use bnum::{BInt,cast::As}; #[derive(Clone,Copy,Debug,Hash)] /// N is the number of u64s to use /// F is the number of fractional bits (always N*32 lol) pub struct Fixed<const N:usize,const F:usize>{ pub(crate)bits:BInt<{N}>, } impl<const N:usize,const F:usize> Fixed<N,F>{ pub const MAX:Self=Self::from_bits(BInt::<N>::MAX); pub const MIN:Self=Self::from_bits(BInt::<N>::MIN); pub const ZERO:Self=Self::from_bits(BInt::<N>::ZERO); pub const EPSILON:Self=Self::from_bits(BInt::<N>::ONE); pub const NEG_EPSILON:Self=Self::from_bits(BInt::<N>::NEG_ONE); pub const ONE:Self=Self::from_bits(BInt::<N>::ONE.shl(F as u32)); pub const TWO:Self=Self::from_bits(BInt::<N>::TWO.shl(F as u32)); pub const HALF:Self=Self::from_bits(BInt::<N>::ONE.shl(F as u32-1)); pub const NEG_ONE:Self=Self::from_bits(BInt::<N>::NEG_ONE.shl(F as u32)); pub const NEG_TWO:Self=Self::from_bits(BInt::<N>::NEG_TWO.shl(F as u32)); pub const NEG_HALF:Self=Self::from_bits(BInt::<N>::NEG_ONE.shl(F as u32-1)); } impl<const N:usize,const F:usize> Fixed<N,F>{ #[inline] pub const fn from_bits(bits:BInt::<N>)->Self{ Self{ bits, } } #[inline] pub const fn to_bits(self)->BInt<N>{ self.bits } #[inline] pub const fn raw(value:i64)->Self{ Self::from_bits(BInt::from_bits(bnum::BUint::from_digit(value as u64))) } } impl<const N:usize,const F:usize,T> From<T> for Fixed<N,F> where BInt<N>:From<T> { fn from(value:T)->Self{ Self::from_bits(BInt::<{N}>::from(value)<<F as u32) } } impl<const N:usize,const F:usize> PartialEq for Fixed<N,F>{ fn eq(&self,other:&Self)->bool{ self.bits.eq(&other.bits) } } impl<const N:usize,const F:usize> Eq for Fixed<N,F>{} impl<const N:usize,const F:usize> PartialOrd for Fixed<N,F>{ fn partial_cmp(&self,other:&Self)->Option<std::cmp::Ordering>{ self.bits.partial_cmp(&other.bits) } } impl<const N:usize,const F:usize> Ord for Fixed<N,F>{ fn cmp(&self,other:&Self)->std::cmp::Ordering{ self.bits.cmp(&other.bits) } } impl<const N:usize,const F:usize> std::ops::Neg for Fixed<N,F>{ type Output=Self; fn neg(self)->Self{ Self::from_bits(self.bits.neg()) } } macro_rules! impl_additive_operator { ( $struct: ident, $trait: ident, $method: ident, $output: ty ) => { impl<const N:usize,const F:usize> core::ops::$trait for $struct<N,F>{ type Output = $output; fn $method(self, other: Self) -> Self::Output { Self::from_bits(self.bits.$method(other.bits)) } } impl<const N:usize,const F:usize,U> core::ops::$trait<U> for $struct<N,F> where BInt::<N>:From<U>, { type Output = $output; fn $method(self, other: U) -> Self::Output { Self::from_bits(self.bits.$method(BInt::<N>::from(other).shl(F as u32))) } } }; } macro_rules! impl_additive_assign_operator { ( $struct: ident, $trait: ident, $method: ident ) => { impl<const N:usize,const F:usize> core::ops::$trait for $struct<N,F>{ fn $method(&mut self, other: Self) { self.bits.$method(other.bits); } } impl<const N:usize,const F:usize,U> core::ops::$trait<U> for $struct<N,F> where BInt::<N>:From<U>, { fn $method(&mut self, other: U) { self.bits.$method(BInt::<N>::from(other)<<F as u32); } } }; } // Impl arithmetic pperators impl_additive_assign_operator!( Fixed, AddAssign, add_assign ); impl_additive_operator!( Fixed, Add, add, Self ); impl_additive_assign_operator!( Fixed, SubAssign, sub_assign ); impl_additive_operator!( Fixed, Sub, sub, Self ); impl_additive_assign_operator!( Fixed, RemAssign, rem_assign ); impl_additive_operator!( Fixed, Rem, rem, Self ); // Impl bitwise operators impl_additive_assign_operator!( Fixed, BitAndAssign, bitand_assign ); impl_additive_operator!( Fixed, BitAnd, bitand, Self ); impl_additive_assign_operator!( Fixed, BitOrAssign, bitor_assign ); impl_additive_operator!( Fixed, BitOr, bitor, Self ); impl_additive_assign_operator!( Fixed, BitXorAssign, bitxor_assign ); impl_additive_operator!( Fixed, BitXor, bitxor, Self ); macro_rules! impl_multiply_operator_const { ( $width:expr, $struct: ident, $trait: ident, $method: ident, $output: ty ) => { impl<const F:usize> core::ops::$trait for $struct<$width,F>{ type Output = $output; fn $method(self, other: Self) -> Self::Output { //this can be done better but that is a job for later let lhs=self.bits.as_::<BInt::<{$width*2}>>(); let rhs=other.bits.as_::<BInt::<{$width*2}>>(); Self::from_bits(lhs.mul(rhs).shr(F as u32).as_()) } } }; } macro_rules! impl_multiply_assign_operator_const { ( $width:expr, $struct: ident, $trait: ident, $method: ident ) => { impl<const F:usize> core::ops::$trait for $struct<$width,F>{ fn $method(&mut self, other: Self) { self.bits.$method(other.bits); } } }; } macro_rules! impl_divide_operator_const { ( $width:expr, $struct: ident, $trait: ident, $method: ident, $output: ty ) => { impl<const F:usize> core::ops::$trait for $struct<$width,F>{ type Output = $output; fn $method(self, other: Self) -> Self::Output { //this can be done better but that is a job for later //this only needs to be $width+F as u32/64+1 but MUH CONST GENERICS!!!!! let lhs=self.bits.as_::<BInt::<{$width*2}>>().shl(F as u32); let rhs=other.bits.as_::<BInt::<{$width*2}>>(); Self::from_bits(lhs.div(rhs).as_()) } } }; } macro_rules! impl_divide_assign_operator_const { ( $width:expr, $struct: ident, $trait: ident, $method: ident ) => { impl<const F:usize> core::ops::$trait for $struct<$width,F>{ fn $method(&mut self, other: Self) { self.bits.$method(other.bits); } } }; } macro_rules! impl_multiplicatave_operator { ( $struct: ident, $trait: ident, $method: ident, $output: ty ) => { impl<const N:usize,const F:usize,U> core::ops::$trait<U> for $struct<N,F> where BInt::<N>:From<U>+core::ops::$trait, { type Output = $output; fn $method(self, other: U) -> Self::Output { Self::from_bits(self.bits.$method(BInt::<N>::from(other))) } } }; } macro_rules! impl_multiplicatave_assign_operator { ( $struct: ident, $trait: ident, $method: ident ) => { impl<const N:usize,const F:usize,U> core::ops::$trait<U> for $struct<N,F> where BInt::<N>:From<U>+core::ops::$trait, { fn $method(&mut self, other: U) { self.bits.$method(BInt::<N>::from(other)); } } }; } macro_rules! impl_operator_16 { ( $macro: ident, $struct: ident, $trait: ident, $method: ident, $output: ty ) => { $macro!(1,$struct,$trait,$method,$output); $macro!(2,$struct,$trait,$method,$output); $macro!(3,$struct,$trait,$method,$output); $macro!(4,$struct,$trait,$method,$output); $macro!(5,$struct,$trait,$method,$output); $macro!(6,$struct,$trait,$method,$output); $macro!(7,$struct,$trait,$method,$output); $macro!(8,$struct,$trait,$method,$output); $macro!(9,$struct,$trait,$method,$output); $macro!(10,$struct,$trait,$method,$output); $macro!(11,$struct,$trait,$method,$output); $macro!(12,$struct,$trait,$method,$output); $macro!(13,$struct,$trait,$method,$output); $macro!(14,$struct,$trait,$method,$output); $macro!(15,$struct,$trait,$method,$output); $macro!(16,$struct,$trait,$method,$output); } } macro_rules! impl_assign_operator_16 { ( $macro: ident, $struct: ident, $trait: ident, $method: ident ) => { $macro!(1,$struct,$trait,$method); $macro!(2,$struct,$trait,$method); $macro!(3,$struct,$trait,$method); $macro!(4,$struct,$trait,$method); $macro!(5,$struct,$trait,$method); $macro!(6,$struct,$trait,$method); $macro!(7,$struct,$trait,$method); $macro!(8,$struct,$trait,$method); $macro!(9,$struct,$trait,$method); $macro!(10,$struct,$trait,$method); $macro!(11,$struct,$trait,$method); $macro!(12,$struct,$trait,$method); $macro!(13,$struct,$trait,$method); $macro!(14,$struct,$trait,$method); $macro!(15,$struct,$trait,$method); $macro!(16,$struct,$trait,$method); } } impl_assign_operator_16!( impl_multiply_assign_operator_const, Fixed, MulAssign, mul_assign ); impl_operator_16!( impl_multiply_operator_const, Fixed, Mul, mul, Self ); impl_assign_operator_16!( impl_divide_assign_operator_const, Fixed, DivAssign, div_assign ); impl_operator_16!( impl_divide_operator_const, Fixed, Div, div, Self ); impl_multiplicatave_assign_operator!( Fixed, MulAssign, mul_assign ); impl_multiplicatave_operator!( Fixed, Mul, mul, Self ); impl_multiplicatave_assign_operator!( Fixed, DivAssign, div_assign ); impl_multiplicatave_operator!( Fixed, Div, div, Self ); macro_rules! impl_shift_operator { ( $struct: ident, $trait: ident, $method: ident, $output: ty ) => { impl<const N:usize,const F:usize> core::ops::$trait<u32> for $struct<N,F>{ type Output = $output; fn $method(self, other: u32) -> Self::Output { Self::from_bits(self.bits.$method(other)) } } }; } macro_rules! impl_shift_assign_operator { ( $struct: ident, $trait: ident, $method: ident ) => { impl<const N:usize,const F:usize> core::ops::$trait<u32> for $struct<N,F>{ fn $method(&mut self, other: u32) { self.bits.$method(other); } } }; } impl_shift_assign_operator!( Fixed, ShlAssign, shl_assign ); impl_shift_operator!( Fixed, Shl, shl, Self ); impl_shift_assign_operator!( Fixed, ShrAssign, shr_assign ); impl_shift_operator!( Fixed, Shr, shr, Self ); // WIDE MUL: multiply into a wider type // let a = I32F32::ONE; // let b:I64F64 = a.wide_mul(a); macro_rules! impl_wide_mul{ ($lhs:expr,$rhs:expr)=>{ impl Fixed<$lhs,{$lhs*32}> { paste::item!{ pub fn [<wide_mul_ $lhs _ $rhs>](self,rhs:Fixed<$rhs,{$rhs*32}>)->Fixed<{$lhs+$rhs},{($lhs+$rhs)*32}>{ Fixed::from_bits(self.bits.as_::<BInt<{$lhs+$rhs}>>()*rhs.bits.as_::<BInt<{$lhs+$rhs}>>()) } } } }; } macro_rules! impl_wide_mul_all{ ($(($x:expr, $y:expr)),*)=>{ $( impl_wide_mul!($x, $y); )* }; } //const generics sidestepped wahoo impl_wide_mul_all!( (1,1),(2,1),(3,1),(4,1),(5,1),(6,1),(7,1),(8,1), (1,2),(2,2),(3,2),(4,2),(5,2),(6,2),(7,2),(8,2), (1,3),(2,3),(3,3),(4,3),(5,3),(6,3),(7,3),(8,3), (1,4),(2,4),(3,4),(4,4),(5,4),(6,4),(7,4),(8,4), (1,5),(2,5),(3,5),(4,5),(5,5),(6,5),(7,5),(8,5), (1,6),(2,6),(3,6),(4,6),(5,6),(6,6),(7,6),(8,6), (1,7),(2,7),(3,7),(4,7),(5,7),(6,7),(7,7),(8,7), (1,8),(2,8),(3,8),(4,8),(5,8),(6,8),(7,8),(8,8) ); impl<const SRC:usize,const F:usize> Fixed<SRC,F>{ pub fn resize_into<const DST:usize>(self)->Fixed<DST,F>{ Fixed::from_bits(self.bits.as_::<BInt<DST>>()) } } macro_rules! impl_const{ ($n:expr)=>{ impl Fixed<{$n*2},{$n*2*32}>{ pub fn halve_precision(self)->Fixed<$n,{$n*32}>{ Fixed::from_bits(bnum::cast::As::as_(self.bits.shr($n*32))) } } impl Fixed<$n,{$n*32}>{ paste::item!{ pub fn sqrt_unchecked(self)->Self{ //1<<max_shift must be the minimum power of two which when squared is greater than self //calculating max_shift: //1. count "used" bits to the left of the decimal, not including the sign bit (so -1) //2. divide by 2 via >>1 (sqrt-ish) //3. add on fractional offset //Voila let used_bits=self.bits.bits() as i32-1-($n*32) as i32; let max_shift=((used_bits>>1)+($n*32) as i32) as u32; let mut result=Self::ZERO; //multiply by one to make the types match (hack) let wide_self=self.[<wide_mul_ $n _ $n>](Self::ONE); //descend down the bits and check if flipping each bit would push the square over the input value for shift in (0..=max_shift).rev(){ let new_result=result|Self::from_bits(BInt::from_bits(bnum::BUint::power_of_two(shift))); if new_result.[<wide_mul_ $n _ $n>](new_result)<=wide_self{ result=new_result; } } result } } pub fn sqrt(self)->Self{ if self<Self::ZERO{ panic!("Square root less than zero") }else{ self.sqrt_unchecked() } } pub fn sqrt_checked(self)->Option<Self>{ if self<Self::ZERO{ None }else{ Some(self.sqrt_unchecked()) } } } } } impl_const!(1); impl_const!(2); impl_const!(3); impl_const!(4); impl_const!(5); impl_const!(6); impl_const!(7); impl_const!(8);