<0f32{
let dp=self.body.extrapolated_position(self.body.time+t_time)-p;
//faces must be overlapping
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
//collect valid t
best_delta_time=t_time;
best_face=Some(TreyMeshFace::Right);
}
}
}
//collect y
for t in zeroes2(mesh0.max.y-mesh1.min.y, v.y, a.y) {
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
let t_time=((-t as f64)*1_000_000_000f64) as TIME;
if 0<=t_time&&t_time<best_delta_time&&0f32<v.y+a.y*-t{
let dp=self.body.extrapolated_position(self.body.time+t_time)-p;
//faces must be overlapping
if mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
//collect valid t
best_delta_time=t_time;
best_face=Some(TreyMeshFace::Top);
}
}
}
for t in zeroes2(mesh0.min.y-mesh1.max.y, v.y, a.y) {
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
let t_time=((-t as f64)*1_000_000_000f64) as TIME;
if 0<=t_time&&t_time<best_delta_time&&v.y+a.y*-t<0f32{
let dp=self.body.extrapolated_position(self.body.time+t_time)-p;
//faces must be overlapping
if mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
//collect valid t
best_delta_time=t_time;
best_face=Some(TreyMeshFace::Bottom);
}
}
}
//collect z
for t in zeroes2(mesh0.max.z-mesh1.min.z, v.z, a.z) {
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
let t_time=((-t as f64)*1_000_000_000f64) as TIME;
if 0<=t_time&&t_time<best_delta_time&&0f32<v.z+a.z*-t{
let dp=self.body.extrapolated_position(self.body.time+t_time)-p;
//faces must be overlapping
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x {
//collect valid t
best_delta_time=t_time;
best_face=Some(TreyMeshFace::Back);
}
}
}
for t in zeroes2(mesh0.min.z-mesh1.max.z, v.z, a.z) {
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
let t_time=((-t as f64)*1_000_000_000f64) as TIME;
if 0<=t_time&&t_time<best_delta_time&&v.z+a.z*-t<0f32{
let dp=self.body.extrapolated_position(self.body.time+t_time)-p;
//faces must be overlapping
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x {
//collect valid t
best_delta_time=t_time;
best_face=Some(TreyMeshFace::Front);
}
}
}
//generate instruction
if let Some(face) = best_face{
return Some(TimedInstruction {
time: self.body.time+best_delta_time,
instruction: PhysicsInstruction::CollisionStart(RelativeCollision {
face,
model: model_id
})
})
}
None
}
fn predict_collision_start(&self,model:&Model) -> Option<TimedInstruction<PhysicsInstruction>> {
fn predict_collision_start(&self,model:&Model,time_limit:TIME,model_id:u32) -> Option<TimedInstruction<PhysicsInstruction>> {
//find best t
let mut best_delta_time=time_limit-self.body.time;
let mut best_face:Option<TreyMeshFace>=None;
let mesh0=self.mesh();
let mesh1=model.mesh();
let (p,v,a)=(self.body.position,self.body.velocity,self.body.acceleration);
//collect x
for t in zeroes2(mesh0.max.x-mesh1.min.x, v.x, a.x) {
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
let t_time=((t as f64)*1_000_000_000f64) as TIME;
if 0<=t_time&&t_time<best_delta_time&&0f32<v.x+a.x*t{
let dp=self.body.extrapolated_position(self.body.time+t_time)-p;
//faces must be overlapping
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
//collect valid t
best_delta_time=t_time;
best_face=Some(TreyMeshFace::Left);
}
}
}
for t in zeroes2(mesh0.min.x-mesh1.max.x, v.x, a.x) {
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
let t_time=((t as f64)*1_000_000_000f64) as TIME;
if 0<=t_time&&t_time<best_delta_time&&v.x+a.x*t<0f32{
let dp=self.body.extrapolated_position(self.body.time+t_time)-p;
//faces must be overlapping
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
//collect valid t
best_delta_time=t_time;
best_face=Some(TreyMeshFace::Right);
}
}
}
//collect y
for t in zeroes2(mesh0.max.y-mesh1.min.y, v.y, a.y) {
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
let t_time=((t as f64)*1_000_000_000f64) as TIME;
if 0<=t_time&&t_time<best_delta_time&&0f32<v.y+a.y*t{
let dp=self.body.extrapolated_position(self.body.time+t_time)-p;
//faces must be overlapping
if mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
//collect valid t
best_delta_time=t_time;
best_face=Some(TreyMeshFace::Top);
}
}
}
for t in zeroes2(mesh0.min.y-mesh1.max.y, v.y, a.y) {
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
let t_time=((t as f64)*1_000_000_000f64) as TIME;
if 0<=t_time&&t_time<best_delta_time&&v.y+a.y*t<0f32{
let dp=self.body.extrapolated_position(self.body.time+t_time)-p;
//faces must be overlapping
if mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x&&mesh1.min.z<mesh0.max.z+dp.z&&mesh0.min.z+dp.z<mesh1.max.z {
//collect valid t
best_delta_time=t_time;
best_face=Some(TreyMeshFace::Bottom);
}
}
}
//collect z
for t in zeroes2(mesh0.max.z-mesh1.min.z, v.z, a.z) {
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
let t_time=((t as f64)*1_000_000_000f64) as TIME;
if 0<=t_time&&t_time<best_delta_time&&0f32<v.z+a.z*t{
let dp=self.body.extrapolated_position(self.body.time+t_time)-p;
//faces must be overlapping
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x {
//collect valid t
best_delta_time=t_time;
best_face=Some(TreyMeshFace::Back);
}
}
}
for t in zeroes2(mesh0.min.z-mesh1.max.z, v.z, a.z) {
//negative t = back in time
//must be moving towards surface to collide
//must beat the current soonest collision time
//must be moving towards surface
let t_time=((t as f64)*1_000_000_000f64) as TIME;
if 0<=t_time&&t_time<best_delta_time&&v.z+a.z*t<0f32{
let dp=self.body.extrapolated_position(self.body.time+t_time)-p;
//faces must be overlapping
if mesh1.min.y<mesh0.max.y+dp.y&&mesh0.min.y+dp.y<mesh1.max.y&&mesh1.min.x<mesh0.max.x+dp.x&&mesh0.min.x+dp.x<mesh1.max.x {
//collect valid t
best_delta_time=t_time;
best_face=Some(TreyMeshFace::Front);
}
}
}
//generate instruction
if let Some(face) = best_face{
return Some(TimedInstruction {
time: self.body.time+best_delta_time,
instruction: PhysicsInstruction::CollisionStart(RelativeCollision {
face,
model: model_id
})
})
}
None
}
}
impl crate::instruction::InstructionEmitter<PhysicsInstruction> for PhysicsState {
//this little next instruction function can cache its return value and invalidate the cached value by watching the State.
fn next_instruction(&self) -> Option<TimedInstruction<PhysicsInstruction>> {
fn next_instruction(&self,time_limit:TIME) -> Option<TimedInstruction<PhysicsInstruction>> {
//JUST POLLING!!! NO MUTATION
let mut collector = crate::instruction::InstructionCollector::new();
let mut collector = crate::instruction::InstructionCollector::new(time_limit);
//autohop (already pressing spacebar; the signal to begin trying to jump is different)
if self.grounded&&self.jump_trying {
//scroll will be implemented with InputInstruction::Jump(true) but it blocks setting self.jump_trying=true
@ -286,11 +620,11 @@ impl crate::instruction::InstructionEmitter<PhysicsInstruction> for PhysicsState
}
//check for collision stop instructions with curent contacts
for collision_data in self.contacts.iter() {
collector.collect(self.predict_collision_end(self.models_cringe_clone.get(collision_data.model as usize).unwrap()));
collector.collect(self.predict_collision_end(self.models_cringe_clone.get(collision_data.model as usize).unwrap(),time_limit,collision_data.model));
}
//check for collision start instructions (against every part in the game with no optimization!!)
for model in &self.models_cringe_clone {
collector.collect(self.predict_collision_start(model));
for (i,model) in self.models_cringe_clone.iter().enumerate() {
collector.collect(self.predict_collision_start(model,time_limit,i as u32));
}
if self.grounded {
//walk maintenance
@ -304,7 +638,56 @@ impl crate::instruction::InstructionEmitter<PhysicsInstruction> for PhysicsState
}
impl crate::instruction::InstructionConsumer<PhysicsInstruction> for PhysicsState {
fn process_instruction(&mut self, instruction:TimedInstruction<PhysicsInstruction>) {
//
fn process_instruction(&mut self, ins:TimedInstruction<PhysicsInstruction>) {
//mutate position and velocity and time
self.advance_time(ins.time);//should this be in run?
match ins.instruction {
PhysicsInstruction::CollisionStart(c) => {
//flatten v
let n=c.normal(&self.models_cringe_clone);
let d=self.body.velocity.dot(n)/n.length_squared();
self.body.velocity-=d*n;
//check ground
match c.face {
AabbFace::Top => {
//ground
self.grounded=true;
self.body.acceleration=glam::Vec3::ZERO;
},
_ => (),
}
self.contacts.insert(c);
},
PhysicsInstruction::CollisionEnd(c) => {
//check ground
match c.face {
AabbFace::Top => {
//ground
self.body.acceleration=self.gravity;
},
_ => (),
}
self.contacts.remove(&c);
},
PhysicsInstruction::StrafeTick => {
//let control_dir=self.get_control_dir();//this should respect your mouse interpolation settings
let d=self.body.velocity.dot(self.temp_control_dir);
if d<self.mv {
self.body.velocity+=(self.mv-d)*self.temp_control_dir;
}
}
PhysicsInstruction::Jump => {
self.grounded=false;//do I need this?
self.body.velocity+=glam::Vec3::new(0.0,0.715588/2.0*100.0,0.0);
}
PhysicsInstruction::ReachWalkTargetVelocity => {
//precisely set velocity
self.body.velocity=self.walk_target_velocity;
}
PhysicsInstruction::SetWalkTargetVelocity(v) => {
self.walk_target_velocity=v;
//calculate acceleration yada yada
},
}
}
}

View File

@ -279,11 +279,6 @@ fn start<E: Example>(
log::info!("Initializing the example...");
let mut example = E::init(&config, &adapter, &device, &queue);
#[cfg(not(target_arch = "wasm32"))]
let mut last_frame_inst = Instant::now();
#[cfg(not(target_arch = "wasm32"))]
let (mut frame_count, mut accum_time) = (0, 0.0);
log::info!("Entering render loop...");
event_loop.run(move |event, _, control_flow| {
let _ = (&instance, &adapter); // force ownership by the closure
@ -364,20 +359,6 @@ fn start<E: Example>(
example.move_mouse(delta);
},
event::Event::RedrawRequested(_) => {
#[cfg(not(target_arch = "wasm32"))]
{
accum_time += last_frame_inst.elapsed().as_secs_f32();
last_frame_inst = Instant::now();
frame_count += 1;
if frame_count == 100 {
println!(
"Avg frame time {}ms",
accum_time * 1000.0 / frame_count as f32
);
accum_time = 0.0;
frame_count = 0;
}
}
let frame = match surface.get_current_texture() {
Ok(frame) => frame,

View File

@ -4,7 +4,7 @@ pub struct TimedInstruction<I> {
}
pub trait InstructionEmitter<I> {
fn next_instruction(&self) -> Option<TimedInstruction<I>>;
fn next_instruction(&self, time:crate::body::TIME) -> Option<TimedInstruction<I>>;
}
pub trait InstructionConsumer<I> {
fn process_instruction(&mut self, instruction:TimedInstruction<I>);
@ -12,26 +12,36 @@ pub trait InstructionConsumer<I> {
//PROPER PRIVATE FIELDS!!!
pub struct InstructionCollector<I> {
instruction: Option<TimedInstruction<I>>,
time: crate::body::TIME,
instruction: Option<I>,
}
impl<I> InstructionCollector<I> {
pub fn new() -> Self {
Self{instruction:None}
pub fn new(time:crate::body::TIME) -> Self {
Self{
time,
instruction:None
}
}
pub fn collect(&mut self,instruction:Option<TimedInstruction<I>>){
match &instruction {
Some(unwrap_instruction) => match &self.instruction {
Some(unwrap_best_instruction) => if unwrap_instruction.time<unwrap_best_instruction.time {
self.instruction=instruction;
},
None => self.instruction=instruction,
match instruction {
Some(unwrap_instruction) => {
if unwrap_instruction.time<self.time {
self.time=unwrap_instruction.time;
self.instruction=Some(unwrap_instruction.instruction);
}
},
None => (),
}
}
pub fn instruction(self) -> Option<TimedInstruction<I>> {
//STEAL INSTRUCTION AND DESTROY INSTRUCTIONCOLLECTOR
return self.instruction
match self.instruction {
Some(instruction)=>Some(TimedInstruction{
time:self.time,
instruction
}),
None => None,
}
}
}

View File

@ -1,3 +1,4 @@
pub mod framework;
pub mod body;
pub mod zeroes;
pub mod instruction;

View File

@ -292,11 +292,7 @@ impl strafe_client::framework::Example for Skybox {
controls:0,
};
let physics = strafe_client::body::PhysicsState {
body: strafe_client::body::Body {
position: glam::Vec3::new(5.0,0.0,5.0),
velocity: glam::Vec3::new(0.0,0.0,0.0),
time: 0,
},
body: strafe_client::body::Body::with_position(glam::Vec3::new(5.0,2.0,5.0)),
time: 0,
tick: 0,
strafe_tick_num: 100,//100t
@ -304,14 +300,17 @@ impl strafe_client::framework::Example for Skybox {
gravity: glam::Vec3::new(0.0,-100.0,0.0),
friction: 90.0,
mv: 2.7,
grounded: true,
grounded: false,
jump_trying: false,
temp_control_dir: glam::Vec3::ZERO,
walkspeed: 18.0,
contacts: Vec::<strafe_client::body::RelativeCollision>::new(),
contacts: std::collections::HashSet::new(),
models_cringe_clone: modeldatas.iter().map(|m|strafe_client::body::Model::new(m.transform)).collect(),
walk_target_velocity: glam::Vec3::ZERO,
hitbox_halfsize: glam::vec3(1.0,2.5,1.0),
};
let camera_uniforms = camera.to_uniform_data(physics.extrapolate_position(0));
let camera_uniforms = camera.to_uniform_data(physics.body.extrapolated_position(0));
let camera_buf = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Camera"),
contents: bytemuck::cast_slice(&camera_uniforms),
@ -638,13 +637,15 @@ impl strafe_client::framework::Example for Skybox {
let time=self.start_time.elapsed().as_nanos() as i64;
self.physics.run(time,control_dir,self.camera.controls);
self.physics.temp_control_dir=control_dir;
self.physics.jump_trying=self.camera.controls&CONTROL_JUMP!=0;
self.physics.run(time);
let mut encoder =
device.create_command_encoder(&wgpu::CommandEncoderDescriptor { label: None });
// update rotation
let camera_uniforms = self.camera.to_uniform_data(self.physics.extrapolate_position(time));
let camera_uniforms = self.camera.to_uniform_data(self.physics.body.extrapolated_position(time));
self.staging_belt
.write_buffer(
&mut encoder,

27
src/zeroes.rs Normal file
View File

@ -0,0 +1,27 @@
//find roots of polynomials
pub fn zeroes2(a0:f32,a1:f32,a2:f32) -> Vec<f32>{
if a2==0f32{
return zeroes1(a0, a1);
}
let mut radicand=a1*a1-4f32*a2*a0;
if 0f32<radicand {
radicand=radicand.sqrt();
if 0f32<a2 {
return vec![(-a1-radicand)/(2f32*a2),(-a1+radicand)/(2f32*a2)];
} else {
return vec![(-a1+radicand)/(2f32*a2),(-a1-radicand)/(2f32*a2)];
}
} else if radicand==0f32 {
return vec![-a1/(2f32*a2)];
} else {
return vec![];
}
}
#[inline]
pub fn zeroes1(a0:f32,a1:f32) -> Vec<f32> {
if a1==0f32{
return vec![];
} else {
return vec![-a0/a1];
}
}