fixed_wide_vectors/linear_ops/src/macros/matrix.rs
2024-09-12 12:16:58 -07:00

266 lines
6.7 KiB
Rust

#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix {
() => {
impl<const X:usize,const Y:usize,T> Matrix<X,Y,T>{
#[inline(always)]
pub const fn new(array:[[T;X];Y])->Self{
Self{array}
}
#[inline(always)]
pub fn to_array(self)->[[T;X];Y]{
self.array
}
#[inline]
pub fn from_rows(rows:[Vector<X,T>;Y])->Self
{
Matrix::new(
rows.map(|row|row.array),
)
}
#[inline]
pub fn map<F,U>(self,f:F)->Matrix<X,Y,U>
where
F:Fn(T)->U
{
Matrix::new(
self.array.map(|inner|inner.map(&f)),
)
}
#[inline]
pub fn transpose(self)->Matrix<Y,X,T>{
//how did I think of this
let mut array_of_iterators=self.array.map(|axis|axis.into_iter());
Matrix::new(
core::array::from_fn(|_|
array_of_iterators.each_mut().map(|iter|
iter.next().unwrap()
)
)
)
}
#[inline]
// MatY<VecX>.MatX<VecZ> = MatY<VecZ>
pub fn dot<const Z:usize,U,V>(self,rhs:Matrix<Z,X,U>)->Matrix<Z,Y,V>
where
T:core::ops::Mul<U,Output=V>+Copy,
V:core::iter::Sum,
U:Copy,
{
let mut array_of_iterators=rhs.array.map(|axis|axis.into_iter().cycle());
Matrix::new(
self.array.map(|axis|
core::array::from_fn(|_|
// axis dot product with transposed rhs array
axis.iter().zip(
array_of_iterators.iter_mut()
).map(|(&lhs_value,rhs_iter)|
lhs_value*rhs_iter.next().unwrap()
).sum()
)
)
)
}
#[inline]
// MatY<VecX>.VecX = VecY
pub fn transform_vector<U,V>(self,rhs:Vector<X,U>)->Vector<Y,V>
where
T:core::ops::Mul<U,Output=V>,
V:core::iter::Sum,
U:Copy,
{
Vector::new(
self.array.map(|axis|
Vector::new(axis).dot(rhs)
)
)
}
}
impl<const X:usize,const Y:usize,T> Matrix<X,Y,T>
where
T:Copy
{
#[inline(always)]
pub const fn from_value(value:T)->Self{
Self::new([[value;X];Y])
}
}
impl<const X:usize,const Y:usize,T:Default> Default for Matrix<X,Y,T>{
#[inline]
fn default()->Self{
Self::new(
core::array::from_fn(|_|core::array::from_fn(|_|Default::default()))
)
}
}
impl<const X:usize,const Y:usize,T:core::fmt::Display> core::fmt::Display for Matrix<X,Y,T>{
#[inline]
fn fmt(&self,f:&mut core::fmt::Formatter)->Result<(),core::fmt::Error>{
for row in &self.array[0..Y]{
core::write!(f,"\n")?;
for elem in &row[0..X-1]{
core::write!(f,"{}, ",elem)?;
}
// assume we will be using matrices of size 1x1 or greater
core::write!(f,"{}",row.last().unwrap())?;
}
Ok(())
}
}
impl<const X:usize,const Y:usize,const Z:usize,T,U,V> core::ops::Mul<Matrix<Z,X,U>> for Matrix<X,Y,T>
where
T:core::ops::Mul<U,Output=V>+Copy,
V:core::iter::Sum,
U:Copy,
{
type Output=Matrix<Z,Y,V>;
#[inline]
fn mul(self,rhs:Matrix<Z,X,U>)->Self::Output{
self.dot(rhs)
}
}
impl<const X:usize,const Y:usize,T,U,V> core::ops::Mul<Vector<X,U>> for Matrix<X,Y,T>
where
T:core::ops::Mul<U,Output=V>,
V:core::iter::Sum,
U:Copy,
{
type Output=Vector<Y,V>;
#[inline]
fn mul(self,rhs:Vector<X,U>)->Self::Output{
self.transform_vector(rhs)
}
}
#[cfg(feature="deferred-division")]
$crate::impl_matrix_deferred_division!();
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix_deferred_division {
() => {
impl<const X:usize,const Y:usize,T:ratio_ops::ratio::Divide<U,Output=V>,U:Copy,V> ratio_ops::ratio::Divide<U> for Matrix<X,Y,T>{
type Output=Matrix<X,Y,V>;
#[inline]
fn divide(self,rhs:U)->Self::Output{
self.map(|t|t.divide(rhs))
}
}
impl<const X:usize,const Y:usize,T,U> core::ops::Div<U> for Matrix<X,Y,T>{
type Output=ratio_ops::ratio::Ratio<Matrix<X,Y,T>,U>;
#[inline]
fn div(self,rhs:U)->Self::Output{
ratio_ops::ratio::Ratio::new(self,rhs)
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix_extend {
( $x: expr, $y: expr ) => {
impl<T> Matrix<$x,$y,T>{
#[inline]
pub fn extend_row(self,value:Vector<$x,T>)->Matrix<$x,{$y+1},T>{
let mut iter=self.array.into_iter().chain(core::iter::once(value.array));
Matrix::new(
core::array::from_fn(|_|iter.next().unwrap()),
)
}
#[inline]
pub fn extend_column(self,value:Vector<$y,T>)->Matrix<{$x+1},$y,T>{
let mut iter_rows=value.array.into_iter();
Matrix::new(
self.array.map(|axis|{
let mut elements_iter=axis.into_iter().chain(core::iter::once(iter_rows.next().unwrap()));
core::array::from_fn(|_|elements_iter.next().unwrap())
})
)
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix_named_fields_shape {
(
($struct_outer:ident, $size_outer: expr),
($size_inner: expr)
) => {
impl<T> core::ops::Deref for Matrix<$size_outer,$size_inner,T>{
type Target=$struct_outer<Vector<$size_inner,T>>;
#[inline]
fn deref(&self)->&Self::Target{
unsafe{core::mem::transmute(&self.array)}
}
}
impl<T> core::ops::DerefMut for Matrix<$size_outer,$size_inner,T>{
#[inline]
fn deref_mut(&mut self)->&mut Self::Target{
unsafe{core::mem::transmute(&mut self.array)}
}
}
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix_named_fields_shape_shim {
(
($($vector_info:tt),+),
$matrix_info:tt
) => {
$crate::macro_repeated!(impl_matrix_named_fields_shape,$matrix_info,$($vector_info),+);
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix_named_fields {
(
($($matrix_info:tt),+),
$vector_infos:tt
) => {
$crate::macro_repeated!(impl_matrix_named_fields_shape_shim,$vector_infos,$($matrix_info),+);
}
}
#[doc(hidden)]
#[macro_export(local_inner_macros)]
macro_rules! impl_matrix_3x3 {
()=>{
impl<T,T2,T3> Matrix<3,3,T>
where
//cross
T:core::ops::Mul<T,Output=T2>+Copy,
T2:core::ops::Sub,
//dot
T:core::ops::Mul<<T2 as core::ops::Sub>::Output,Output=T3>,
T3:core::iter::Sum,
{
pub fn det(self)->T3{
self.x_axis.dot(self.y_axis.cross(self.z_axis))
}
}
impl<T,T2> Matrix<3,3,T>
where
T:core::ops::Mul<T,Output=T2>+Copy,
T2:core::ops::Sub,
{
pub fn adjugate(self)->Matrix<3,3,<T2 as core::ops::Sub>::Output>{
Matrix::new([
[self.y_axis.y*self.z_axis.z-self.y_axis.z*self.z_axis.y,self.x_axis.z*self.z_axis.y-self.x_axis.y*self.z_axis.z,self.x_axis.y*self.y_axis.z-self.x_axis.z*self.y_axis.y],
[self.y_axis.z*self.z_axis.x-self.y_axis.x*self.z_axis.z,self.x_axis.x*self.z_axis.z-self.x_axis.z*self.z_axis.x,self.x_axis.z*self.y_axis.x-self.x_axis.x*self.y_axis.z],
[self.y_axis.x*self.z_axis.y-self.y_axis.y*self.z_axis.x,self.x_axis.y*self.z_axis.x-self.x_axis.x*self.z_axis.y,self.x_axis.x*self.y_axis.y-self.x_axis.y*self.y_axis.x],
])
}
}
}
}